RU2743818C2 - Теплообменник со смесительным устройством для жидкости/газа с улучшенной геометрией каналов - Google Patents

Теплообменник со смесительным устройством для жидкости/газа с улучшенной геометрией каналов Download PDF

Info

Publication number
RU2743818C2
RU2743818C2 RU2019120798A RU2019120798A RU2743818C2 RU 2743818 C2 RU2743818 C2 RU 2743818C2 RU 2019120798 A RU2019120798 A RU 2019120798A RU 2019120798 A RU2019120798 A RU 2019120798A RU 2743818 C2 RU2743818 C2 RU 2743818C2
Authority
RU
Russia
Prior art keywords
channel
heat exchanger
plate
mixing device
exchanger according
Prior art date
Application number
RU2019120798A
Other languages
English (en)
Other versions
RU2019120798A (ru
RU2019120798A3 (ru
Inventor
Филипп ГРИГОЛЕТТО
Наташа ХАИК-БЕРО
Софи ЛАЦЦАРИНИ
Жан-Марк Пейрон
Original Assignee
Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод filed Critical Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод
Publication of RU2019120798A publication Critical patent/RU2019120798A/ru
Publication of RU2019120798A3 publication Critical patent/RU2019120798A3/ru
Application granted granted Critical
Publication of RU2743818C2 publication Critical patent/RU2743818C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Изобретение относится к области энергетики. Теплообменник содержит несколько пластин, размещенных параллельно друг другу таким образом, чтобы образовывать первый ряд проходов для направления по меньшей мере одной охлаждающей текучей среды (F1) и второй ряд проходов для направления по меньшей мере одной теплотворной текучей среды (F2) для приведения ее в теплообменный контакт по меньшей мере с указанной охлаждающей текучей средой (F1). По меньшей мере один проход первого ряда, образованный между второй пластиной, образующей смежный проход второго ряда, и первой пластиной. Смесительное устройство, также размещаемое в указанном по меньшей мере одном проходе первого ряда и содержащее: по меньшей мере один первый канал для направления газовой фазы охлаждающей текучей среды (F1), по меньшей мере один второй канал для направления жидкой фазы охлаждающей текучей среды (F1). Продольное сечение второго канала, измеряемое параллельно второй пластине, уменьшается в направлении указанной второй пластины. 14 з.п. ф-лы, 8 ил.

Description

Настоящее изобретение относится к теплообменнику, содержащему ряд проходов для каждой из текучих сред, которые приводят в теплообменный контакт, при этом теплообменник содержит по меньшей мере одно смесительное устройство, выполненное с возможностью распределения по меньшей мере одной смеси, имеющей две жидкостно-газовые фазы, в один из ряда проходов.
В частности, настоящее изобретение может быть применено в отношении теплообменника, который испаряет по меньшей мере один поток жидкостно-газовой смеси, в частности, поток многокомпонентной смеси, например, смеси углеводородов посредством теплообмена по меньшей мере с еще одной текучей средой, например, природным газом.
Технология, обычно применяемая в отношении теплообменника, относится к технологии для алюминиевых паяных пластинчато-ребристых теплообменников, которая позволяет получить устройства, которые весьма компактны и обеспечивают большую площадь поверхности теплообмена.
Эти теплообменники содержат пластины, между которыми вставляют гофрированные элементы для теплообмена, образованные из последовательности гофр и ребер, таким образом образовывая пучки проходов для испарения и проходов для конденсации, один из которых предназначен для испарения охлаждающей жидкости, а другой предназначен для конденсации теплотворного газа. Теплообмен между текучими средами может происходить с изменением фазы или без изменения фазы.
С целью обеспечения правильной работы теплообменника, использующего жидкостно-газовую смесь, соотношение жидкой фазы и газовой фазы должно быть одинаковым во всех проходах и должно быть равномерным в одном и том же проходе.
