RU2754146C1 - Композиция присадки флюид-каталитического крекинга для повышения октанового числа бензина и способ её получения - Google Patents

Композиция присадки флюид-каталитического крекинга для повышения октанового числа бензина и способ её получения Download PDF

Info

Publication number
RU2754146C1
RU2754146C1 RU2020132486A RU2020132486A RU2754146C1 RU 2754146 C1 RU2754146 C1 RU 2754146C1 RU 2020132486 A RU2020132486 A RU 2020132486A RU 2020132486 A RU2020132486 A RU 2020132486A RU 2754146 C1 RU2754146 C1 RU 2754146C1
Authority
RU
Russia
Prior art keywords
zeolite
suspension
zsm
sio
gasoline
Prior art date
Application number
RU2020132486A
Other languages
English (en)
Inventor
Махеш КАДГАОНКАР
Арумугам Велаютхам КАРТИКЕЯНИ
Кумаресан ЛОГАНАТАН
Балайя СВАМИ
Велусами ЧИДАМБАРАМ
Бисванат САРКАР
Алекс Черу ПУЛИКОТТИЛЬ
Винит Вену НАТ
Рам Мохан ТАКУР
Мадхусудан САУ
Гурприт Сингх КАПУР
Шанкара Шри Венката РАМАКУМАР
Original Assignee
Индиан Оил Корпорейшн Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Индиан Оил Корпорейшн Лимитед filed Critical Индиан Оил Корпорейшн Лимитед
Application granted granted Critical
Publication of RU2754146C1 publication Critical patent/RU2754146C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/10Use of additives to fuels or fires for particular purposes for improving the octane number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Настоящее изобретение касается способа получения присадки, который содержит этапы, на которых: a) получают суспензию глины и оксида алюминия: i) диспергируют каолиновую глину в деминерализованной воде и диспергаторе, причем указанный диспергатор представляет собой продукт конденсации нафталинсульфоновой кислоты; ii) добавляют оксид алюминия типа псевдобемита; iii) измельчают суспензию в течение 2 часов, равномерно перемешивают, а затем добавляют полисиликат аммония и снова измельчают, по меньшей мере, в течение 30 минут; и iv) постепенно добавляют органическую кислоту с последующим добавлением ортофосфорной кислоты при интенсивном перемешивании; b) получают суспензию цеолита с использованием более чем одного цеолита: i) растворяют гидрофосфат диаммония в деминерализованной воде для получения суспензии цеолита; добавляют цеолит ZSM-5, имеющий SiO2/Al2O3 в диапазоне от 30 до 280, в деминерализованную воду при перемешивании; и ii) растворяют гидрофосфат диаммония в деминерализованной воде для получения суспензии цеолита; добавляют цеолит ZSM-5, имеющий SiO2/Al2O3, в деминерализованную воду при перемешивании; причем мольное отношение SiO2/Al2O3 отличается от этапа (i); c) получают готовую каталитическую суспензию: i) смешивают суспензию цеолита с суспензией глины и оксида алюминия и перемешивают в течение 30 минут; ii) добавляют полисиликат аммония в суспензию, смешанную на этапе i) этапа c), и опционально добавляют прекурсор двухвалентного металла, растворенный в деминерализованной воде; и iii) просеивают суспензию, полученную на этапе ii) этапа c), высушивают распылением и прокаливают высушенный распылением продукт при температуре 550°C. Также изобретение касается композиции присадки флюид-каталитического крекинга, которая получена вышеотмеченным способом, причем указанная композиция присадки флюид-каталитического крекинга выполнена с возможностью повышения октанового числа бензина. Технический результат заключается в оптимизации типовой комбинации цеолита типа MFI с разным отношением SiO2/Al2O3 для сохранения выхода бензина и повышения октанового числа бензина, что приводит к повышению селективности по легким олефинам и ароматическим соединениям в продукте; в модификации кислотных центров присадки с помощью двухвалентных металлов, выбранных из Группы IIA и Группы IB, для обеспечения селективности по легким олефинам и ароматическим соединениям. 2 н. и 6 з.п. ф-лы, 3 табл., 9 пр.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к присадке, выполненной с возможностью повышения октанового числа бензина (на 2-3 единицы) с минимальной потерей бензина. В частности, настоящее изобретение раскрывает композицию присадки флюид-каталитического крекинга, выполненную с возможностью повышения октанового числа бензина, причём указанная композиция содержит 5-50 масс.% цеолитного компонента, 0-15 масс.% алюминия, 5-20 масс.% коллоидного диоксида кремния, 10-60 масс.% каолиновой глины, 5-15 масс.% фосфата и от 0,1 до 5,0 масс.% двухвалентного металла, выбранного из Группы IIA или Группы IB, причём цеолитный компонент содержит среднепористый цеолит типа пентасил в количестве от 1 до 50 масс.%, и указанный цеолит состоит из одного или более цеолитов с топологией MFI, имеющих мольное отношение SiO2/Al2O3 в диапазоне 10-280. Настоящее изобретение также раскрывает способ получения присадки.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Бензин, полученный путем флюид-каталитического крекинга (ФКК), составляет около 40-50% от общего объёма бензина, и обеспечение требуемого октанового числа бензина является первоочередной задачей, связанной с работой установки флюид-каталитического крекинга (УФКК). Как правило, нефтепереработчики используют присадки ZSM-5 в процессе ФКК для повышения октанового числа бензина; однако, использование обычных присадок неизменно снижает выход бензина. В связи с этим повышение октанового числа бензина с минимальной потерей бензина является важной и сложной задачей. Настоящее изобретение относится к разработке композиции присадки с учетом конкретных особенностей с использованием запатентованной цеолитной системы, которая может создавать более селективно высокооктановые молекулы в бензине без значительного крекинга бензина, что приводит к минимальной потере бензина по сравнению с катализатором ФКК на основе цеолита-Y.
В Патенте США № 3894934 описано использование смеси мелкопористого и крупнопористого кристаллического алюмосиликата, имеющего активность и селективность для крекинга углеводородов и циклизации газообразных продуктов крекинга в зоне двойного превращения. Компоненты катализатора, используемые в исследовании, компенсируют друг друга для получения материала с относительно высоким октановым числом, а мелкопористый кристаллический материал представляет собой катализатор типа ZSM-5, состоящий из катализатора двойного превращения, содержащего крупнопористый цеолит типа фожазита и кристаллический алюмосиликат типа ZSM-5 с размером пор 5-9 Å.
В Патенте США № 4828679 описано повышение октанового числа и увеличение общего выхода при каталитическом крекинге нефтяных фракций в условиях крекинга, которые обеспечивают путем добавления традиционного катализатора крекинга с небольшим количеством добавочного катализатора, содержащего класс цеолитов, характеризующихся мольным отношением диоксида кремния к оксиду алюминия более 12 и индексом проницаемости от 1 до 12, причём добавочный цеолитный катализатор имеет размер кристаллов от 0,2 до 10 микрон.
В Патенте США № 4867863 описан способ каталитической глубокой переработки вакуумных газойлей, остатков или другой слабо крекированной нефти, содержащей металлические загрязняющие примеси, для повышения октанового числа бензина. Углеводородное сырье, которое включает в себя примеси ванадия и натрия, вводят в зону реакции установки каталитического крекинга. Катализатор каталитического крекинга включает в себя каталитический компонент типа ZSM-5, контактирующий в зоне реакции с металлосодержащим углеводородным сырьем. Углеводородное сырье подвергается крекингу при высокой температуре за счет катализатора крекинга, что приводит к повышению октанового числа бензина и неожиданной стойкости каталитического компонента типа ZSM-5 к отравлению из-за обычно ожидаемого синергетически деструктивного сочетания натрия и ванадия в цеолите-Y.
