RU2750489C1 - Способ очистки воды - Google Patents

Способ очистки воды Download PDF

Info

Publication number
RU2750489C1
RU2750489C1 RU2020116662A RU2020116662A RU2750489C1 RU 2750489 C1 RU2750489 C1 RU 2750489C1 RU 2020116662 A RU2020116662 A RU 2020116662A RU 2020116662 A RU2020116662 A RU 2020116662A RU 2750489 C1 RU2750489 C1 RU 2750489C1
Authority
RU
Russia
Prior art keywords
water
compounds
hydrogen peroxide
iron
titanium compounds
Prior art date
Application number
RU2020116662A
Other languages
English (en)
Inventor
Андрей Юрьевич Курбатов
Алексей Викторович Ситников
Илья Алексеевич Ситников
Маргарита Александровна Ветрова
Иван Александрович Швецов
Юлия Михайловна Аверина
Евгений Николаевич Кузин
Original Assignee
Общество с ограниченной ответственностью "КОБГАРД"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "КОБГАРД" filed Critical Общество с ограниченной ответственностью "КОБГАРД"
Priority to RU2020116662A priority Critical patent/RU2750489C1/ru
Application granted granted Critical
Publication of RU2750489C1 publication Critical patent/RU2750489C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

Изобретение относится к области очистки природных пресных вод из подземных и поверхностных источников от соединений железа, марганца, солей жёсткости, сероводорода, органических соединений и может быть использовано для получения воды питьевого качества. Способ включает обработку воды пероксидом водорода, с добавкой водорастворимых соединений титана с последующей аэрацией и физической обработкой. Доза пероксида водорода составляет 3,0–5,0 мг/л, доза соединений титана 1,0–1,5 мг/л. Физическую обработку воды осуществляют посредством гидродинамической кавитации при скорости потока 23–32 м/с за один или два прохода через гидродинамический кавитатор, с последующей фильтрацией на керамическом мембранном фильтре. Изобретение обеспечивает снижение энергозатрат на процесс очистки, расширение спектра удаляемых из воды веществ - железо, растворенные органические вещества, и пр., и снижение остаточной концентрации соединений титана в очищенной воде. 3 пр.