Размеры теплообменника рассчитывают, исходя из предположения о равномерном распределении фаз и, следовательно, о единой температуре в конце испарения жидкой фазы, равной точке росы смеси.
В случае с многокомпонентной смесью температура в конце испарения будет зависеть от соотношения жидкой фазы и газовой фазы в проходах.
В случае неравномерного распределения двух фаз температурный профиль охлаждающей текучей среды в этом случае будет варьировать в зависимости от проходов или даже варьировать в одном и том же проходе. По причине этого неравномерного распределения существует возможность того, что теплотворная текучая среда (среды), находящаяся в теплообменном контакте с двухфазной смесью, может иметь температуру на выпуске теплообменника, которая выше планируемой температуры, что, следовательно, ухудшает эксплуатационные показатели теплообменника.
Одно из решений по распределению жидкой и газовой фаз смеси максимально равномерно состоит в том, чтобы вводить их в теплообменник по отдельности, затем смешивать их друг с другом после того, как они попадут внутрь теплообменника.
В документе FR-A-2563620 описан такой теплообменник, в котором пруток с канавками вставлен в ряд проходов, который предназначен для направления двухфазной смеси. Это смесительное устройство содержит отдельные впуски для жидкой фазы и для газовой фазы, открывающиеся в общий объем смешивания, который снабжен одним выпуском для распределения жидкостно-газовой смеси в зону теплообмена.
Однако, жидкая фаза, подаваемая в смесительное устройство, в этом случае неизбежно оказывается в состоянии теплообмена с теплотворной текучей средой (текучими средами), циркулирующей в смежных проходах другого ряда проходов. Это может привести к началу испарения жидкой фазы фактически в пределах соответствующих впусков, тем самым приводя к неравномерному распределению двух фаз смеси в определенных проходах ряда и в определенных зонах в одном и том же проходе.
Для сведения к минимуму теплообмена, который может происходить в смесительном устройстве, одним решением может быть установка смесительного устройства в зоне теплообменника, в которой не циркулирует какая-либо другая текучая среда. В таком случае смесительное устройство должно быть расположено на одном конце теплообменника, лишенном каких-либо средств сброса или подачи текучей среды, что повлечет за собой изменение конструкции теплообменника полностью и неизбежно приведет к увеличению его размера. Кроме того, такое решение не позволяет вводить двухфазную смесь в середину теплообменника, что может быть желательно в тех случаях, когда этого требуют специфические особенности способа.
Целью настоящего изобретения является решение полностью или частично вышеупомянутых задач, в частности, путем предложения теплообменника, в котором распределение жидкой и газовой фаз смеси является максимально равномерным, и осуществления этого без чрезмерного усложнения конструкции теплообменника или увеличения его размера.
Решением согласно настоящему изобретению, следовательно, является теплообменник, содержащий несколько пластин, размещенных параллельно друг другу таким образом, чтобы образовывать первый ряд проходов для направления по меньшей мере одной охлаждающей текучей среды и второй ряд проходов для направления по меньшей мере одной теплотворной текучей среды c целью приведения ее в теплообменный контакт по меньшей мере с указанной охлаждающей текучей средой, по меньшей мере один проход первого ряда, образованный между второй пластиной, образующей смежный проход второго ряда, и первой пластиной, смесительное устройство, также размещаемое в указанном по меньшей мере одном проходе первого ряда и содержащее:
– по меньшей мере один первый канал для направления газовой фазы охлаждающей текучей среды,
– по меньшей мере один второй канал для направления жидкой фазы охлаждающей текучей среды,
характеризующийся тем, что продольное сечение второго канала, измеряемое параллельно второй пластине, уменьшается в направлении указанной второй пластины.