В Патенте США № 4867863 описан каталитический промотор, содержащий 5-65 масс.% модифицированного цеолита HZSM-5 с Zn, P, Ga, Al, Ni и редкоземельными элементами в количестве 0,01-10,37 масс.% от общей массы цеолита HZSM-5, для повышения октанового числа бензина и увеличения выхода низкомолекулярного олефина.
В Патенте США № 4549956 описано добавление AgHZSM-5 к обычным катализаторам крекинга, что приводит к значительному повышению октанового числа бензина без чрезмерной потери в выходе бензина. Повышение октанового числа в этом случае больше, чем может быть достигнуто при добавлении обычного HZSM-5.
В Патенте США № 4614578 описано повышение октанового числа и увеличение общего выхода в процессах каталитического крекинга путем добавления к обычным катализаторам крекинга очень малых количеств добавочного катализатора, содержащего класс цеолитов, характеризующихся мольным отношением диоксида кремния к оксиду алюминия более около 12 и индексом проницаемости около 1-12. Добавочный катализатор добавляют к обычному катализатору крекинга в процессе крекинга в количестве, которое обеспечивает цеолитный компонент добавочного катализатора в количестве от около 0,01 массового процента до около 1,0 массового процента обычного катализатора крекинга в процессе крекинга.
В Патенте № 5302567 описан катализатор ФКК для каталитического крекинга углеводородов, причём указанный катализатор содержит обычный катализатор крекинга, диспергированный в неорганической матрице, и цеолитную присадочную композицию, содержащую среднепористый цеолит, выбранный из группы, состоящей из ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35 и ZSM-38, для повышения октанового числа бензинового продукта в процессе ФКК.
В вышеизложенном известном уровне техники описано использование обычного ZSM-5 наряду с цеолитом типа фожазита в разной пропорции, использование не содержащих цеолит материалов, например, AlPO и SAPO, матрицы на основе аморфного алюмосиликата, модифицированного цеолита HZSM-5 с Zn, P, Ga, Al, Ni и редкоземельными элементами, класса цеолитов с мольным отношением диоксида кремния к оксиду алюминия более 12, и цеолита, имеющего индекс проницаемости от 1 до 12, причём цеолитный добавочный катализатор имеет размер кристаллов от 0,2 до 10 микрон.
Ни одно из вышеизложенных решений известного уровня техники на раскрывает использование комбинации и оптимизации цеолита типа MFI с переменным мольным отношением SiO2/Al2O3. Кроме того, оптимизация комбинации цеолита типа MFI с переменным мольным отношением SiO2/Al2O3 для повышения октанового числа бензина с минимальной потерей также не раскрыта в вышеизложенных решениях известного уровня техники.
ЗАДАЧИ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Задача настоящего изобретения заключается в повышении октанового числа бензина с минимальным уменьшением выхода бензина по сравнению с обычным основным катализатором ФКК на основе цеолита Y в процессе ФКК.
Другая задача настоящего изобретения относится к способу получения присадки, выполненной с возможностью повышения октанового числа, содержащей среднепористый цеолит, связанный связующим на основе глины-фосфата-диоксида кремния-оксида алюминия.
Другая задача настоящего изобретения заключается в оптимизации типовой комбинации цеолита типа MFI с разным отношением SiO2/Al2O3 для сохранения выхода бензина и повышения октанового числа бензина, что приводит к повышению селективности по лёгким олефинам и ароматическим соединениям в продукте.
Кроме того, другая задача настоящего изобретения заключается в модификации кислотных центров присадки с помощью двухвалентных металлов, выбранных из Группы IIA и Группы IB, для обеспечения селективности по лёгким олефинам и ароматическим соединениям, отвечающим за повышения октанового числа бензина с минимальным уменьшением выхода бензина.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к присадке, выполненной с возможностью повышения октанового числа бензина (на 2-3 единицы) с минимальной потерей бензина. В частности, настоящее изобретение раскрывает композицию присадки флюид-каталитического крекинга, выполненную с возможностью повышения октанового числа бензина, причём указанная композиция содержит 5-50 масс.% цеолитного компонента, 0-15 масс.% алюминия, 5-20 масс.% коллоидного диоксида кремния, 10-60 масс.% каолиновой глины, 5-15 масс.% фосфата и от 0,1 до 5,0 масс.% двухвалентного металла, выбранного из Группы IIA или Группы IB, причём цеолитный компонент содержит среднепористый цеолит типа пентасил в количестве от 1 до 50 масс.%, и указанный цеолит состоит из одного или более цеолитов с топологией MFI, имеющих мольное отношение SiO2/Al2O3 в диапазоне 10-280. Настоящее изобретение также раскрывает способ получения присадки.
В варианте выполнения настоящего изобретения указанный цеолит состоит из одного или более цеолитов с топологией MFI, имеющих мольное отношение SiO2/Al2O3 в диапазоне 25-80.
В варианте выполнения настоящего изобретения среднепористый цеолит типа пентасил выбран из группы, состоящей из цеолита ZSM-5, цеолита ZSM-11, цеолита ZSM-12, цеолита ZSM-22, цеолита ZSM-23 и цеолита ZSM-35.
В варианте выполнения настоящего изобретения цеолиты, имеющие мольное отношение SiO2/Al2O3 в диапазоне 25-80, смешаны в диапазоне от 1:1 до 1:4.
В варианте выполнения настоящего изобретения кислотный центр цеолита в каталитической присадке ФКК заменен двухвалентным металлом, выбранным из двухвалентных металлов Группы IIA или Группы IB.
В варианте выполнения настоящего изобретения концентрация двухвалентного металла, выбранного из Группы IIA или Группы IB, находится в диапазоне от 0,1 до 1 масс.% двухвалентного металла.
В варианте выполнения настоящего изобретения каталитическая композиция имеет ABD < 0,75 г/см3, и индекс истирания в % менее 5.
В варианте выполнения настоящего изобретения каталитическая композиция при использовании в сочетании с основным катализатором ФКК в количестве 1-20 масс.% повышает октановое число бензина на 1-2 единицы с минимальной потерей бензина 2-3 масс.%.
В варианте выполнения настоящего изобретения настоящее изобретение раскрывает способ получения присадки, содержащий этапы, на которых:
a) получают суспензию глины и оксида алюминия:
i) диспергируют каолиновую глину в деминерализованной воде и диспергаторе, причём указанный диспергатор представляет собой продукт конденсации нафталинсульфоновой кислоты;
ii) добавляют оксид алюминия типа псевдобемита;
iii) измельчают суспензию в течение 2 часов, равномерно перемешивают, а затем добавляют полисиликат аммония (содержание диоксида кремния 30%) и снова измельчают, по меньшей мере, в течение 30 минут; и
iv) постепенно добавляют органическую кислоту с последующим добавлением ортофосфорной кислоты при интенсивном перемешивании;
b) получают суспензию цеолита с использованием более чем одного цеолита:
i) растворяют гидрофосфат диаммония в деминерализованной воде для получения суспензии цеолита; добавляют цеолит ZSM-5, имеющий SiO2/Al2O3 в диапазоне от 30 до 280, в деминерализованную воду при перемешивании; и
ii) растворяют гидрофосфат диаммония в деминерализованной воде для получения суспензии цеолита; добавляют цеолит ZSM-5, имеющий SiO2/Al2O3, в деминерализованную воду при перемешивании; причём мольное отношение SiO2/Al2O3 отличается от этапа (i);
c) получают готовую каталитическую суспензию:
i) смешивают суспензию цеолита с суспензией глины и оксида алюминия и перемешивают в течение 30 минут;
ii) добавляют полисиликат аммония в суспензию, смешанную на этапе i) этапа c), и опционально добавляют прекурсор двухвалентного металла, растворенный в деминерализованной воде; и
