RU2765966C1 - Способ нанесения алюминия на стеклянные изделия - Google Patents
Способ нанесения алюминия на стеклянные изделия Download PDFInfo
- Publication number
- RU2765966C1 RU2765966C1 RU2021134830A RU2021134830A RU2765966C1 RU 2765966 C1 RU2765966 C1 RU 2765966C1 RU 2021134830 A RU2021134830 A RU 2021134830A RU 2021134830 A RU2021134830 A RU 2021134830A RU 2765966 C1 RU2765966 C1 RU 2765966C1
- Authority
- RU
- Russia
- Prior art keywords
- glass
- aluminum
- layer
- minutes
- glass articles
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Изобретение относится к области декорирования стекла и изделий, а именно к способу нанесения алюминия на стеклянные изделия из него, и может быть использовано в стекольной промышленности на технологической стадии нанесения декоративных покрытий на стеклянные бытовые товары. Из камеры для напыления откачивают воздух до вакуума 0,007 Па и вращают корзину со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту. Затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА, время очистки 20 мин. При этом проводят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100-100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов. Затем включают источники магнетронного напыления с установленными мишенями из алюминия. Затем при давлении напускаемого газа аргона 0,05 Па наносят слой алюминия в течение 30 мин при следующих параметрах: ток источников 10 А, напряжение 380-420 В. Затем на слой алюминия наносят слой консервного эпоксидного лака. После чего стеклянные изделия помещают в муфельную печь отжига и выдерживают при температуре 150°С в течение 12 мин. Обеспечивается повышение прочности полученного декоративного покрытия.
Description
Изобретение относится к области декорирования стекла и изделий из него, и может быть использована в стекольной промышленности на технологической стадии нанесения декоративных покрытий на стеклянные бытовые товары (рюмки, фужеры, бокалы, стаканы, вазы, кружки, тарелки и др.). [МПК C23C14/00, C23C16/00, C23C18/18]
Из уровня техники известен СПОСОБ ПРИГОТОВЛЕНИЯ ТИТАНОВЫХ ПОКРЫТИЙ [WO0022187 (A1) ― 2000-04-20], содержащего по меньшей мере один слой, выбранный из слоев, состоящих из нитрида титана TiN, слоев, состоящих из карбонитрида титана TiCN, слоев, состоящих из нитрида титана и другой металл M (Ti, M) N или Til-xMxN и слои, состоящие из карбонитрида титана и другого металла M (Ti, M) NC или Til-xMxNC /, в котором указанное покрытие наносится непрерывно и за один за одну операцию путем химического осаждения из паровой фазы с помощью плазмы (PACVD) из газовой смеси, содержащей восстановительный газ, водород, хлорид титана.
Недостатком аналога является недостаточная прочность покрытия
Также из уровня техники известен СПОСОБ ПОЛУЧЕНИЯ НАНОПЛЕНКИ НИТРИДА ТИТАНА НА ПОВЕРХНОСТИ ПОДЛОЖКИ, ПОДЛОЖКИ С ПЛЕНКОЙ И ИХ НАНЕСЕНИЕ [CN108546929 (A) ― 2018-09-18], содержащий этапы, на которых: транспортируют субстрат в реакционную камеру через шлюзовую камеру загрузки, реакционную камеру откачивают до вакуума; пропускают инертный газ в реакционную камеру и наносят покрытие используя аммиачную плазму и газообразный источник титана, после чего выполняют несколько циклов промывки газом реакционной камеры, поддерживают температуру реакционной камеры на уровне 150-220 °C и выполняют реакцию осаждения атомного слоя нитрида титана с плазменным усилением для получения подложки с нанопленкой нитрида титана на поверхности.
Недостатком данного аналога является необходимость поддержания высокой температуры для осаждения атомного слоя титана.