Description

Изобретение относится к способу очистки воды от растворенных соединений, железа, марганца, сероводорода и может быть использовано в процессах очистки воды артезианского происхождения и сточных вод.
Известен способ очистки и минерализации природных вод (RU 2646008, C02F9/08, 1/34, 1/68, 1/74, 103/04, опубл. 28.02.2018). Предварительно проводят грубую очистку, далее эжекционную аэрацию, кавитацию и минерализацию. После обработанную воду сначала коагулируют, а затем фильтруют через зернистую загрузку.
Недостатком данного способа является необходимость дополнительное применение коагулянтов. При этом не указана способность очистки обрабатываемой воды от солей жесткости.
Известен способ приготовления питьевой воды из природных пресных источников (RU 2662498, C02F9/08, 1/34, 1/78, B01D 61/22, опубл. 26.07.2018). Заявленный способ осуществляется за счет прокачивания очищаемой воды через гидродинамический излучатель в режиме кавитации с подачей газовой фазы и последующем фильтрованием очищаемой воды через ультрафильтрационную мембрану.
Недостатком заявленного способа является то, что для получения воды питьевого качества необходимо использование в качестве эжектируемого газа химических реагентов - кислорода (90%) или озона, что, в свою очередь, влечет за собой необходимость применения дополнительного технологического оборудования.
Известен способ очистки воды (RU 2660869, C02F 9/08, C02F 1/32, C02F 1/72, C02F 103/42), который осуществляется при помощи двух функциональных блоков - основного (циркуляционный насос, эжектор-кавитатор с добавлением озоно-воздушной смеси, песчаный фильтр и УФ-излучение) и блока обеззараживания (смеситель, насос-дозатор, обеззараживающий реагент - пергидроль).
Недостатком данного способа является сложное аппаратурное оформление, многостадийность процесса, проблемы с регенерацией фильтров и необходимость периодической замены УФ ламп.
Известен способ очистки воды (RU 2378203, C02F 1/64, C02F 1/78) включающий предварительное озонирование воды в присутствии катализатора с последующей фильтрацией взвешенной фазы через фильтр - гранулированный мрамор, активированный трехвалентным гидроксидом железа.
Недостатком данного способа является трудоемкость «правильной» подготовки мраморной крошки к фильтрации, а именно ее кипячение в растворе FeCl3, кроме того, не решена проблема регенерации фильтров.
Известен способ очистки воды от органических загрязнителей озоном в присутствии катализатора (RU 2394777, C02F 1/72, C02F 103/02), в процессе которого проводят окисление органических составляющих озоном из подаваемой озоно-воздушной смеси в присутствии твердого катализатора. Катализатор представляет собой высокопористый ячеистый материал меди.
Недостатком данного способа является невозможность регенерации фильтрующих медных блоков от закупоривания его пор продуктами окисления и необходимость постоянной продувки пор. Кроме того, возможно вторичное загрязнение воды окисленными соединениями меди.
Известен способ очистки шахтных вод от соединений железа (RU 2411193, C02F 1/64, C02F 1/72, C02F 103/06), включающий добавление в обрабатываемую воду одновременно пероксида водорода и кальцинированной соды, при этом содержащееся в воде железо образует смесь труднорастворимых соединений - Fe(ОН)3, FeSO4(OH), Fe2O3 nH2O, которые быстро коагулируют, выпадают в осадок и могут быть успешно удалены даже без фильтрации. Снижение pH воды компенсируется добавлением в нее кальцинированной соды (Na2CO3).
Недостатком данного способа являются высокие реагентные затраты и сложность перемешивания добавленных реагентов в обрабатываемой воде. Кроме того, введение кальцинированной соды для коррекции pH приводит к ухудшению солевого состава.
Известен способ очистки подземных вод (RU 2658419, C02F 9/12, C02F 1/32, C02F 1/46, C02F 1/72, C02F 101/20), включающий разделение очищенной воды в обезжелезивающем фильтре на два потока. Меньший по объему поток сначала проходит электрохимическую, а затем фотохимическую обработку с образованием в нем гидроксил-ионов, ионов гидроксония, пероксида водорода. Далее разделенные потоки обрабатываемой воды смешивают.