iii) просеивают суспензию, полученную на этапе ii) этапа c), высушивают распылением и прокаливают высушенный распылением продукт при температуре 550°C.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Хотя изобретение допускает различные модификации и/или альтернативные способы и/или композиции, в таблицах в качестве примера приведен конкретный вариант выполнения, который будет подробно описан ниже. Однако, следует понимать, что он не предназначен для ограничения изобретения конкретными раскрытыми способами и/или продуктами/композициями, и, напротив, изобретение должно охватывать все модификации, эквиваленты и альтернативы, подпадающие под замысел и объём изобретения, который определен в приложенной формуле изобретения.
Таблицы и протоколы приведены там, где это необходимо, в виде обычных представлений, иллюстрирующих только те конкретные детали, которые важны для понимания вариантов выполнения настоящего изобретения, чтобы не усложнять описание деталями, которые очевидны специалисту в данной области техники, изучающему данное описание.
Следующее далее описание относится только к примерным вариантам выполнения и никоим образом не предназначено для ограничения объёма, применимости или конфигурации изобретения. Скорее, следующее далее описание обеспечивает удобную иллюстрацию реализации примерных вариантов выполнения изобретения. Различные изменения в отношении работы и расположения описанных элементов могут быть внесены в описанные варианты выполнения без отклонения от объёма изобретения.
Какие-либо конкретные особенности и все детали, изложенные в настоящем документе, используются в контексте некоторых вариантов выполнения и, следовательно, не должны рассматриваться как ограничивающие факторы по отношению к приложенной формуле изобретения. Приложенная формула изобретения и ее правомерные эквиваленты могут быть реализованы в контексте вариантов выполнения, отличных от используемых в качестве иллюстративных примеров в приведенном ниже описании.
Присадка ZSM-5 широко используются для увеличения выхода СУГ и пропилена. Присадки типа ZSM-5 расщепляют молекулу бензинового ряда в лёгких олефинах, таких как СУГ и лёгкие олефины. В связи с этим обычная присадка ZSM-5 увеличивает выход СУГ и пропилена при той же стоимости бензина.
Настоящее изобретение раскрывает комбинацию и оптимизацию цеолита типа MFI с переменным мольным отношением SiO2/Al2O3. Типовой цеолит стабилизирован в матрице присадки, и характеристики присадки указывают на сохранение выхода бензина с повышенным октановым числом по сравнению с обычной присадкой ZSM-5.
Раскрытый способ включает в себя оптимизацию комбинации и концентрации цеолита типа MFI с переменным мольным отношением SiO2/Al2O3. Присадка состоит из одного или более цеолитов с топологией MFI, имеющих мольное отношение SiO2/Al2O3 в диапазоне 10-280, в частности, в диапазоне 25-80.
В типовой присадке, раскрытой в настоящем изобретении, комбинация и концентрация цеолит типа MFI с переменным мольным отношением SiO2/Al2O3 в композиции присадки оптимизированы для минимизации потери бензина. Кроме того, кислотные центры цеолита модифицированы двухвалентными металлами, выбранными из Группы-IIA и Группы-IB, для увеличения выхода бензина, а также повешения октанового числа бензина. Запатентованная цеолитная система может генерировать более селективно высокооктановые молекулы в бензине без значительного крекинга бензина.
Типовая присадка, раскрытая в настоящем изобретении, может повышать октановое число бензина с минимальной потерей бензина по сравнению с катализатором ФКК на основе цеолита Y.
Настоящее изобретение описывает присадку к катализатору крекинга, подходящую для повышения октанового числа бензина с минимальной потерей бензина по сравнению с обычным цеолитом ZSM-5, и способы получения такого катализатора.
Соответственно, настоящее изобретение раскрывает композицию присадки флюид-каталитического крекинга, выполненную с возможностью повышения октанового числа бензина, причём указанная композиция содержит 5-50 масс.% цеолитного компонента, 0-15 масс.% алюминия, 5-20 масс.% коллоидного диоксида кремния, 10-60 масс.% каолиновой глины, 5-15 масс.% фосфата и от 0,1 до 5,0 масс.% двухвалентного металла, выбранного из Группы IIA или Группы IB, причём цеолитный компонент содержит среднепористый цеолит типа пентасил в количестве от 1 до 50 масс.%, и указанный цеолит состоит из одного или более цеолитов с топологией MFI, имеющих мольное отношение SiO2/Al2O3 в диапазоне 10-280.
В аспекте настоящего изобретения указанный цеолит состоит из одного или более цеолитов с топологией MFI, имеющих мольное отношение SiO2/Al2O3 в диапазоне 25-80.
В аспекте настоящего изобретения среднепористый цеолит типа пентасил выбран из группы, состоящей из цеолита ZSM-5, цеолита ZSM-11, цеолита ZSM-12, цеолита ZSM-22, цеолита ZSM-23 и цеолита ZSM-35.
В аспекте настоящего изобретения цеолиты, имеющие мольное отношение SiO2/Al2O3 в диапазоне 25-80, смешаны в диапазоне от 1:1 до 1:4.
В аспекте настоящего изобретения кислотный центр цеолита в каталитической присадке ФКК заменен двухвалентным металлом, выбранным из двухвалентных металлов Группы IIA или Группы IB.
В аспекте настоящего изобретения концентрация двухвалентного металла, выбранного из Группы IIA или Группы IB, находится в диапазоне от 0,1 до 1 масс.% двухвалентного металла.
В аспекте настоящего изобретения каталитическая композиция имеет ABD < 0,75 г/см3, и индекс истирания в % менее 5.
В аспекте настоящего изобретения каталитическая композиция при использовании в сочетании с основным катализатором ФКК в количестве 1-20 масс.% повышает октановое число бензина на 1-2 единицы с минимальной потерей бензина 2-3 масс.%.
В аспекте настоящего изобретения настоящее изобретение раскрывает способ получения присадки, содержащий этапы, на которых:
a) получают суспензию глины и оксида алюминия:
i) диспергируют каолиновую глину в деминерализованной воде и диспергаторе, причём указанный диспергатор представляет собой продукт конденсации нафталинсульфоновой кислоты;
ii) добавляют оксид алюминия типа псевдобемита;
iii) измельчают суспензию в течение 2 часов, равномерно перемешивают, а затем добавляют полисиликат аммония (содержание диоксида кремния 30%) и снова измельчают, по меньшей мере, в течение 30 минут; и
iv) постепенно добавляют органическую кислоту с последующим добавлением ортофосфорной кислоты при интенсивном перемешивании;
b) получают суспензию цеолита с использованием более чем одного цеолита:
i) растворяют гидрофосфат диаммония в деминерализованной воде для получения суспензии цеолита; добавляют цеолит ZSM-5, имеющий SiO2/Al2O3 в диапазоне от 30 до 280, в деминерализованную воду при перемешивании; и
ii) растворяют гидрофосфат диаммония в деминерализованной воде для получения суспензии цеолита; добавляют цеолит ZSM-5, имеющий SiO2/Al2O3, в деминерализованную воду при перемешивании; причём мольное отношение SiO2/Al2O3 отличается от этапа (i);
c) получают готовую каталитическую суспензию:
i) смешивают суспензию цеолита с суспензией глины и оксида алюминия и перемешивают в течение 30 минут;
ii) добавляют полисиликат аммония в суспензию, смешанную на этапе i) этапа c), и опционально добавляют прекурсор двухвалентного металла, растворенный в деминерализованной воде; и
iii) просеивают суспензию, полученную на этапе ii) этапа c), высушивают распылением и прокаливают высушенный распылением продукт при температуре 550°C.
Следует понимать, что некоторые детали, изложенные в приведенных ниже примерах, обеспечены для описания следующих далее вариантов выполнения в достаточной степени, чтобы специалист в данной области техники мог получить и использовать раскрытые варианты выполнения.
Пример 1