Наиболее близким по технической сущности является СПОСОБ НАНЕСЕНИЯ НА ИЗДЕЛИЯ ЗАЩИТНО-ДЕКОРАТИВНЫХ ПОКРЫТИЙ [RU 2039844 C1, опубл. 20.07.1995], преимущественно покрытий на основе оксидов титана, хрома, вольфрама, циркония, гафния или ванадия, а также фаз внедрения, выбранных из ряда карбидов, нитридов и карбонитридов указанных металлов, включающий покрытие поверхности металлического или неметаллического материала путем распыления мишеней из активных металлов, их сплавов или композиционных материалов ионной бомбардировкой в тлеющем разряде в смеси инертного и реакционного газов при их раздельной подаче в реакционный объем, предварительно заполняемый инертным газом до давления (3,0 3,5) · 10-3 мм рт. ст. с последующим осаждением распыленных частиц на поверхность изделия, отличающийся тем, что реакционный газ подают в приповерхностную зону изделия, подогретого до 300 360 oС до установления в реакционном объеме давления (6,0 10) · 10 -3 мм рт. ст. время распыления контролируют в пределах, необходимых для получения декоративного эффекта заданной интенсивности и гаммы цветовых оттенков, а в качестве реакционного газа используют пары воды, диоксид углерода, воздух или смесь кислородсодержащих газов.
Основной технической проблемой прототипа является необходимость подогревания изделий до температуры 300-360 oС перед нанесением на них покрытий, что усложняет технологию нанесения покрытия, ограничивает применение материалов для нанесения на них покрытий с никой температурой плавления, а также увеличивает время, необходимое на осуществление технологической операции по нанесению на время нагрева и охлаждения изделия.
Задачей изобретения является устранение недостатков прототипа.
Техническим результатом изобретения является повышение прочности декоративного покрытия.
Указанный технический результат достигается за счет того, что способ нанесения алюминия на стеклянные изделия, характеризующийся тем, что из камеры для напыления откачивают воздух до вакуума 0,007 Па и запускают вращение корзины со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту, затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА, время очистки 20 минут, при этом производят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100 – 100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов, затем включают источники магнетронного напыления с установленными мишенями из алюминия, затем при давлении напускаемого газа аргона 0,05 Па наносят слой металла в течение 30 минут, при следующих параметрах: ток источников 10 А, напряжение 380-420 В, затем на алюминий наносят слой консервного эпоксидного лака, после чего посуду помещают в муфельную печь отжига и выдерживают при температуре 150 °С в течение 12 минут.
Осуществление изобретения.
Первоначально проводят входной контроль сортовой посуды на предмет отбраковки изделий по причине сколов, нарушения геометрии, боя. Далее изделия поступают в цех гравировки, где производится нанесение гравированного узора автоматизированным способом на станках с программным управлением. Отгравированная посуда поступает в цех мойки, в котором изделия проходят этапы мойки, ополаскивания и сушки в секционной машине туннельного типа, например, МПС- 1600, для которой вода проходит подготовку с помощью установленной системы очистки OSMOS.
Прошедшую очистку поверхности посуда поступает на участок маскирования, на котором на внешнюю поверхность каждого изделия наносят в ручном режиме, с помощью станков намотки, маскируемый слой, шириной 2-3 см, из полиэтиленовой ленты, который обеспечивает четкую границу между участками поверхности изделия подлежащими и не подлежащими декорированию напылением. Остальная часть внешней поверхности изделий, не подлежащая декорированию напылением, маскируется пластиковыми формами, выполненными индивидуально для каждого ассортимента изделий. Подготовленная посуда поступает в цех напыления, в котором ее устанавливают в цилиндрические корзины из нержавеющей стали, выполненные по схеме планетарного вращения, при этом корзины могут быть выполнены в различных вариантах и содержать от одного до восьми носителей в каждой в зависимости от размера изделий. Собранные корзины, в количестве 10 штук включительно, устанавливают в посадочные места карусели камеры напыления вакуумной установки.
Для напыления используется установка вакуумного напыления VTT-1200-V2-IS1_ARC1, в состав которой входят: откачной пост, камера напыления, стойка управления, стойка инверторных блоков питания источника ионной очистки и двух магнетронов, блок управления тремя инверторами дугового испарителя.