В зависимости от случая теплообменник согласно настоящему изобретению может иметь одну или несколько следующих технических особенностей:
– проходное отверстие размещено между первым каналом и вторым каналом, указанное проходное отверстие содержит впуск, открывающийся во второй канал, и выпуск, открывающийся в первый канал, продольное сечение второго канала уменьшается от впуска проходного отверстия по направлению ко второй пластине;
– первый канал и второй канал проходят параллельно первой и второй пластинам;
– первый канал размещен между вторым каналом и первой пластиной;
– проходы проходят в продольном направлении, при этом первый канал проходит в продольном направлении, а второй канал проходит в боковом направлении, ортогональном продольному направлению;
– первый канал образован из первой полости, образованной в смесительном устройстве;
– смесительное устройство содержит первую поверхность, размещенную напротив первой пластины, и вторую поверхность, размещенную напротив второй пластины, при этом первая полость открывается на первую поверхность;
– второй канал образован из второй полости, образованной в смесительном устройстве;
– вторая полость открывается на вторую поверхность;
– смесительное устройство содержит несколько первых продольных каналов, следующих друг за другом в боковом направлении;
– второй канал содержит первый конец, расположенный на уровне впуска проходного отверстия, и второй конец, расположенный на стороне второй пластины, при этом соотношение между продольным сечением второго канала, измеряемым на втором конце, и продольным сечением второго канала, измеряемым на первом конце, находится в диапазоне от 0 до 0,8, предпочтительно от 0,2 до 0,8;
– продольное сечение второго канала (32) уменьшается по нарастающей по направлению ко второй пластине (2b);
– второй канал проходит в боковом направлении, при этом поперечное сечение второго канала в плоскости, перпендикулярной боковому направлению, по меньшей мере частично имеет форму усеченного конуса, сходящегося по направлению ко второй пластине;
– уменьшение продольного сечения второго канала вызвано боковым сужением указанного второго канала, которое происходит в направлении второй пластины;
– смесительное устройство дополнительно содержит по меньшей мере один третий канал, проходящий параллельно первому каналу, при этом указанный третий канал размещен между вторым каналом и второй пластиной.
Настоящее изобретение может быть применено в отношении теплообменника, который испаряет по меньшей мере один поток жидкостно-газовой смеси, в частности, поток многокомпонентной смеси, например, смеси углеводородов посредством теплообмена по меньшей мере с еще одной текучей средой, например, природным газом.
Выражение «природный газ» относится к любой композиции, содержащей углеводороды, в том числе по меньшей мере метан. Он включает «необработанное» соединение (до любой обработки или промывки) и также любое соединение, которое было частично, по существу или полностью обработано для уменьшения содержания и/или извлечения одного или нескольких соединений, включая без ограничения серу, диоксид углерода, воду, ртуть и некоторые тяжелые и ароматические углеводороды.
Настоящее изобретение будет более понятным благодаря следующему описанию, приведенному исключительно в качестве неограничивающего примера и составленному со ссылкой на прилагаемые графические материалы, среди которых:
на фиг. 1 приведен схематический вид в разрезе, в плоскости, параллельной продольному и боковому направлениям, части прохода теплообменника, в который вводят жидкостно-газовую двухфазную смесь, согласно одному варианту осуществления настоящего изобретения;
на фиг. 2 приведен схематический вид в разрезе, в плоскости, параллельной продольному направлению и перпендикулярной боковому направлению, ряда проходов теплообменника из фиг. 1;
на фиг. 3A и 3B приведены схематические виды в разрезе, в двух плоскостях, перпендикулярных плоскости из фиг. 1, на которых проиллюстрирован один вариант осуществления смесительного устройства, которым оснащают теплообменник согласно настоящему изобретению;
на фиг. 4A и 4B приведены частичные виды смесительного устройства из фиг. 3A и 3B и альтернативной формы такого устройства;
на фиг. 5 и 6 приведены схематические виды в разрезе смесительных устройств согласно другим вариантам осуществления настоящего изобретения.
