RU2747666C1 - Способ утилизации отработанного раствора травления металлов - Google Patents

Способ утилизации отработанного раствора травления металлов Download PDF

Info

Publication number
RU2747666C1
RU2747666C1 RU2020125421A RU2020125421A RU2747666C1 RU 2747666 C1 RU2747666 C1 RU 2747666C1 RU 2020125421 A RU2020125421 A RU 2020125421A RU 2020125421 A RU2020125421 A RU 2020125421A RU 2747666 C1 RU2747666 C1 RU 2747666C1
Authority
RU
Russia
Prior art keywords
sulfuric acid
binder
acid solution
temperature
calcium
Prior art date
Application number
RU2020125421A
Other languages
English (en)
Inventor
Юнер Шамильевич Капкаев
Виктор Иванович Бархатов
Иван Поликарпович Добровольский
Иван Валерьевич Головачев
Денис Сергеевич Павлов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет"
Priority to RU2020125421A priority Critical patent/RU2747666C1/ru
Application granted granted Critical
Publication of RU2747666C1 publication Critical patent/RU2747666C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к утилизации отработанных сернокислых травильных растворов металлургических и машиностроительных производств. В способе отработанный сернокислый раствор травления металлов нейтрализуют с помощью отсева электросталеплавильного шлака при следующем соотношении, мас.%: отработанный сернокислый раствор травления металлов 74-76, отсев электросталеплавильного шлака 24-26. Нейтрализацию осуществляют при повышении температуры до 80-90°С и рН 7,0-7,5 с получением суспензии, содержащей сульфаты кальция, магния и гидроксида железа, которую охлаждают до 20°С, передают в вакуум-кристаллизатор. Получают кристаллогидраты сульфатов кальция и магния, которые совместно с непрореагировавшими оксидами кремния, алюминия, кальция отделяют центрифугой и подают в комбинированную сушилку кипящего слоя для их измельчения до размера частиц 15-20 мкм и одновременной сушки при температуре 140-350°С с получением вяжущего. При температуре сушки 140°С получают вяжущее с желтым железо-оксидным пигментом, а при температуре сушки 350°С - с красным железо-оксидным пигментом. Обеспечивается переработка отработанного сернокислого раствора травления металлов с получением вяжущего, пригодного для изготовления повышенной прочности строительных материалов наружного применения. 1 табл., 2 пр., 1 ил.