Откачной пост включает в себя: масляный пластинчато-роторный насос HENA 300 компании Pfeiffer, роторный насос Рутса OKTA 500 компании Pfeiffer, паромасляный диффузионный насос НВДМ-630. Рабочие жидкости: для насоса HENA 300 вакуумное масло Pfeiffer 3, для НВДМ-630 вакуумное масло ВМ-1С.
В камере напыления установлены: карусель с планетарным вращением подложки, с возможностью управления скоростью вращения карусели, источник ионной очистки щелевого типа, два магнетрона планарного типа, дуговой испаритель планарного типа. Установка обеспечивает управление технологическим процессом посредством графического интерфейса пользователя, как в автоматическом, так и в ручном режимах.
Рассмотрим технологические процессы нанесения алюминия на стеклянную сортовую посуду.
Поступающая на предприятие посуда, на первом этапе проходит входной контроль на предмет отбраковки изделий по причине сколов, нарушения геометрии, боя. Далее изделия поступают в цех гравировки, где производится нанесение гравированного узора автоматизированным способом на станках с программным управлением. Отгравированная посуда поступает в цех мойки. Здесь изделия проходят этапы мойки, ополаскивания и сушки в секционной машине туннельного типа МПС- 1600. Вода для мойки проходит подготовку с помощью установленной системы очистки OSMOS. Прошедшая очистку поверхности посуда, поступает на участок маскирования, где на внешнюю поверхность каждого изделия наносится в ручном режиме, с помощью станков намотки, маскируемый слой, шириной 2-3 см, из полиэтиленовой ленты, который обеспечивает четкую границу между участками поверхности изделия подлежащими и не подлежащими декорированию напылением. Остальная часть внешней поверхности изделий, не подлежащая декорированию напылением, маскируется пластиковыми формами, выполненными индивидуально для каждого ассортимента изделий. Подготовленная посуда поступает в цех напыления. Здесь маскированная посуда устанавливается в цилиндрические корзины из нержавеющей стали, выполненные по схеме планетарного вращения. Корзины исполнены в различных вариантах, от одного до восьми носителей в каждой, и собираются в зависимости от размера ассортимента изделий. Собранные корзины, в количестве десяти штук, устанавливаются в посадочные места карусели камеры напыления вакуумной установки. После цикла напыления посуда поступает на участок нанесения и закрепления защитного слоя нанесенной пленки металла.
Для напыления алюминия используется установка вакуумного напыления VTT-1200-V2-IS1_ARC1. В состав установки входят: откачной пост, камера напыления, стойка управления, стойка инверторных блоков питания источника ионной очистки и двух магнетронов, блок управления тремя инверторами дугового испарителя. Откачной пост включает в себя: масляный пластинчато-роторный насос HENA 300 компании Pfeiffer, роторный насос Рутса OKTA 500 компании Pfeiffer, паромасляный диффузионный насос НВДМ-630. Рабочие жидкости: для насоса HENA 300 вакуумное масло Pfeiffer 3, для НВДМ-630 вакуумное масло ВМ-1С. В камере напыления установлены: карусель с планетарным вращением подложки, с возможностью управления скоростью вращения карусели, источник ионной очистки щелевого типа, два магнетрона планарного типа, дуговой испаритель планарного типа. Установка обеспечивает управление технологическим процессом посредством графического интерфейса пользователя, как в автоматическом, так и в ручном режимах.
Технология напыления алюминия для формирования покрытия типа «Серебряное».