Получили суспензию глины, оксида алюминия и диоксида кремния путем диспергирования 323,53 г глины (LOI (потеря при прокаливании) = 15,5 масс.%) в 395,17 г деминерализованной воды и 2,5 г тамола. К полученному добавили 35,71 г оксида алюминия марки PB-950 SB (LOI: 28,69 масс.%). Измельчали суспензию в течение 2 часов. После равномерного перемешивания добавили 125 г полисиликата аммония (содержание диоксида кремния 30%) и дополнительно измельчали в течение, по меньшей мере, 30 минут. Измельченную суспензию извлекли из шаровой мельницы. Кроме того, постепенно добавили 7,5 г муравьиной кислоты (85%) для пептизации оксида алюминия, после чего добавили 30,34 г ортофосфорной кислоты (82,4%) при интенсивном перемешивании.
Получили суспензию цеолита путем растворения 34,76 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 102,27 г деминерализованной воды. К полученному добавили 85,23 г цеолита ZSM-5, имеющего SiO2/Al2O3 280, при перемешивании.
Суспензию цеолита смешали с суспензией глины и оксида алюминия и перемешивали в течение 30 минут для достижения однородного смешивания. Наконец, добавили 125 г полисиликата аммония (содержание диоксида кремния 30 масс.%) для получения готовой суспензии прекурсора присадки. Содержание сухого вещества и pH суспензии составили 39,46 масс.% и 3,5±0,5 соответственно. Суспензию просеяли через сито с размером ячеек 40 меш и высушили распылением в противоточной распылительной сушилке, имеющей две форсунки для текучей среды. Высушенный распылением продукт прокалили при температуре 550°C. Катализатор подвергли пропитке металлом (Ni 2200 ч/млн и V 6852 ч/млн) с последующим протоколом деактивации паром перед оценкой характеристик. Для оценки характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Физические свойства, а также результаты оценки характеристик приведены в Таблицах 2 и 3.
Пример 2
Получили суспензию глины, оксида алюминия и диоксида кремния путем диспергирования 323,53 г глины (LOI = 15,5 масс.%) в 395,17 г деминерализованной воды и 2,5 г тамола. К полученному добавили 35,71 г оксида алюминия марки PB-950 SB (LOI: 28,69 масс.%). Измельчали суспензию в течение 2 часов. После равномерного перемешивания добавили 125 г полисиликата аммония (содержание диоксида кремния 30%) и дополнительно измельчали в течение, по меньшей мере, 30 минут. Измельченную суспензию извлекли из шаровой мельницы. Кроме того, постепенно добавили 7,5 г муравьиной кислоты (85%) для пептизации оксида алюминия, после чего добавили 30,34 г ортофосфорной кислоты (82,4%) при интенсивном перемешивании.
Получили суспензию цеолита путем растворения 34,76 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 102,27 г деминерализованной воды. К полученному добавили 85,23 г цеолита ZSM-5, имеющего SiO2/Al2O3 80, при перемешивании.
Суспензию цеолита смешали с суспензией глины и оксида алюминия и перемешивали в течение 30 минут для достижения однородного смешивания. Наконец, добавили 125 г полисиликата аммония (содержание диоксида кремния 30 масс.%) для получения готовой суспензии прекурсора присадки. Содержание сухого вещества и pH суспензии составили 39,46 масс.% и 3,5±0,5 соответственно. Суспензию просеяли через сито с размером ячеек 40 меш и высушили распылением в противоточной распылительной сушилке, имеющей две форсунки для текучей среды. Высушенный распылением продукт прокалили при температуре 550°C. Катализатор подвергли пропитке металлом (Ni 2200 ч/млн и V 6852 ч/млн) с последующим протоколом деактивации паром перед оценкой характеристик. Для оценки характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Физические свойства, а также результаты оценки характеристик приведены в Таблицах 2 и 3.
Пример 3
Получили суспензию глины, оксида алюминия и диоксида кремния путем диспергирования 323,53 г глины (LOI = 15,5 масс.%) в 395,17 г деминерализованной воды и 2,5 г тамола. К полученному добавили 35,71 г оксида алюминия марки PB-950 SB (LOI: 28,69 масс.%). Измельчали суспензию в течение 2 часов. После равномерного перемешивания добавили 125 г полисиликата аммония (содержание диоксида кремния 30%) и дополнительно измельчали в течение, по меньшей мере, 30 минут. Измельченную суспензию извлекли из шаровой мельницы. Кроме того, постепенно добавили 7,5 г муравьиной кислоты (85%) для пептизации оксида алюминия, после чего добавили 30,34 г ортофосфорной кислоты (82,4%) при интенсивном перемешивании.
Получили суспензию цеолита путем растворения 34,76 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 102,27 г деминерализованной воды. К полученному добавили 85,23 г цеолита ZSM-5, имеющего SiO2/Al2O3 60, при перемешивании.
Суспензию цеолита смешали с суспензией глины и оксида алюминия и перемешивали в течение 30 минут для достижения однородного смешивания. Наконец, добавили 125 г полисиликата аммония (содержание диоксида кремния 30 масс.%) для получения готовой суспензии прекурсора присадки. Содержание сухого вещества и pH суспензии составили 39,46 масс.% и 3,5±0,5 соответственно. Суспензию просеяли через сито с размером ячеек 40 меш и высушили распылением в противоточной распылительной сушилке, имеющей две форсунки для текучей среды. Высушенный распылением продукт прокалили при температуре 550°C. Катализатор подвергли пропитке металлом (Ni 2200 ч/млн и V 6852 ч/млн) с последующим протоколом деактивации паром перед оценкой характеристик. Для оценки характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Физические свойства, а также результаты оценки характеристик приведены в Таблице 2.
Пример 4
Получили суспензию глины, оксида алюминия и диоксида кремния путем диспергирования 323,53 г глины (LOI = 15,5 масс.%) в 395,17 г деминерализованной воды и 2,5 г тамола. К полученному добавили 35,71 г оксида алюминия марки PB-950 SB (LOI: 28,69 масс.%). Измельчали суспензию в течение 2 часов. После равномерного перемешивания добавили 125 г полисиликата аммония (содержание диоксида кремния 30%) и дополнительно измельчали в течение, по меньшей мере, 30 минут. Измельченную суспензию извлекли из шаровой мельницы. Кроме того, постепенно добавили 7,5 г муравьиной кислоты (85%) для пептизации оксида алюминия, после чего добавили 30,34 г ортофосфорной кислоты (82,4%) при интенсивном перемешивании.
Получили суспензию цеолита путем растворения 34,76 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 102,27 г деминерализованной воды. К полученному добавили 85,23 г цеолита ZSM-5, имеющего SiO2/Al2O3 30, при перемешивании.
Суспензию цеолита смешали с суспензией глины и оксида алюминия и перемешивали в течение 30 минут для достижения однородного смешивания. Наконец, добавили 125 г полисиликата аммония (содержание диоксида кремния 30 масс.%) для получения готовой суспензии прекурсора присадки. Содержание сухого вещества и pH суспензии составили 39,46 масс.% и 3,5±0,5 соответственно. Суспензию просеяли через сито с размером ячеек 40 меш и высушили распылением в противоточной распылительной сушилке, имеющей две форсунки для текучей среды. Высушенный распылением продукт прокалили при температуре 550°C. Катализатор подвергли пропитке металлом (Ni 2200 ч/млн и V 6852 ч/млн) с последующим протоколом деактивации паром перед оценкой характеристик. Для оценки характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Физические свойства, а также результаты оценки характеристик приведены в Таблице 2.
Пример 5
Получили суспензию глины, оксида алюминия и диоксида кремния путем диспергирования 323,53 г глины (LOI = 15,5 масс.%) в 395,17 г деминерализованной воды и 2,5 г тамола. К полученному добавили 35,71 г оксида алюминия марки PB-950 SB (LOI: 28,69 масс.%). Измельчали суспензию в течение 2 часов. После равномерного перемешивания добавили 125 г полисиликата аммония (содержание диоксида кремния 30%) и дополнительно измельчали в течение, по меньшей мере, 30 минут. Измельченную суспензию извлекли из шаровой мельницы. Кроме того, постепенно добавили 7,5 г муравьиной кислоты (85%) для пептизации оксида алюминия, после чего добавили 30,34 г ортофосфорной кислоты (82,4%) при интенсивном перемешивании.