Description

Изобретение относится к утилизации отработанных кислых (солянокислых и сернокислых) травильных растворов металлургических и машиностроительных производств с получением вяжущих, которые можно применять для изготовления строительных материалов, пригодных для изготовления повышенной прочности строительных изделий наружного применения.
Известен способ получения сульфата магния, включающий взаимодействие магний содержащего сырья - тонкодисперсной пыли магнезита с отработанной серной кислотой, кристаллизацию целевого продукта и сушку его [пат. РФ №2078041, C01F 5/40, 1997]. В качестве отработанной серной кислоты используют травильный сернокислый раствор, на взаимодействие исходные реагенты подают в массовом соотношении магнезит: сульфат-ионы в травильном растворе (1,05-1,2):1 с последующей гидротермальной обработкой полученной суспензии при температуре (60-80)°С в течение (1,5-2,0) ч.
Однако этот способ имеет следующие недостатки:
1. Низкий выход получаемых сульфата магния и пигмента.
2. Высокие энергозатраты на выпарку раствора.
Наиболее близким по техническому содержанию является способ утилизации отработанных травильных растворов, содержащих сульфаты и хлориды железа (II), окислением катионов железа (II) с применением окислителя и целевым использованием переработанных растворов, применяя в качестве окислителя концентрат гипохлорита натрия, содержащий гипохлорит натрия и гидроксид натрия, а переработанные растворы используют как коагулянты в процессах водоочистки [пат. РФ №2428522, C23G 1/36, C23F 1/46].
Указанный способ имеет следующие недостатки:
1. Низкого качества получаемый коагулянт из-за содержания в нем сложно удаляемого при очистке соединения натрия.
2. Применение дефицитного окислителя-гипохлорита.
Задачей предлагаемого изобретения является разработка эффективного способа утилизации (переработки) отработанного сернокислого раствора травления металлов с получением вяжущего, пригодного для изготовления повышенной прочности строительных материалов наружного применения.
Техническая задача достигается тем, что способ утилизации отработанного раствора травления металла с получением вяжущих, характеризующийся тем, что, согласно изобретения, отработанный сернокислый раствор травления металлов в соотношении 74-76 масс. % нейтрализуют отсевом электросталеплавильного шлака в соотношении 24-26 масс. % при повышении температуры до 80…90°С, рН до 7,0…7,5, получают суспензию, содержащую сульфаты кальция, магния и гидроксида железа, которую охлаждают до 20°С, передают в вакуум-кристаллизатор, где при температуре 110°С образуются кристаллогидраты сульфатов кальция и магния, которые совместно с не прореагировавшими оксидами кремния, алюминия, кальция отработанного сернокислого отсева электросталеплавильного шлака и гидроксидом железа отделяют центрифугой и подают в комбинированную сушилку «кипящего слоя», в которой сушат при температуре 140…350°С и одновременно измельчают до размера частиц 15…20 мкм, при этом получают в смеси с вяжущим при 140°С - желтый железо-оксидный пигмент, а при температуре 350°С - красный железооксидный пигмент, а отделенный фильтрат используют в оборотном цикле.
Поставленная техническая задача решается применением для переработки отработанного сернокислого раствора отсева электросталеплавильного шлака, приведенного ниже химического состава и взятых в следующих соотношениях, масс. %:
Отработанный сернокислый раствор травления металлов - 74-76
Отсев электросталеплавильного шлака - 24-26.
Отработанный сернокислый раствор травления металлов, содержащий (4…5)% H2SO4 и (18…20)% FeSO4, перерабатывается Златоустовским металлургическим заводом нейтрализацией известковым молоком с образованием гипсосодержащей суспензии, отделения от нее избыточной влаги с получением низкого качества гипсосодержащего шлама.
Отсев электросталеплавильного шлака, содержащий, масс. %: SiO2 - (17…22); СаО-(42…55); Al2O3 - (4…9); MgO - (14…16); FeO - (0,2…0.4); Fe2O3 - (1…3), получают Златоустовским металлургическим заводом. Отсев обладает низким вяжущим свойством и поэтому не находит широкого применения.
Применение таких отходов для решения технической задачи объясняется не только их химической активностью, но и влиянием их на качество, особенно на прочность, образуемых вяжущих, в том числе и на гипс, что подтверждается приведенными ниже данными.
Известно, что природный гипс имеет не высокую прочность а сжатие (2…16 МПа), она повышается при тепловой обработке в автоклаве в среде насыщенного пара при давлении (0,15…0,3)МПа. Вместо автоклава возможно использовать в качестве тепловой среды водные растворы некоторых солей, например, извести (СаО), что активизирует химическое взаимодействие гипса с водой, повышая прочность изделий, получаемых на его основе при сжатии на (10…20)МПа [Энциклопедия (краткая химическая). - М.: «Советская энциклопедия», 1964, Т 3, 66 с.]. При добавке к сульфату кальция СаО, повышении температуры обработки до 140°С и дисперсности возрастает качество гипса и прочность изделий, что объясняется образованием более прочной гипсосодержащей структуры. Повышает прочность вяжущих также введение добавок - интенсификаторов при обжиге доломита или обработке его химическим способом с получением оксида магния, сульфатов или хлоридов магния и кальция [Носов А.В. и др. Высокопрочные доломитовые вяжущие // Вестник ЮУрГУ, Серия «Строительство и архитектура, 2013, Т. 13 - №1 - с. 0-37]. Получаемые кристаллогидраты сульфата кальция и сульфата магния характеризуются приведенными в табл. 1 свойствами и условиями их образования.
Figure 00000001
Учитывая влияние условий обработки отходов и добавок на качество гипса, были разработаны приведенные ниже условия переработки указанных выше отходов - отработанного сернокислого раствора травления металла и отсева электросталеплавильного шлака с получением высокого качество вяжущего - гипса, пригодного для изготовления строительных материалов наружного применения.
Предлагаемый способ утилизации указанных отходов осуществляется в следующей последовательности. В реакторе отработанный сернокислый раствор травления металлов нейтрализуют расчетным количеством отсева электросталеплавильного шлака, при этом в реакторе повышается температура до (80…90)°С, доводят рН до (7,0…7,5) и получают суспензию, содержащую сульфаты кальция, магния и гидроксида железа по реакциям (1-4):