В камеру напыления загружают корзины, заряженные маскированной посудой. Камеру откачивают до вакуума 0,007 Па, запускают вращение карусели со скоростью 2 об/мин, включают подачу газа аргона в режиме стабилизации давления 0,06 Па и включают источник ионной очистки поверхности подложки при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА, время очистки 20 минут. При бомбардировке поверхности стекла в высоком вакууме ионами аргона с энергией 100 – 100000 эВ происходит распыление поверхностного слоя, при котором удаляются с него адсорбированные атомы и окислы пленки и тем самым создаются условия для повышения адгезии напыляемого покрытия. Далее включают источники магнетронного напыления с установленными мишенями из алюминия и, при стабилизации давления напускаемого газа аргон 0,05 Па, наносят слой металла в течение 30 минут при следующих параметрах: ток источников 10 А, напряжение 380-420 В. По окончании процесса напыления, в камеру напыления напускается атмосферное давление, затем ее открывают и из нее выгружают корзины, далее производят разбор носителей с посудой, снятие маскировочных форм и полиэтиленовой ленты. Далее продукцию отправляют на участок нанесения и закрепления защитного слоя на пленку алюминия. Данная операция необходима для защиты алюминия от коррозийного воздействия внешней атмосферы, химического воздействия при мойке, механических повреждений. Здесь в ручном режиме на алюминий наносится слой консервного эпоксидного лака, после чего посуда помещается в муфельные печи отжига и выдерживается при температуре 150 °С в течение 12 минут. Готовая продукция проходит выходной контроль на предмет брака и направляется в цех упаковки.
Указанный технический результат изобретения достигается за счет равномерной ионной очистки поверхности подложки стеклянного изделия от адсорбированных атомов и окислов пленки посредством вращения карусели со скоростью 2 оборота в минуту и бомбардировкой поверхности стекла в высоком вакууме ионами аргона с энергией 100 – 100000 эВ в едином вакуумном цикле с нанесением слоев покрытия, кроме того технический результат достигается интенсификацией процесса за счет нанесения металла дуговым испарителем при максимально возможной скорости; упрощением технологии, в отличии от магнетронного напыления, за счет исключения необходимости контроля и поддержания на определенном уровне процентного содержания аpгона и азота (кислорода) в газовой смеси во время формирования покрытия.
Claims (1)
- Способ нанесения алюминия на стеклянные изделия, характеризующийся тем, что из камеры для напыления откачивают воздух до вакуума 0,007 Па и вращают корзину со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту, затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА, время очистки 20 мин, при этом проводят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100-100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов, затем включают источники магнетронного напыления с установленными мишенями из алюминия, затем при давлении напускаемого газа аргона 0,05 Па наносят слой алюминия в течение 30 мин при следующих параметрах: ток источников 10 А, напряжение 380-420 В, затем на слой алюминия наносят слой консервного эпоксидного лака, после чего стеклянные изделия помещают в муфельную печь отжига и выдерживают при температуре 150°С в течение 12 мин.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2021134830A RU2765966C1 (ru) | 2021-11-29 | 2021-11-29 | Способ нанесения алюминия на стеклянные изделия |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2021134830A RU2765966C1 (ru) | 2021-11-29 | 2021-11-29 | Способ нанесения алюминия на стеклянные изделия |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2021100369A Division RU2761391C1 (ru) | 2021-01-12 | 2021-01-12 | Способы нанесения на стеклянные изделия металлических покрытий из нитрида титана |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2765966C1 true RU2765966C1 (ru) | 2022-02-07 |
Family