Получили суспензию цеолита путем растворения 34,76 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 102,27 г деминерализованной воды. К полученному добавили 85,23 г цеолита ZSM-5, имеющего SiO2/Al2O3 30, при перемешивании.
Полученную суспензию цеолита смешали с суспензией глины и оксида алюминия и перемешивали в течение 30 минут для достижения однородного смешивания. К полученному добавили 125 г полисиликата аммония (содержание диоксида кремния 30 масс.%). Наконец, добавили 28,66 г нитрата магния, растворенного в 57,32 г деминерализованной воды, для получения готовой суспензии прекурсора присадки. Содержание сухого вещества и pH суспензии составили 39,46 масс.% и 3,5±0,5 соответственно. Суспензию просеяли через сито с размером ячеек 40 меш и высушили распылением в противоточной распылительной сушилке, имеющей две форсунки для текучей среды. Высушенный распылением продукт прокалили при температуре 550°C. Катализатор подвергли пропитке металлом (Ni 2200 ч/млн и V 6852 ч/млн) с последующим протоколом деактивации паром перед оценкой характеристик. Для оценки характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Физические свойства, а также результаты оценки характеристик приведены в Таблице 2.
Пример 6
Получили суспензию глины, оксида алюминия и диоксида кремния путем диспергирования 323,53 г глины (LOI = 15,5 масс.%) в 395,17 г деминерализованной воды и 2,5 г тамола. К полученному добавили 35,71 г оксида алюминия марки PB-950 SB (LOI: 28,69 масс.%). Измельчали суспензию в течение 2 часов. После равномерного перемешивания добавили 125 г полисиликата аммония (содержание диоксида кремния 30%) и дополнительно измельчали в течение, по меньшей мере, 30 минут. Измельченную суспензию извлекли из шаровой мельницы. Кроме того, постепенно добавили 7,5 г муравьиной кислоты (85%) для пептизации оксида алюминия, после чего добавили 30,34 г ортофосфорной кислоты (82,4%) при интенсивном перемешивании.
Получили суспензию цеолита путем растворения 34,76 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 102,27 г деминерализованной воды. К полученному добавили 85,23 г цеолита ZSM-5, имеющего SiO2/Al2O3 80, при перемешивании.
Полученную суспензию цеолита смешали с суспензией глины и оксида алюминия и перемешивали в течение 30 минут для достижения однородного смешивания. К полученному добавили 125 г полисиликата аммония (содержание диоксида кремния 30 масс.%). Наконец, добавили 28,66 г нитрата магния, растворенного в 57,32 г деминерализованной воды, для получения готовой суспензии прекурсора присадки. Содержание сухого вещества и pH суспензии составили 39,46 масс.% и 3,5±0,5 соответственно. Суспензию просеяли через сито с размером ячеек 40 меш и высушили распылением в противоточной распылительной сушилке, имеющей две форсунки для текучей среды. Высушенный распылением продукт прокалили при температуре 550°C. Катализатор подвергли пропитке металлом (Ni 2200 ч/млн и V 6852 ч/млн) с последующим протоколом деактивации паром перед оценкой характеристик. Для оценки характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Физические свойства, а также результаты оценки характеристик приведены в Таблицах 2 и 3.
Пример 7
Получили суспензию глины, оксида алюминия и диоксида кремния путем диспергирования 323,53 г глины (LOI = 15,5 масс.%) в 395,17 г деминерализованной воды и 2,5 г тамола. К полученному добавили 35,71 г оксида алюминия марки PB-950 SB (LOI: 28,69 масс.%). Измельчали суспензию в течение 2 часов. После равномерного перемешивания добавили 125 г полисиликата аммония (содержание диоксида кремния 30%) и дополнительно измельчали в течение, по меньшей мере, 30 минут. Измельченную суспензию извлекли из шаровой мельницы. Кроме того, постепенно добавили 7,5 г муравьиной кислоты (85%) для пептизации оксида алюминия, после чего добавили 30,34 г ортофосфорной кислоты (82,4%) при интенсивном перемешивании.
Получили суспензию цеолита путем растворения 34,76 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 102,27 г деминерализованной воды. К полученному добавили 85,23 г обменного на MgO в количестве 0,9 масс.% цеолита ZSM-5, имеющего SiO2/Al2O3 30, при перемешивании.
Полученную суспензию цеолита смешали с суспензией глины и оксида алюминия и перемешивали в течение 30 минут для достижения однородного смешивания. Наконец, добавили 125 г полисиликата аммония (содержание диоксида кремния 30 масс.%) для получения готовой суспензии прекурсора присадки. Содержание сухого вещества и pH суспензии составили 39,46 масс.% и 3,5±0,5 соответственно. Суспензию просеяли через сито с размером ячеек 40 меш и высушили распылением в противоточной распылительной сушилке, имеющей две форсунки для текучей среды. Высушенный распылением продукт прокалили при температуре 550°C. Катализатор подвергли пропитке металлом (Ni 2200 ч/млн и V 6852 ч/млн) с последующим протоколом деактивации паром перед оценкой характеристик. Для оценки характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Физические свойства, а также результаты оценки характеристик приведены в Таблицах 2 и 3.
Пример 8
Получили суспензию глины, оксида алюминия и диоксида кремния путем диспергирования 323,53 г глины (LOI = 15,5 масс.%) в 395,17 г деминерализованной воды и 2,5 г тамола. К полученному добавили 35,71 г оксида алюминия марки PB-950 SB (LOI: 28,69 масс.%). Измельчали суспензию в течение 2 часов. После равномерного перемешивания добавили 125 г полисиликата аммония (содержание диоксида кремния 30%) и дополнительно измельчали в течение, по меньшей мере, 30 минут. Измельченную суспензию извлекли из шаровой мельницы. Кроме того, постепенно добавили 7,5 г муравьиной кислоты (85%) для пептизации оксида алюминия, после чего добавили 30,34 г ортофосфорной кислоты (82,4%) при интенсивном перемешивании.
Суспензию цеолита получили в два этапа с использованием двух разных цеолитов. На первом этапе растворили 17,38 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 51,14 г деминерализованной воды. К полученному добавили 42,61 г цеолита ZSM-5, имеющего SiO2/Al2O3 30 (LOI = 12 масс.%), при перемешивании. На втором этапе растворили 17,38 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 51,14 г деминерализованной воды. К полученному добавили 42,61 г цеолита ZSM-5, имеющего SiO2/Al2O3 80 (LOI = 12 масс.%), при перемешивании.
Полученную суспензию цеолита смешали с суспензией глины и оксида алюминия и перемешивали в течение 30 минут для достижения однородного смешивания. Наконец, добавили 125 г полисиликата аммония (содержание диоксида кремния 30 масс.%) для получения готовой суспензии прекурсора присадки. Содержание сухого вещества и pH суспензии составили 39,46 масс.% и 3,5±0,5 соответственно. Суспензию просеяли через сито с размером ячеек 40 меш и высушили распылением в противоточной распылительной сушилке, имеющей две форсунки для текучей среды. Высушенный распылением продукт прокалили при температуре 550°C. Катализатор подвергли пропитке металлом (Ni 2200 ч/млн и V 6852 ч/млн) с последующим протоколом деактивации паром перед оценкой характеристик. Для оценки характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Физические свойства, а также результаты оценки характеристик приведены в Таблице 2.
Пример 9
Получили суспензию глины, оксида алюминия и диоксида кремния путем диспергирования 323,53 г глины (LOI = 15,5 масс.%) в 395,17 г деминерализованной воды и 2,5 г тамола. К полученному добавили 35,71 г оксида алюминия марки PB-950 SB (LOI: 28,69 масс.%). Измельчали суспензию в течение 2 часов. После равномерного перемешивания добавили 125 г полисиликата аммония (содержание диоксида кремния 30%) и дополнительно измельчали в течение, по меньшей мере, 30 минут. Измельченную суспензию извлекли из шаровой мельницы. Кроме того, постепенно добавили 7,5 г муравьиной кислоты (85%) для пептизации оксида алюминия, после чего добавили 30,34 г ортофосфорной кислоты (82,4%) при интенсивном перемешивании.