Недостатком данного способа является наличие дополнительных стадий - электрохимической и фотохимической, что, в свою очередь, осложняет аппаратурное оформление процесса в целом, кроме того данный процесс осложнен аппаратурно.
Известна приготовления подготовленной воды для судов (RU 2684095, C02F 9/12, C02F 1/32, C02F 1/34, C02F 1/50, B01D 36/00, B63J 4/00, C02F 1/78), в процессе которого очистку воды осуществляют последовательно в 2-х блоках предварительной очистки (емкость для пергидроля и насос-дозатор) и блока основной очистки (насос, эжектор-кавитатор, фильтр с песчаной загрузкой, озонобразующая лампа УФ излучения).
Недостатками данного способа являются необходимость одновременного использования нескольких окислительных агентов, высокая стоимость процесса очистки, а также проблемы связанные с обслуживанием УФ и генерирующего озон оборудования. Помимо этого система не может работать в проточном режиме за счет необходимости периодической регенерации песчаных фильтров.
Известен способ очистки воды (RU 2565175, C02F 1/72, C02F 1/50). Заявленный способ осуществляется дозированием перуксусной кислоты с измерением концентрацию перуксусной кислоты ниже по потоку от дозирования. Недостатком данного способа является применения высокотоксичной и крайне летучей перуксусной кислоты. Кроме того, реагент крайне нестабилен, дорог и сложен в получении.
Известен способ фотокаталитического обеззараживания воды (RU 2414431, C02F 1/32, C02F 1/36, C02F 103/04), при котором обработку воды проводят ультрафиолетовым излучением в присутствии катализатора - частиц диоксида титана с концентрацией 0,5 г/л.
К существенным недостатком предлагаемого способа можно отнести необходимость использования узкополосного ультрафиолетового излучения, а также катализатора в виде наночастиц диоксида титана (23,3 нм). Ключевым недостатком является сложность получения подобных частиц в процессе ультразвуковой обработки прекурсоров титана при частоте 45 кГц и мощности 50 Вт в течение 15 мин. Частицы титана данного размера способны образовывать устойчивые коллоидные системы и не оседать в течение длительного промежутка времени, ввиду чего норматив ПДК для титана в воде не будет соблюден.
Наиболее близким по технической сущности и достигаемому результату (прототип) является способ очистки воды от органических веществ (RU 2348585, C02F 9/12, C02F 1/32, C02F 1/72), включающий окисление органических веществ в обрабатываемой воде пероксидом водорода (в количестве 10-20 мг/л), с последующей аэрацией и облучением УФ-лучами (длинна волн 253,7 нм и 185,6 нм) с применением катализатора на основе растворимых солей титана в количестве 0,1-0,2 мг Ti на литр очищаемой воды.
Недостатком заявленного способа является необходимость применения дополнительной стадии облучения УФ-лучами, необходимость периодической замены ламп из-за их выхода из строя в результате отложений частиц диоксида титана на поверхности или выработки ресурса, необходимость обеспечения предварительной очистки воды с целью предупреждения разрушения ламп в результате попадания крупных включений. Кроме того, встает вопрос о доочистке воды от соединений титана (ПДК - 0,1 мг/л).
Основными задачами предложенного изобретения являются: упрощение аппаратурной схемы очистки за счет отказа от сменных элементов (УФ-лампы), снижение энергозатрат на процесс очистки, расширение спектра удаляемых из воды веществ (железо, растворенные органические вещества, и пр.), снижение остаточной концентрации соединений титана в очищенной воде.
Заявленный результат достигается за счет обработки воды пероксидом водорода, с добавкой водорастворимых соединений титана с последующей аэрацией и физической обработкой, при этом доза пероксида водорода составляет 3,0 - 5,0 мг/л, доза соединений титана 1,0 - 1,5 мг/л, а физическую обработку воды осуществляют посредством гидродинамической кавитации при скорости потока 23 - 32 м/с, с последующей фильтрацией на керамическом мембранном фильтре.