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Затем охлаждают суспензию до температуры 20°С, передают ее в вакуумкристаллизатор, в котором при температуре 110°С повышают выпаркой содержание сульфата кальция до 79,1% и сульфата магния до 48,78%, при этом образуются кристаллогидраты сульфатов кальция и магния по реакциям (5-6):
Figure 00000006
Figure 00000007
Затем образованные кристаллогидраты сульфатов кальция и магния совместно с не прореагировавшими оксидами кремния, алюминия, кальция отработанного сернокислого отсева электросталеплавильного шлака и гидроксидом железа отделяют центрифугой и подают их в комбинированную сушилку «кипящего слоя», а фильтрат, отделенный от осадка центрифугой, используют в оборотном цикле.
В сушилке смесь подвергают сушке при температуре (140…350)°С и одновременно измельчают до размера частиц (15…20) мкм, при этом получается в смеси при 140°С желтый железо-оксидный пигмент, а при температуре 350°С - красный железооксидный пигмент. При таких условиях одновременно протекает окисление гидроксида железа в оксиды с получением железо-оксидных пигментов - желтого цвета по реакциям (7-8) и измельчение вяжущего до (15…20)мкм.
Figure 00000008
Figure 00000009
В сушилке также создаются условия парового котла и образуемое вяжущее - гипс обладает повышенной прочностью. Повышается прочность вяжущего также в связи с наличием в нем горькой соли и неразложившейся части отсева электроплавильного шлака (обладающей пуццолановой активностью), поэтому строительные материалы, получаемые на его основе, пригодны для изготовления изделий наружного применения.
Таким образом, при утилизации отработанных растворов получают вяжущее желтых или красных цветов, обладающее повышенной прочностью.
Преимущества предлагаемого способа также подтверждается данными приведенными в следующих примерах.
Предлагаемый способ осуществляется в следующей последовательности, которая поясняется технологической схемой, изображенной на фиг.
Реактор 3 заполняют расчетным количеством отработанного сернокислого раствора травления металла, подаваемым из емкости 1, и отсевом электроплавильного шлака, подаваемым из бункера 2, при этом в реакторе повышается температура до (80…90)°С и рН до (7,0…7,5) и протекают реакции (1, 2). После окончания реакций суспензию через промежуточную емкость 4 шламовым насосом 5 подают в вакуум кристаллизатор 6, в котором производится вакуумная выпарка избыточной воды и образование кристаллогидратов сульфатов кальция и магния, которые вместе с образовавшейся там же горькой солью и неразложившейся частью отсева электроплавильного шлака и гидроксида железа передают в центрифугу 7, в которой также отделяется избыточная влага. После чего смесь передается в комбинированную сушилку «кипящего слоя» 8, в которой смесь подвергается сушке при температуре (140…350)°С и одновременно измельчению до размера частиц (15…20) мкм, при этом получается в смеси при 140°С желтый железо-оксидный пигмент, а при температуре 350°С - красный железо-оксидный пигмент. В результате получаемое вяжущее желтого и красного цветов передают в бункер вяжущего 10, а фильтрат - в емкость 9.
Высокая эффективность предлагаемого способа подтверждается приведенными ниже данными наработанных двух образцов вяжущего.
Опыт №1. В лабораторный реактор налили 1000 мл (1282 г) отработанного сернокислого раствора травления металла, содержащего 5% серной кислоты и 18% сульфата железа, и при работающей мешалке в реактор постепенно, не допуская сильного вспенивания суспензии, добавили 400 г отсева элетросталеплавильного шлака, при этом в растворе повышается температура до 90°С и протекают реакции (1, 2) с образованием 230,6 г сульфата кальция и 172,0 г сульфата магния. После окончания реакций суспензию перелили в лабораторный выпарной аппарат, в котором выпарили избыточную воду (до повышения концентрации сульфата кальция -79,1% и сульфата магния - 48, 78%), после чего суспензию охладили до 20°С, при этом образовались 370,6 кристаллогидраты сульфата кальция и 342,) сульфата магния. Затем от полученной суспензии на фильтре отделили осадок и высушили его в лабораторной комбинированной сушилке кипящего слоя при температуре 140°С и размололи до 15 мкм, при этом получили вяжущее желтого цвета. После охлаждения полученное вяжущее проанализировали и взвесили. Получили вяжущее весом 1166,7 г, содержащее 415,2 г гипса, 539,2 г горькой соли, 212,2 г желтого железо-оксидного пигмента, и 515,3 мл фильтрата. Вяжущее имеет прочность 68 МПа.
Опыт №2. В лабораторный реактор налили 1000 мл (1312 г) отработанного сернокислого раствора травления металла, содержащего 4% серной кислоты и 20% сульфата железа, и при работающей мешалке в реактор постепенно, не допуская сильного вспенивания суспензии, добавили 460 г отсева электросталеплавильного шлака, при этом в растворе повышается температура до 80°С и протекают реакции (1 и 2) с образованием 338,2 г сульфата кальция и 193,7 г сульфата магния. После окончания реакций суспензию перелили в лабораторный выпарной аппарат, в котором выпарили избыточную воду (до повышения концентрации сульфата кальция -79,1% и сульфата магния - 48, 78%, после чего суспензию охладили до 20°С, при этом образовались кристаллогидраты 429,3 г сульфата кальция и 395,5 г сульфата магния. Затем от полученной суспензии на фильтре отделили осадок и высушили его в лабораторный комбинированной сушилке «кипящего слоя» при температуре 350°С и размололи до 20 мкм, при этом получили вяжущее красного цвета. После охлаждения полученное вяжущее проанализировали и взвесили. Получили вяжущее весом 1328,3 г, содержащее 685,4 г гипса, 395,5 г горькой соли, 247,4 г красного железо-оксидного пигмента и 443,7 мл фильтрата. Вяжущее имеет прочность 61 МПа.
Предлагаемый способ найдет применение в утилизации отработанных сернокислых травильных растворов металлургических и машиностроительных производств и может быть использован при переработке аналогичных отработанных растворов травления металлов
Предлагаемый способ позволяет не только утилизировать отработанные сернокислые растворы травления металла, ной перерабатывать их в полезные для промышленности продукты.