Суспензию цеолита получили в два этапа с использованием двух разных цеолитов. На первом этапе растворили 17,38 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 51,14 г деминерализованной воды. К полученному добавили 42,61 г цеолита ZSM-5, имеющего SiO2/Al2O3 30 (LOI = 12 масс.%), при перемешивании. На втором этапе растворили 17,38 г гидрофосфата диаммония (LOI = 28,07 масс.%) в 51,14 г деминерализованной воды. К полученному добавили 42,61 г цеолита ZSM-5, имеющего SiO2/Al2O3 80 (LOI = 12 масс.%), при перемешивании.
Полученную суспензию цеолита смешали с суспензией глины и оксида алюминия и перемешивали в течение 30 минут для достижения однородного смешивания. К полученному добавили 125 г полисиликата аммония (содержание диоксида кремния 30 масс.%). Наконец, добавили 28,66 г нитрата магния, растворенного в 57,32 г деминерализованной воды, для получения готовой суспензии прекурсора присадки. Содержание сухого вещества и pH суспензии составили 39,46 масс.% и 3,5±0,5 соответственно. Суспензию просеяли через сито с размером ячеек 40 меш и высушили распылением в противоточной распылительной сушилке, имеющей две форсунки для текучей среды. Высушенный распылением продукт прокалили при температуре 550°C. Катализатор подвергли пропитке металлом (Ni 2200 ч/млн и V 6852 ч/млн) с последующим протоколом деактивации паром перед оценкой характеристик. Для оценки характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Физические свойства, а также результаты оценки характеристик приведены в Таблицах 2 и 3.
Свойства сырья, используемого для оценки характеристик катализатора, полученного в Примерах 1-9, приведены ниже в Таблице 1.
Таблица 1:.Свойства сырья
Таблица 1. Распределение точки кипения по Simdist
№ п/п Атрибуты Значение (°C)
1 IBP (начальная точка кипения) 225,572
2 1% 265,298
3 5% 328,931
4 10% 357,55
5 15% 376,008
6 20% 388,988
7 30% 407,502
8 40% 420,876
9 50% 433,955
10 60% 447,392
11 70% 461,576
12 80% 480,016
13 90% 505,829
14 95% 526,593
15 99% 550,475
16 FBP (конечная точка кипения) 554,038
Таблица 2. Анализ состава сырья
Парафины 23,1
Моноциклопарафины 27,8
Дициклопарафины 15,5
Трициклопарафины 7,5
Тетрациклопарафины 0,0
Пентациклопарафины 0,0
Гексациклопарафины 0,0
Гептациклопарафины 0,0
Предельные углеводороды 73,9
Алкилбензолы 8,9
Бензоциклопарафины 3,5
Бензодициклопарафины 2,6
Нафталины 3,8
Аценафтены, бифенилы 0,0
Аценафтилены, флуорены 3,8
Фенантрены 1,2
Пирены 0,0
Хризены 0,0
Бензопирены 0,0
Ароматические соединения 23,8
Тиофены 0,0
Бензотиофены 2,3
Дибензотиофены 0,0
Нафтобензотиофены 0,0
Соединения серы 2,3
Физико-химические свойства присадки, повышающей октановое число, полученной в Примерах 1-9, приведены ниже в Таблицах 2A и 2B.
Таблица 2A. Физико-химические свойства присадки, повышающей октановое число, полученной в Примерах 1-5
Присадка из Примера 1 Присадка из Примера 2 Присадка из Примера 3 Присадка из Примера 4 Присадка из Примера 5
Композиция присадки
Оксид алюминия, масс.% 5,0 5,0 5,0 5,0 5,0
Глина 55,0 55,0 55,0 55,0 54,1
APS, в виде SiO2 15,0 15,0 15,0 15,0 15,0
Цеолит 1, масс.% (SiO2/Al2O3) 15 (280) 15 (80) 15 (60) 15 (30) 15 (30)
Цеолит 2, масс.% (SiO2/Al2O3) 0 0 0 0 0
H3PO4 (в виде PO4), масс.% 10,0 10,0 10,0 10,0 10,0
Нитрат магния, в виде MgO, масс.% 0 0 0,0 0,0 0,90
Физические свойства присадки
ABD (средняя объёмная плотность), г/см3 0,78 0,77 0,78 0,77 0,78
Индекс истирания 3,5 3,6 3,4 3,5 3,7
Оценка характеристик
ROT (температура на выходе из стояка) 510 510 510 510 510
Катализатор/Нефть 6,02 6,02 6,02 6,02 6,02
Выход бензина 35,54 33,35 31,86 30,33 34,7
смоделированное ИОЧ (исследовательское октановое число) 91,6 90,5 90,5 90,7 89,7
Таблица 2B. Физико-химические свойства присадки, повышающей октановое число, полученной в Примерах 6-9
Присадка из Примера 6 Присадка из Примера 7 Присадка из Примера 8 Присадка из Примера 9
Настоящее изобретение
Композиция присадки
Оксид алюминия, масс.% 5,0 5,0 5,0 5,0
Глина 54,1 54,1 55 54,1
APS, в виде SiO2 15 15 15 15
Цеолит 1, масс.% (SiO2/Al2O3) 15 (80) 15 (30) 7,5 (30) 7,5 (30)
Цеолит 2, масс.% (SiO2/Al2O3) 0 0 7,5 (80) 7,5 (80)
Фосфат, масс.% 10,0 10,0 10,0 10,0
Нитрат магния, в виде MgO, масс.% 0,90 0,9 0,0 0,90
Физические свойства присадки
ABD (средняя объёмная плотность), г/см3 0,78 0,77 0,77 0,78
Индекс истирания 3,5 3,6 3,5 3,7
Оценка характеристик
ROT (температура на выходе из стояка) 510 510 510 510
Катализатор/Нефть 6,02 6,02 6,02 6,02
Выход бензина 37,19 30,81 35,52 36,80
смоделированное ИОЧ (исследовательское октановое число) 91,2 91,8 90,6 92,8
ИОЧ (исследовательское октановое число) бензина вычислено методом с использованием колонны для лёгких фракций PIONA в соответствии с документами ASTM D 5443 и ASTM D 6839. Октановое число образцов бензина (варьирующихся в диапазоне C3-C12 по методу масс.%) определено в ходе анализа PIONA на основе углеродного числа. Смоделированное значение ИОЧ вычислено на основе совокупности парафинов, олефинов, нафталина и ароматических соединений относительно стандартного образца. Стандартный образец представляет собой известную смесь нафтенов C5-C9, парафинов C5-C11, ароматических соединений C6-C10, >200°C (C12HP) C11A и полинафтенов.
При оценке характеристик 5 масс.% присадки ZSM-5 смешали с 95 масс.% уравновешенных катализаторов ФКК остатков и провели реакцию при температуре 510°C в установке ACE MAT. Данные по характеристикам выборочных примеров при одинаковых уровнях превращения сведены в Таблице 3.
Таблица 3. Оценка характеристик присадок
Основный катализатор ФКК Основный катализатор ФКК (95 масс.%) + Пример 6 (5 масс.%) Основный катализатор ФКК (95 масс.%) + Пример 7 (5 масс.%) Основный катализатор ФКК (95 масс.%) + Пример 9 (5 масс.%)
Настоящее изобретение
ROT (температура на выходе из стояка) 510 510 510 510
Обычный 76,699 +1,012 +1,024 +0,990
DG (сухой газ) 2,069 +0,107 +0,431 -0,570
LPG (сжиженный углеводородный газ) 26,21 +8,262 +10,446 4,408
LCN (лёгкая нафта коксования) 39,41 -6,194 -8,388 -2,606
HCN (тяжёлая нафта коксования) 12,12 -1,952 -1,833 -0,785
LCO (лёгкий рецикловый газойль) 17,90 -0,608 -0,833 -0,885
CLO (чистое смазочное масло) 5,39 +0,608 +0,833 +0,885
Кокс 4,92 -0,223 0,656 -0,447
RON (исследовательское октановое число) 84,79 91,2 91,8 92,8
ПРЕИМУЩЕСТВА НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ:
Настоящее изобретение раскрывает комбинацию и оптимизацию цеолита типа MFI с переменным мольным отношением SiO2/Al2O3. Типовой цеолит стабилизирован в матрице присадки и характеристики присадки указывают на сохранение выхода бензина с повышенным октановым числом по сравнению с обычной присадкой ZSM-5.
Раскрытый способ включает в себя оптимизацию комбинации и концентрации цеолита типа MFI с переменным мольным отношением SiO2/Al2O3. Присадка состоит из одного или более цеолитов с топологией MFI, имеющих мольное отношение SiO2/Al2O3 в диапазоне 10-280, в частности, в диапазоне 25-80.
Кроме того, активные центры в композиции присадки модифицированы с использованием ионов двухвалентных металлов из Группы IIA и Группы IB для повышения селективности по лёгким олефинам и ароматическим соединениям, которые отвечают за повышение октанового числа бензина.
Хотя для описания объекта настоящего изобретения использован конкретный язык, не предполагаются какие-либо ограничения, возникающие в связи с этим. Как будет очевидно специалисту в данной области техники, для реализации идеи изобретения, изложенной в настоящем документе, в способ могут быть внесены различные рабочие модификации.