На фиг. 1 и 2 проиллюстрирован теплообменник 1 согласно одному варианту осуществления настоящего изобретения, содержащий пучок пластин 2a, 2b, 2c…, которые проходят в двух измерениях: продольном направлении z и боковом направлении y. Пластины 2a, 2b, 2c… расположены параллельно друг другу и одна над другой с промежутками и, таким образом, образуют множество проходов для текучих сред, находящихся в косвенном теплообменном контакте через указанные пластины. Боковое направление y показано ортогональным продольному направлению z и параллельным пластинам 2a, 2b, 2c…
Предпочтительно каждый проход имеет плоскую и параллелепипедальную форму. Разделение между двумя следующими друг за другом пластинами невелико по сравнению с длиной и шириной каждой последующей пластины.
Теплообменник 1 может содержать ряд пластин в количестве более 20 или даже более 100, с образованием между ними первого ряда проходов 10 для направления по меньшей мере одной охлаждающей текучей среды F1 и второго ряда проходов 20 (не виден на фиг. 1) для направления по меньшей мере одной теплотворной текучей среды F2, при этом поток указанных текучих сред в целом происходит в продольном направлении z. Проходы 10 первого ряда могут быть расположены, все или некоторых из них, с чередованием или смежно со всеми или некоторыми из проходов 20 второго ряда.
Хорошо известным образом теплообменник 1 содержит средства 43, 52 распределения и сброса, выполненные с возможностью распределения различных текучих сред в проходы 10, 20 и сброса указанных текучих сред из указанных проходов 10, 20.
Уплотнение проходов 10, 20 по краям пластин 2a, …, обычно выполняют при помощи боковых и продольных уплотнительных полос 4, прикрепленных к пластинам 2a,… Боковые уплотнительные полосы 4 не полностью блокируют проходы 10, 20, но обеспечивают преимущество, состоящее в том, что они оставляют впускные и выпускные отверстия для текучей среды в диагонально противоположных углах проходов.
Отверстия проходов 10 первого ряда расположены одно над другим с совмещением, тогда как отверстия проходов 20 второго ряда размещены в противоположных углах. Отверстия, расположенные друг над другом, объединены друг с другом соответственно в коллекторах 40, 45, 50, 55 полутрубчатой формы, посредством которых текучие среды распределяют и сбрасывают.
Как изображено на фиг. 1 и фиг. 2, полутрубчатые коллекторы 50, 45 используют для введения текучих сред в теплообменник 1, и полутрубчатые коллекторы 40, 55 используют для сброса этих текучих сред из теплообменника 1.
В этой альтернативной форме варианта осуществления коллектор, подающий одну из текучих сред, и коллектор, сбрасывающий другую текучую среду, расположены на одном и том же конце теплообменника, таким образом, текучие среды F1, F2 текут встречным потоком через теплообменник 1.
Согласно другой альтернативной форме варианта осуществления охлаждающая и теплотворная текучие среды могут в равной мере циркулировать в виде сопутствующего потока, при этом средства, подающие одну из текучих сред, и средства, сбрасывающие другую текучую среду, в таком случае расположены в противоположных концах теплообменника 1.
Предпочтительно продольное направление ориентировано вертикально во время работы теплообменника 1. Охлаждающая текучая среда F1 обычно течет вертикально и вверх в этом направлении. Разумеется, без отступления от объема настоящего изобретения возможны другие направления и ориентации потока текучих сред F1, F2.
Следует отметить, что в контексте настоящего изобретения одна или несколько охлаждающих текучих сред F1 и одна или несколько теплотворных текучих сред F2 различного рода могут протекать в проходах 10, 20 первого и второго рядов одного и того же теплообменника.
Средства 43, 52 распределения и сброса обеспечивают преимущество, состоящее в том, что они содержат распределительные гофрированные элементы 44, 51, 54, расположенные между двумя следующими друг за другом пластинами 2a, 2b,... в форме гофрированных листов, которые проходят от впускных и выпускных отверстий. Распределительные гофрированные элементы 44, 51, 54 обеспечивают равномерное распределение и восстановление текучих сред по всей ширине проходов 10, 20.