Claims (3)

  1. Способ утилизации отработанного сернокислого раствора травления металлов, включающий нейтрализацию отработанного сернокислого раствора травления металлов с получением суспензии и отделение осадка для получения вяжущего, отличающийся тем, что отработанный сернокислый раствор травления металлов нейтрализуют с помощью отсева электросталеплавильного шлака при следующем соотношении, мас.%:
  2. отработанный сернокислый раствор травления металлов 74-76 отсев электросталеплавильного шлака 24-26,
  3. при этом нейтрализацию осуществляют при повышении температуры до 80-90°С и рН 7,0-7,5 с получением суспензии, содержащей сульфаты кальция, магния и гидроксида железа, которую охлаждают до 20°С, передают в вакуум-кристаллизатор и при температуре 110°С получают кристаллогидраты сульфатов кальция, магния, которые совместно с непрореагировавшими оксидами кремния, алюминия, кальция упомянутого отсева электросталеплавильного шлака и гидроксидом железа отделяют центрифугой и подают в комбинированную сушилку кипящего слоя для их измельчения до размера частиц 15-20 мкм и одновременной сушки при температуре 140-350°С с получением вяжущего, причем при температуре сушки 140°С получают вяжущее с желтым железо-оксидным пигментом, а при температуре сушки 350°С - с красным железо-оксидным пигментом.
RU2020125421A 2020-07-22 2020-07-22 Способ утилизации отработанного раствора травления металлов RU2747666C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020125421A RU2747666C1 (ru) 2020-07-22 2020-07-22 Способ утилизации отработанного раствора травления металлов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020125421A RU2747666C1 (ru) 2020-07-22 2020-07-22 Способ утилизации отработанного раствора травления металлов

Publications (1)