Claims (28)

1. Способ получения присадки, содержащий этапы, на которых:
a) получают суспензию глины и оксида алюминия:
i) диспергируют каолиновую глину в деминерализованной воде и диспергаторе, причем указанный диспергатор представляет собой продукт конденсации нафталинсульфоновой кислоты;
ii) добавляют оксид алюминия типа псевдобемита;
iii) измельчают суспензию в течение 2 часов, равномерно перемешивают, а затем добавляют полисиликат аммония и снова измельчают, по меньшей мере, в течение 30 минут; и
iv) постепенно добавляют органическую кислоту с последующим добавлением ортофосфорной кислоты при интенсивном перемешивании;
b) получают суспензию цеолита с использованием более чем одного цеолита:
i) растворяют гидрофосфат диаммония в деминерализованной воде для получения суспензии цеолита; добавляют цеолит ZSM-5, имеющий SiO2/Al2O3 в диапазоне от 30 до 280, в деминерализованную воду при перемешивании; и
ii) растворяют гидрофосфат диаммония в деминерализованной воде для получения суспензии цеолита; добавляют цеолит ZSM-5, имеющий SiO2/Al2O3, в деминерализованную воду при перемешивании; причем мольное отношение SiO2/Al2O3 отличается от этапа (i);
c) получают готовую каталитическую суспензию:
i) смешивают суспензию цеолита с суспензией глины и оксида алюминия и перемешивают в течение 30 минут;
ii) добавляют полисиликат аммония в суспензию, смешанную на этапе i) этапа c), и опционально добавляют прекурсор двухвалентного металла, растворенный в деминерализованной воде; и
iii) просеивают суспензию, полученную на этапе ii) этапа c), высушивают распылением и прокаливают высушенный распылением продукт при температуре 550°C.
2. Композиция присадки флюид-каталитического крекинга, полученная способом по п.1, указанная композиция присадки флюид-каталитического крекинга выполнена с возможностью повышения октанового числа бензина, причем указанная композиция содержит:
(a) 5-50 масс.% цеолитного компонента;
(b) 2-15 масс.% оксида алюминия;
(c) 5-20 масс.% коллоидного диоксида кремния;
(d) 10-60 масс.% каолиновой глины;
(e) 5-15 масс.% фосфата; и
(f) 0,1-5,0 масс.% двухвалентного металла, выбранного из Группы IIA или Группы IB,
причем цеолитный компонент содержит среднепористый цеолит типа пентасил в количестве от 1 до 50 масс.%, и указанный цеолит состоит из одного или более цеолитов с топологией MFI, имеющих мольное отношение SiO2/Al2O3 в диапазоне 10-280.
3. Композиция присадки флюид-каталитического крекинга по п.2, в которой указанный цеолит состоит из одного или более цеолитов с топологией MFI, имеющих мольное отношение SiO2/Al2O3 в диапазоне 25-80.
4. Композиция присадки флюид-каталитического крекинга по п.2, в которой среднепористый цеолит типа пентасил выбран из группы, состоящей из цеолита ZSM-5, цеолита ZSM-11, цеолита ZSM-12, цеолита ZSM-22, цеолита ZSM-23 и цеолита ZSM-35.
5. Композиция присадки флюид-каталитического крекинга по п.2, в которой цеолиты, имеющие мольное отношение SiO2/Al2O3 в диапазоне 25-80, смешаны в диапазоне от 1:1 до 1:4.
6. Композиция присадки флюид-каталитического крекинга по п.2, в которой кислотный центр цеолита в каталитической присадке ФКК заменен двухвалентным металлом, выбранным из двухвалентных металлов Группы IIA или Группы IB.
7. Композиция присадки флюид-каталитического крекинга по п.6, в которой концентрация двухвалентного металла, выбранного из Группы IIA или Группы IB, находится в диапазоне от 0,1 до 1 масс.% двухвалентного металла.
8. Композиция присадки флюид-каталитического крекинга по п.6, имеющая ABD < 0,75 г/см3 и индекс истирания в % менее 5.
9. Композиция присадки флюид-каталитического крекинга по п.6, в которая при использовании в сочетании с основным катализатором ФКК в количестве 1-20 масс.% повышает октановое число бензина на 1-2 единицы с минимальной потерей бензина 2-3 масс.%.
RU2020132486A 2019-10-04 2020-10-02 Композиция присадки флюид-каталитического крекинга для повышения октанового числа бензина и способ её получения RU2754146C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201921040347 2019-10-04
IN201921040347 2019-10-04