Кроме того, проходы 10, 20 обеспечивают преимущество, состоящее в том, что они содержат теплообменные конструкции, размещенные между пластинами 2a, 2b,... Эти конструкции предназначены для увеличения площади поверхности теплообмена теплообменника. Конкретно, теплообменные конструкции находятся в контакте с текучими средами, циркулирующими в проходах, и передают теплопоток за счет теплопроводности смежным пластинам, к которым они могут быть прикреплены посредством пайки, тем самым повышая механическую прочность теплообменника.
Теплообменные конструкции также служат разделителями между пластинами, в особенности когда теплообменник собирают посредством пайки, во избежание любой деформации пластин во время использования текучих сред под давлением. Они также обеспечивают направление потоков текучей среды в проходах теплообменника.
Предпочтительно эти конструкции содержат гофрированные элементы 11 для теплообмена, которые обеспечивают преимущество, состоящее в том, что они проходят по ширине и длине проходов 10, 20 параллельно пластинам по протяженности распределительных гофрированных элементов 44, 51, 54 по длине проходов 10, 20. Проходы 10, 20 теплообменника, таким образом, демонстрируют главную часть своей длины, образовывая собственную часть теплообменника, которая покрыта теплообменной конструкцией, при этом указанная главная часть окружена распределительными частями, которые покрыты распределительными гофрированными элементами 44, 51, 54.
На фиг. 1 проиллюстрирован проход 10 первого ряда 1, выполненный с возможностью распределения охлаждающей текучей среды F1 в форме жидкостно-газовой двухфазной смеси. Охлаждающую текучую среду F1 разделяют в разделительном устройстве 6 на газовую фазу 61 и жидкую фазу 62, которые вводят по отдельности в теплообменник 1 через боковой коллектор 30 и коллектор 50. Две фазы 61, 62 затем смешивают друг с другом посредством смесительного устройства 3, размещаемого в проходе 10 и изображенного схематически на фиг. 1. Предпочтительно несколько проходов 10 или даже все проходы 10 первого ряда содержат смесительное устройство 3.
На фиг. 2 приведен схематический вид в разрезе в плоскости, параллельной продольному направлению z и перпендикулярной боковому направлению y, теплообменника из фиг. 1. На нем показан пучок проходов 10, 20 первого и второго рядов, при этом смесительные устройства 3 размещены в двух проходах 10.
Смесительное устройство 3 согласно настоящему изобретению обеспечивает преимущество, состоящее в том, что оно выполнено из прутка или стержня, размещаемого в проходе 10 и предпочтительно проходящего в сечении прохода 10 по почти всей или даже всей высоте прохода 10 таким образом, что смесительное устройство находится в контакте с каждой пластиной 2a, 2b, которая образует проход 10.
Смесительное устройство 3 обеспечивает преимущество, состоящее в том, что оно прикреплено к смежным пластинам 2a и 2b посредством пайки.
Смесительное устройство 3 может иметь параллельно продольному направлению z первое измерение, находящееся в диапазоне от 20 до 200 мм, и параллельно боковому направлению y второе измерение, находящееся в диапазоне от 100 до 1400 мм.
Как можно увидеть на фиг. 3A и фиг. 3B, смесительное устройство 3, в частности, ограничено первой поверхностью 3a, размещенной напротив первой пластины 2a теплообменника, и второй поверхностью 3b, размещенной напротив второй пластины 2b. Вторая пластина 2b образует с третьей пластиной 2c смежный проход 20. Первая и вторая поверхности 3a, 3b предпочтительно проходят приблизительно параллельно, а именно, параллельно или почти параллельно, первой и второй пластинам 2a и 2b соответственно.
Смесительное устройство 3 обеспечивает преимущество, состоящее в том, что оно в целом имеет форму параллелепипеда. Первая и вторая поверхности 3a, 3b в целом планарные, но локально могут иметь полости, образующие каналы текучей среды, как поясняется далее в данном документе.