Publication Number Publication Date
RU2747666C1 true RU2747666C1 (ru) 2021-05-11

Family

ID=75919714

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020125421A RU2747666C1 (ru) 2020-07-22 2020-07-22 Способ утилизации отработанного раствора травления металлов

Country Status (1)

Country Link
RU (1) RU2747666C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2078041C1 (ru) * 1994-02-08 1997-04-27 Акционерное общество закрытого типа "Южуралсантехмонтаж" Способ получения сульфата магния
RU2110488C1 (ru) * 1996-06-17 1998-05-10 Рослякова Нина Григорьевна Способ утилизации кислых железосодержащих растворов
CN101837435A (zh) * 2009-03-20 2010-09-22 宝山钢铁股份有限公司 一种利用不锈钢冷轧酸洗废水制备铸造用保护渣的方法
RU2428522C1 (ru) * 2010-01-15 2011-09-10 Государственное образовательное учреждение высшего профессионального образования "Брянская государственная инженерно-технологическая академия" Способ утилизации отработанных травильных растворов, содержащих сульфаты и хлориды железа (ii)
RU2690328C1 (ru) * 2018-05-14 2019-05-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" Способ переработки отработанных кислых растворов гальванических производств

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2078041C1 (ru) * 1994-02-08 1997-04-27 Акционерное общество закрытого типа "Южуралсантехмонтаж" Способ получения сульфата магния
RU2110488C1 (ru) * 1996-06-17 1998-05-10 Рослякова Нина Григорьевна Способ утилизации кислых железосодержащих растворов
CN101837435A (zh) * 2009-03-20 2010-09-22 宝山钢铁股份有限公司 一种利用不锈钢冷轧酸洗废水制备铸造用保护渣的方法
RU2428522C1 (ru) * 2010-01-15 2011-09-10 Государственное образовательное учреждение высшего профессионального образования "Брянская государственная инженерно-технологическая академия" Способ утилизации отработанных травильных растворов, содержащих сульфаты и хлориды железа (ii)
RU2690328C1 (ru) * 2018-05-14 2019-05-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" Способ переработки отработанных кислых растворов гальванических производств

Similar Documents

Publication Publication Date Title
CN100359025C (zh) 一种从钒矿石中提取五氧化二钒的方法
EP1097247B1 (en) A method for isolation and production of magnesium based products
RU2703644C1 (ru) Способ получения гипсового вяжущего из гипсосодержащего шлама
RU2554136C2 (ru) Способ получения глинозема
JPS589815A (ja) アルミナを主成分とする耐火物を製造する方法
JPH0367967B2 (ru)
RU2634017C2 (ru) Способ получения сульфата магния и железоокисных пигментов из отходов производств
RU2458945C1 (ru) Способ получения смешанного коагулянта дигидроксохлорида алюминия и флокулянта кремниевой кислоты
RU2747666C1 (ru) Способ утилизации отработанного раствора травления металлов
RU2702572C1 (ru) Способ получения железосодержащего коагулянта из отходов производств
RU2745771C1 (ru) Способ получения гипсового вяжущего из отходов металлургических производств
US3712942A (en) Method of producing vanadium compounds by alkaline leaching
US2210892A (en) Process for recovering magnesium oxide
US663167A (en) Method of making alumina.
RU2292300C1 (ru) Способ переработки серпентинита
RU2740063C1 (ru) Способ переработки отработанных сернокислых растворов травления металлов
RU2605987C1 (ru) Способ комплексной переработки золы от сжигания углей
RU2160786C1 (ru) Способ извлечения ванадия из высокоизвестковых шлаков
RU2200708C2 (ru) Способ получения глинозема
RU2726121C1 (ru) Способ очистки промышленных сточных вод от тяжелых металлов
RU2720790C1 (ru) Способ получения комплексного алюминийсодержащего коагулянта
RU2078041C1 (ru) Способ получения сульфата магния
RU2793681C2 (ru) Способ извлечения ванадия из ванадиевого шлака посредством обжига с композитом на основе кальция и марганца
RU2750429C1 (ru) Способ получения магнетита
RU2375334C1 (ru) Способ извлечения фосфора из железосодержащих отходов переработки вятско-камских фосфоритов