Publications (1)

Publication Number Publication Date
RU2754146C1 true RU2754146C1 (ru) 2021-08-30

Family

ID=72603383

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020132486A RU2754146C1 (ru) 2019-10-04 2020-10-02 Композиция присадки флюид-каталитического крекинга для повышения октанового числа бензина и способ её получения

Country Status (3)

Country Link
US (1) US11465132B2 (ru)
EP (1) EP3800232A3 (ru)
RU (1) RU2754146C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070209969A1 (en) * 2006-03-10 2007-09-13 State Key Laboratory Of Heavy Oil Processing (China University Of Petroleum) Catalyst composition for treating heavy feedstocks
CN101454080A (zh) * 2005-11-08 2009-06-10 雅宝荷兰有限责任公司 制备含铝磷酸盐的催化剂组合物的方法
RU2412760C2 (ru) * 2004-11-05 2011-02-27 В.Р.Грейс Энд Ко.-Конн. Катализатор для легких олефинов и lpg в псевдоожиженных каталитических установках и способ каталитического крекинга
US20170056865A1 (en) * 2015-08-24 2017-03-02 Indian Oil Corporation Limited Process and composition for preparation of cracking catalyst suitable for enhancing lpg
US20170144139A1 (en) * 2015-11-24 2017-05-25 Indian Oil Corporation Limited Composition and process for preparation of cracking catalyst suitable for enhancing yields of light olefins
EP2998020B1 (en) * 2014-09-17 2017-11-08 Indian Oil Corporation Limited Fluid catalytic cracking additive composition and process for preparaing thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614578A (en) 1979-06-21 1986-09-30 Mobil Oil Corporation Octane and total yield improvement in catalytic cracking
NZ205859A (en) 1982-10-15 1986-04-11 Mobil Oil Corp Organic conversion using zeolite catalyst
US4828679A (en) 1984-03-12 1989-05-09 Mobil Oil Corporation Octane improvement with large size ZSM-5 catalytic cracking
US5179054A (en) 1987-12-28 1993-01-12 Mobil Oil Corporation Layered cracking catalyst and method of manufacture and use thereof
US4867863A (en) 1988-03-29 1989-09-19 Mobil Oil Corporation Resid catalytic cracking process utilizing ZSM-5 for increased gasoline octane
US4973399A (en) * 1989-11-03 1990-11-27 Mobil Oil Corporation Catalytic cracking of hydrocarbons
US5147836A (en) * 1991-10-18 1992-09-15 W. R. Grace & Co.-Conn. Catalytic cracking catalysts
US5302567A (en) 1991-11-04 1994-04-12 W. R. Grace & Co.-Conn. Zeolite octane additive
US6852214B1 (en) 1998-08-31 2005-02-08 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US6858556B2 (en) * 2002-02-25 2005-02-22 Indian Oil Corporation Limited Stabilized dual zeolite single particle catalyst composition and a process thereof
BRPI0602678B1 (pt) 2006-07-14 2015-09-01 Petroleo Brasileiro Sa Aditivo para maximização de glp e propeno adequado a operação da unidade de craqueamento catalítico fluido em baixa severidade e processo de preparo do mesmo
WO2013005225A1 (en) * 2011-07-06 2013-01-10 Reliance Industries Ltd. Process and composition of catalyst/ additive for reducing fuel gas yield in fluid catalytic cracking (fcc) process
KR20140079357A (ko) * 2011-07-21 2014-06-26 릴라이언스 인더스트리즈 리미티드 유동상 촉매 분해(fcc) 촉매 첨가제 및 그 제조 방법
US20140235429A1 (en) 2011-10-12 2014-08-21 Indian Oil Corporation Ltd. Process for enhancing nickel tolerance of heavy hydrocarbon cracking catalysts
EP2990463B1 (en) * 2014-08-27 2018-07-11 Indian Oil Corporation Limited A catalyst additive composition for catalytic cracking, a process of preparation thereof and cracking processes of using thereof
KR102602376B1 (ko) 2015-07-30 2023-11-16 바스프 코포레이션 디젤 산화 촉매
EP3623043A1 (en) * 2018-09-13 2020-03-18 INDIAN OIL CORPORATION Ltd. Catalyst composition for enhancing yield of olefins in fluid catalytic cracking process (fcc)

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2412760C2 (ru) * 2004-11-05 2011-02-27 В.Р.Грейс Энд Ко.-Конн. Катализатор для легких олефинов и lpg в псевдоожиженных каталитических установках и способ каталитического крекинга
CN101454080A (zh) * 2005-11-08 2009-06-10 雅宝荷兰有限责任公司 制备含铝磷酸盐的催化剂组合物的方法
US20070209969A1 (en) * 2006-03-10 2007-09-13 State Key Laboratory Of Heavy Oil Processing (China University Of Petroleum) Catalyst composition for treating heavy feedstocks
RU2427424C2 (ru) * 2006-03-10 2011-08-27 Стейт Кей Лаборатори Оф Хеви Оил Просесинг (Чайна Юниверсити Оф Петролиум) Композиция катализа, предназначенная для переработки тяжелого исходного сырья
EP2998020B1 (en) * 2014-09-17 2017-11-08 Indian Oil Corporation Limited Fluid catalytic cracking additive composition and process for preparaing thereof
US20170056865A1 (en) * 2015-08-24 2017-03-02 Indian Oil Corporation Limited Process and composition for preparation of cracking catalyst suitable for enhancing lpg
US20170144139A1 (en) * 2015-11-24 2017-05-25 Indian Oil Corporation Limited Composition and process for preparation of cracking catalyst suitable for enhancing yields of light olefins

Also Published As

Publication number Publication date
US20210101137A1 (en) 2021-04-08
US11465132B2 (en) 2022-10-11
EP3800232A2 (en) 2021-04-07
EP3800232A3 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
EP2075068B1 (en) A catalyst for converting hydrocarbons
RU2418842C2 (ru) Способ каталитической конверсии углеводородов
US5231064A (en) Cracking catalysts comprising phosphorus and method of preparing and using the same
RU2317143C2 (ru) Катализатор, содержащий y-цеолит с ионами редкоземельных элементов, для крекинга углеводородов и способ его получения
US9783743B2 (en) Process and composition of catalyst/additive for reducing fuel gas yield in fluid catalytic cracking (FCC) process
EP1688392B1 (en) Molecular sieve with mfi structure containing phosphorus and metal components, preparation process and use thereof
Scherzer Correlation between catalyst formulation and catalytic properties
US4137152A (en) Selective high conversion cracking process
US20070203017A1 (en) Process for preparation of liquefied petroleum gas selective cracking catalyst
JPH0356780B2 (ru)
JP2010110698A (ja) 炭化水素油の流動接触分解触媒
WO2021043017A1 (zh) 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用
US10384948B2 (en) Cracking catalyst composition for cracking of heavy hydrocarbon feed stocks and process for preparing the same
RU2365409C1 (ru) Катализатор для глубокого крекинга нефтяных фракций и способ его приготовления
CN109675616B (zh) 一种多产丁烯的催化转化催化剂以及制备方法和多产丁烯的催化转化方法
RU2754146C1 (ru) Композиция присадки флюид-каталитического крекинга для повышения октанового числа бензина и способ её получения
US20240001351A1 (en) Fluid catalytic cracking additive composition for enhanced butylenes selectivity over propylene
US20230192573A1 (en) Fluid catalytic cracking catalyst composition for enhanced butylene to propylene selectivity ratio
JP5426308B2 (ja) 流動接触分解方法
US20100076240A1 (en) Production of Olefins
JP4167123B2 (ja) 炭化水素流動接触分解用触媒組成物およびそれを用いた重質炭化水素の流動接触分解法
EP2885075A2 (en) Adsorbent for removal of con-carbon and contaminant metals present in hydrocarbon feed
US20140235429A1 (en) Process for enhancing nickel tolerance of heavy hydrocarbon cracking catalysts
SA116370868B1 (ar) تركيبة وعملية لتحضير عامل حفاز للتكسير مناسبة لتعزيز الغلات من الأولفينات الخفيفة
JPS6324034B2 (ru)