Смесительное устройство 3 содержит по меньшей мере первый канал 31 для направления газовой фазы 61 охлаждающей текучей среды F1, при этом направление потока текучей среды изображено стрелкой 61.
Кроме того, по меньшей мере один второй канал 32 для направления жидкой фазы 62 охлаждающей текучей среды F1.
Согласно настоящему изобретению продольное сечение второго канала 32 уменьшается в направлении второй поверхности 3b.
Следует отметить, что в контексте настоящего изобретения продольное сечение второго канала 32 или отверстия указанного канала означает поперечное сечение канала, измеряемое параллельно второй поверхности 3b, а именно, в плоскостях сечения указанного канала, которые параллельны второй пластине 3b.
Таким образом, в варианте осуществления, проиллюстрированном на фиг. 3A, первый канал 31 проходит в продольном направлении z, а второй канал 32 проходит в боковом направлении y. Продольное сечение второго канала 32 поэтому уменьшается в направлении, показанном стрелкой x.
За счет уменьшения продольного сечения второго канала 32 в направлении второй пластины 2b уменьшается площадь контакта между жидкой фазой 62 и той частью второй пластины 2b, которая проходит на уровне смесительного устройства 3, тем самым позволяя в значительной степени уменьшить теплообмен, который может происходить между теплотворной текучей средой F2, циркулирующей в смежном проходе 20, и жидкой фазой 62 охлаждающей текучей среды F1. Это позволяет ограничить или даже предотвратить испарение жидкой фазы до ее смешивания с газовой фазой указанной охлаждающей текучей среды F1. Таким образом, две фазы смеси распределяются максимально равномерно фактически внутри проходов в случае двухфазной смеси, а также между различными проходами в случае двухфазной смеси.
Это решение предлагает преимущества, заключающиеся в простоте реализации, в том, что оно не меняет размер теплообменника и не усложняет его конструкцию.
Предпочтительно продольный канал 31 и второй канал 32 сообщаются по текучей среде через по меньшей мере одно проходное отверстие 34, размещенное между первым каналом 31 и вторым каналом 32. Проходное отверстие 34 содержит впуск 342, открывающийся во второй канал 32, и выпуск 341, открывающийся в первый канал 31. Вдоль направления y могут быть размещены одно или несколько проходных отверстий 34.
Продольное сечение второго канала 32 уменьшается от впуска 342 проходного отверстия 34 по направлению ко второй поверхности 3b.
Во время работы смешивание жидкой фазы 62 и газовой фазы 61 в целом происходит ниже по потоку относительно выпуска 341, и жидкостно-газовая двухфазная смесь распределяется из смесительного устройства через один или несколько проходов 33.
Каналы 31, 32 и/или проходы 33 могут открываться на торцевые поверхности 35, 36 смесительного устройства 3, или на поверхности, которые расположены сзади указанных поверхностей 35, 36 по направлению к внутренней части устройства 3.
Предпочтительно первый и второй каналы 31, 32 имеют тонкую форму, при этом их длина является большой по сравнению с их шириной.
Предпочтительно первый и второй каналы 31, 32 пересекают смесительное устройство 3. Таким образом, второй канал 32 проходит по почти всей или даже всей ширине прохода 10, измеряемого в боковом направлении y.
В контексте настоящего изобретения по меньшей мере один проход 10 первого ряда образован между первой пластиной 2a и второй пластиной 2b, при этом первая пластина 2a также образует смежный проход 20 второго ряда, непосредственно смежный с соответствующим проходом 10. Смесительное устройство 3 размещено в соответствующем проходе 10 первого ряда.
Предпочтительно первый канал 31 образован из полости, образованной в смесительном устройстве 3.
Согласно альтернативной форме, проиллюстрированной на фиг. 3A – 6, первый канал 31 может быть образован из полости, образованной в смесительном устройстве 3 и открывающейся на первую поверхность 3a. Предпочтительно второй канал 32 образован из полости, образованной в смесительном устройстве 3.