В результате гидродинамического воздействия на пероксид водорода и соединения титана происходит образование активных гидроксил радикалов. Под действием гидроксил радикалов происходят процессы окисления растворенных соединений железа, марганца, органических соединений, а также дегазация углекислого газа и сероводорода, что, в свою очередь, способствует образованию нерастворимых соединений железа, марганца, кальция и магния в объеме обрабатываемой воды. Кроме того под действием сильных окислителей происходит обеззараживание воды.
Обработанная предлагаемым способом вода из гидродинамического кавитатора подается на механическую ультрафильтрацию с целью удаления из нее образовавшихся нерастворимых соединений (хлопья гидроксида титана с адсорбированными на поверхности соединениями железа и другими загрязняющими веществами).
Необходимо отметить, что эжектирование в рабочую камеру проводится без применения дополнительного оборудования, т.к. в рабочей камере гидродинамического кавитатора имеется зона разрежения.
Реагенты вводят одновременно непосредственно внутрь рабочей камеры гидродинамического кавитатора. Дополнительно возможно осуществление аэрации воздухом, кислородом или озоном с расходом газа не более 2,5% от обрабатываемого количества воды. Способ обеспечивает интенсификацию процесса очистки, снижение энергозатрат, повышение степени очистки.
Предлагаемый результат проиллюстрирован следующими примерами:
Пример 1.
Сточную воду объемом 1 литр и содержанием соединений железа 3,2 мг/л, перманганатной окисляемостью (8,9 мг О/л), содержанием сероводорода 0,1 мг/л и марганца 0,8 мг/л подают на гидродинамический кавитатор, с дополнительной подачей пероксида водорода в количестве 5,0 мг/л и водорастворимых соединений титана в количестве 1,0 мг/л. Скорость жидкости - 23 м/с. Время нахождения смеси в гидродинамическом кавитаторе - 4-6 секунд (два прохода), а объем подсасываемого воздуха 0,1 л. Обработанную воду фильтруют на мембранном керамическом фильтре. Остаточная концентрация соединений железа 0,1 мг/л, титана 0,05 мг/л, перманганатная окисляемость 2,1 мг О/л, марганец 0,1 мг/л, сероводород - <0,001 мг/л (предел обнаружения).
Пример 2.
Сточную воду объемом 1 литр и содержанием соединений железа 4,2 мг/л, перманганатной окисляемостью (7,4 мг О/л) , содержанием сероводорода 0,12 мг/л и марганца 0,9 мг/л подают на гидродинамический кавитатор, с дополнительной подачей пероксида водорода в количестве 3,0 мг/л и водорастворимых соединений титана в количестве 1,5 мг/л. Скорость жидкости - 28 м/с. Время нахождение смеси в гидродинамическом кавитаторе - 1-3 секунды (1 проход), а объем подсасываемого воздуха 0,15 л. Обработанную воду фильтруют на мембранном керамическом фильтре. Остаточная концентрация соединений железа 0,05 мг/л, титана 0,04 мг/л, перманганатная окисляемость 1,9 мг О/л, марганец 0,09 мг/л, сероводород - <0,001 мг/л (предел обнаружения).
Пример 3.
Артеззианскую воду объемом 1 литр и содержанием соединений железа 2,2 мг/л, перманганатной окисляемостью (5,9 мг О/л), общей жесткостью (6,4 мг-экв/л), содержанием сероводорода 0,2 мг/л и марганца 1,0 мг/л подают на гидродинамический кавитатор, с дополнительной подачей пероксида водорода в количестве 4,0 мг/л и водорастворимых соединений титана в количестве 1,25 мг/л. Скорость жидкости - 32 м/с. Время нахождение смеси в гидродинамическом кавитаторе - 1-3 секунды (один проход), а объем подсасываемого воздуха 0,3 л. Обработанную воду фильтруют на мембранном керамическом фильтре. Остаточная концентрация соединений железа 0,02 мг/л, титана 0,05 мг/л, перманганатная окисляемость 1,8 мг О/л, общая жесткость 4,9 мг-экв/л, марганец 0,08 мг/л, сероводород - <0,001 мг/л (предел обнаружения).
Как видно из представленных примеров к основным достоинствам предлагаемого способа следует отнести упрощение аппаратурной схемы за счет отказа от сменных УФ элементов и системы принудительной аэрации, повышение эффективности очистки от растворенных органических и неорганических веществ за счет образования активных радикалов и адсорбции на поверхности коллоидного диоксида титана, снижение остаточной концентрации соединений титана за счет их самопроизвольной коагуляции вследствие увеличения их дозы, снижение расхода пероксида водорода.