ID=80214787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2021134830A RU2765966C1 (ru) | 2021-11-29 | 2021-11-29 | Способ нанесения алюминия на стеклянные изделия |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2765966C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2039127C1 (ru) * | 1992-02-28 | 1995-07-09 | Андрей Вячеславович Егоров | Способ получения коррозионностойких покрытий золотистого цвета на подложках |
RU2335576C2 (ru) * | 2003-03-28 | 2008-10-10 | Ппг Индастриз Огайо, Инк. | Подложки, покрытые смесями титановых и алюминиевых материалов, способы получения подложек и катодные мишени из металлических титана и алюминия |
US20120034438A1 (en) * | 2010-08-05 | 2012-02-09 | Hon Hai Precision Industry Co., Ltd. | Coated article and method for manufacturing same |
US20120070653A1 (en) * | 2010-09-16 | 2012-03-22 | Hon Hai Precision Industry Co., Ltd. | Coated article and method for making the same |
RU2608858C2 (ru) * | 2015-06-17 | 2017-01-25 | Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" (ОАО "РКК "Энергия") | Стекло с оптически прозрачным защитным покрытием и способ его изготовления |
-
2021
- 2021-11-29 RU RU2021134830A patent/RU2765966C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2039127C1 (ru) * | 1992-02-28 | 1995-07-09 | Андрей Вячеславович Егоров | Способ получения коррозионностойких покрытий золотистого цвета на подложках |
RU2335576C2 (ru) * | 2003-03-28 | 2008-10-10 | Ппг Индастриз Огайо, Инк. | Подложки, покрытые смесями титановых и алюминиевых материалов, способы получения подложек и катодные мишени из металлических титана и алюминия |
US20120034438A1 (en) * | 2010-08-05 | 2012-02-09 | Hon Hai Precision Industry Co., Ltd. | Coated article and method for manufacturing same |
US20120070653A1 (en) * | 2010-09-16 | 2012-03-22 | Hon Hai Precision Industry Co., Ltd. | Coated article and method for making the same |
RU2608858C2 (ru) * | 2015-06-17 | 2017-01-25 | Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" (ОАО "РКК "Энергия") | Стекло с оптически прозрачным защитным покрытием и способ его изготовления |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6045667A (en) | Process and system for the treatment of substrates using ions from a low-voltage arc discharge | |
US6503373B2 (en) | Method of applying a coating by physical vapor deposition | |
MX2011006238A (es) | Aparato para tratar y/o recubrir la superficie de un componente de sustrato. | |
CN105132876B (zh) | 一种钢制齿轮的表面复合处理方法 | |
KR20160096015A (ko) | 저온 세라믹 코팅의 밀착력 강화 방법 | |
RU2660502C1 (ru) | Способ нанесения покрытия на поверхность стального изделия | |
RU2765966C1 (ru) | Способ нанесения алюминия на стеклянные изделия | |
RU2689474C1 (ru) | Способ получения покрытия на основе интерметаллидов системы ti-al, синтезированного в среде азота | |
RU2765965C1 (ru) | Способ нанесения латуни марки л63 на стеклянные изделия | |
RU2437963C1 (ru) | Способ нанесения нанокомпозитного покрытия на поверхность стального изделия | |
RU2554828C2 (ru) | Способ нанесения защитного покрытия на поверхность стального изделия | |
RU2766419C1 (ru) | Способ нанесения карбонитрида титана на стеклянные изделия | |
JPS5864377A (ja) | 表面被覆工具およびその製造方法 | |
RU2766421C1 (ru) | Способ нанесения оксидированной нержавеющей стали на стеклянные изделия | |
RU2761391C1 (ru) | Способы нанесения на стеклянные изделия металлических покрытий из нитрида титана | |
RU2765964C1 (ru) | Способы нанесения на стеклянные изделия покрытий из оксида титана | |
GB2226334A (en) | Multilayer coatings | |
KR20190056558A (ko) | 금색 박막을 형성하기 위한 Ti-Zr 합금타겟의 제조방법과 이를 이용한 금색 박막의 코팅방법 | |
RU2777094C1 (ru) | Способ нанесения на стеклянные изделия металлических покрытий из меди и медных сплавов | |
JPH02125861A (ja) | 被処理物の表面に被膜を形成する方法 | |
RU2691166C1 (ru) | Способ нанесения защитных покрытий и устройство для его осуществления | |
RU2769142C1 (ru) | Способ получения покрытий на основе системы Ti-Al, синтезированных в среде реакционных газов | |
EP1541707B1 (en) | METHOD FOR PREPARING ALUMNA COATING FILM HAVING a-TYPE CRYSTAL STRUCTURE AS PRIMARY STRUCTURE | |
RU2677043C1 (ru) | Способ получения износостойкого покрытия на основе интерметаллида системы Ti-Al | |
EP1624087B1 (en) | A method for depositing thin layers of titanium dioxide on support surfaces |