Claims (1)

  1. Способ очистки воды, включающий ее обработку пероксидом водорода, с добавкой водорастворимых соединений титана с последующей аэрацией и физической обработкой, отличающийся тем, что доза пероксида водорода составляет 3,0–5,0 мг/л, доза соединений титана 1,0–1,5 мг/л, а физическую обработку воды осуществляют посредством гидродинамической кавитации при скорости потока 23–32 м/с за один или два прохода через гидродинамический кавитатор, с последующей фильтрацией на керамическом мембранном фильтре.
RU2020116662A 2020-05-21 2020-05-21 Способ очистки воды RU2750489C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020116662A RU2750489C1 (ru) 2020-05-21 2020-05-21 Способ очистки воды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020116662A RU2750489C1 (ru) 2020-05-21 2020-05-21 Способ очистки воды

Publications (1)

Publication Number Publication Date
RU2750489C1 true RU2750489C1 (ru) 2021-06-28

Family

ID=76755898

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020116662A RU2750489C1 (ru) 2020-05-21 2020-05-21 Способ очистки воды

Country Status (1)

Country Link
RU (1) RU2750489C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794657C1 (ru) * 2022-07-13 2023-04-24 Общество С Ограниченной Ответственностью "Керамикфильтр" Фильтрационная озоно-мембранная система очистки и обеззараживания воды

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011326A1 (en) * 1993-10-21 1995-04-27 Electrosci, Inc. Electrolytic cell for producing a mixed oxidant gas
CN1562795A (zh) * 2004-04-07 2005-01-12 太原理工大学 光电催化氧化处理水中有机物的装置
RU2348585C1 (ru) * 2007-11-06 2009-03-10 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ очистки воды от органических веществ
RU2414431C1 (ru) * 2009-08-13 2011-03-20 Учреждение Российской академии наук Байкальский институт природопользования Сибирского отделения РАН (БИП СО РАН) Способ фотокаталитического обеззараживания воды
RU2624643C2 (ru) * 2012-03-28 2017-07-05 Орешчанин ВИШНЯ Способ и устройство для электрохимической обработки промышленных сточных вод и питьевой воды
RU2684095C2 (ru) * 2017-04-24 2019-04-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волжский государственный университет водного транспорта" Объединенная судовая система приготовления и кондиционирования питьевой воды

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011326A1 (en) * 1993-10-21 1995-04-27 Electrosci, Inc. Electrolytic cell for producing a mixed oxidant gas
CN1562795A (zh) * 2004-04-07 2005-01-12 太原理工大学 光电催化氧化处理水中有机物的装置
RU2348585C1 (ru) * 2007-11-06 2009-03-10 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ очистки воды от органических веществ
RU2414431C1 (ru) * 2009-08-13 2011-03-20 Учреждение Российской академии наук Байкальский институт природопользования Сибирского отделения РАН (БИП СО РАН) Способ фотокаталитического обеззараживания воды
RU2624643C2 (ru) * 2012-03-28 2017-07-05 Орешчанин ВИШНЯ Способ и устройство для электрохимической обработки промышленных сточных вод и питьевой воды
RU2684095C2 (ru) * 2017-04-24 2019-04-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волжский государственный университет водного транспорта" Объединенная судовая система приготовления и кондиционирования питьевой воды

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794657C1 (ru) * 2022-07-13 2023-04-24 Общество С Ограниченной Ответственностью "Керамикфильтр" Фильтрационная озоно-мембранная система очистки и обеззараживания воды

Similar Documents

Publication Publication Date Title
CN105800886B (zh) 高浓度难降解含盐有机废水的资源化回收利用处理工艺
US8721898B2 (en) Reactor tank
RU2359919C2 (ru) Установка и способ очистки сточных вод
CA2439927C (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
EP1188473A1 (en) Apparatus for producing water containing dissolved ozone
JP2000288560A (ja) 水の浄化処理装置及びその方法
JP2007203292A (ja) 水処理技術
JP2002011498A (ja) 浸出水の処理装置
AU2009200113A1 (en) Water purification
KR101858028B1 (ko) 고속 복합 수처리 장치
RU2750489C1 (ru) Способ очистки воды
KR101062388B1 (ko) 화장실의 중수도 시스템
RU2720613C1 (ru) Способ очистки и обеззараживания сточных вод
Erdim et al. Hybrid photocatalysis/submerged microfi ltration membrane system for drinking water treatment
JP2002282860A (ja) プール水浄化処理方法および装置
KR101208683B1 (ko) 생활용수와 염수의 재활용 장치 및 방법
Aliverti et al. NOM removal from freshwater supplies by advanced separation technology
RU87421U1 (ru) Устройство для очистки сточной воды
WO2019243357A1 (en) Method and system for the purification of contaminated water
RU2094394C1 (ru) Способ очистки природных и сточных вод и установка для его осуществления
JP2018089598A (ja) 水処理装置
KR100711259B1 (ko) 정화처리 장치
RU2755988C1 (ru) Способ очистки сточных вод
JPH10337579A (ja) 汚水処理方法および処理装置
RU2220115C1 (ru) Способ получения питьевой воды