В одной форме варианта осуществления, проиллюстрированной в особенности на фиг. 4A, полость, которая образует второй канал 32, открывается во вторую поверхность 3b. В таком случае второй канал 32 содержит открытый второй конец 321, расположенный на второй поверхности 3b.
Согласно альтернативной форме, проиллюстрированной на фиг. 4B, второй канал 32 образован глухой внутренней полостью.
На фиг. 3A – 6 проиллюстрированы смесительные устройства 3, содержащие единственный второй канал 32. Устройство 3 может также обеспечивать преимущество, состоящее в том, что оно может содержать несколько боковых каналов 32, следующих друг за другом в продольном направлении z.
Аналогично смесительное устройство 3 может содержать один или несколько продольных каналов 31. На фиг. 3B проиллюстрировано устройство 3, содержащее ряд продольных каналов 31, следующих друг за другом в боковом направлении y. Предпочтительно продольные каналы 31 проходят по существу параллельно друг другу. Первые продольные каналы 31 обеспечивают преимущество, состоящее в том, что они размещены между вторым каналом 32 и первой поверхностью 3a.
В частности, второй канал 32 предпочтительно содержит первый конец 322, расположенный на уровне впуска 342 проходного отверстия 34, и второй конец 321, расположенный на стороне второй поверхности 3b.
Согласно одному предпочтительному варианту осуществления настоящего изобретения продольное сечение второго канала 32 уменьшается таким образом, что соотношение между продольным сечением второго канала 32, измеряемым на втором конце 321, и продольным сечением второго канала 32, измеряемым на первом конце 322, находится в диапазоне от 0 до 0,8, предпочтительно от 0,2 до 0,8.
Такие размеры позволяют свести к минимуму теплообмен между жидкостью, циркулирующей во втором канале 32, и смежными текучими средами.
В качестве примера, в конфигурации, проиллюстрированной на фиг. 4A или фиг. 4B, соотношение продольных сечений второго канала 32, равное 0, соответствует второму каналу 32, поперечное сечение которого имеет треугольную форму.
В случае со вторым каналом 32, который имеет открытый конец, соотношение между продольным сечением отверстия 321 и шириной второго канала 32, измеряемой на первом конце 322, или низе 322, находится в диапазоне от 0,2 до 0,8.
В частности, как проиллюстрировано на фиг. 3A, фиг. 4A и фиг. 4B, продольное сечение второго канала 32 может уменьшаться по нарастающей по направлению ко второй поверхности 3b.
Согласно одному предпочтительному варианту осуществления настоящего изобретения и, как видно на фиг. 3A, фиг. 4A и фиг. 4B, поперечное сечение второго канала 32 по меньшей мере частично имеет форму усеченного конуса, сходящегося по направлению ко второй поверхности 3b.
Альтернативно уменьшение продольного сечения второго канала 32 может быть вызвано боковым сужением 324 указанного второго канала 32 в направлении второй поверхности 3b. Под «сужением» понимается резкое уменьшение ширины второго канала 32, как правило, такое уменьшение, что соотношение продольных сечений, определенных выше в данном документе, находится в диапазоне от 0,2 до 0,8, причем это уменьшение происходит на расстоянии, как правило, меньшем, чем 4 мм, в направлении второй поверхности 3b.
Благодаря этому еще больше уменьшается теплообмен, который может происходить между теплотворной текучей средой F2, циркулирующей в смежном канале 20, и жидкой фазой охлаждающей текучей среды F1 прежде, чем она будет смешиваться с газовой фазой.
Предпочтительно сужение 324 происходит по существу симметрично.
Предпочтительно сужение таково, что второй канал 32 имеет поперечное сечение в форме перевернутого T, как проиллюстрировано на фиг. 5 и фиг. 6.
В частности, второй канал 32 может содержать боковые стенки 323, которые размещены перпендикулярно низу 322, и указанный низ 322 может быть размещен параллельно продольному направлению z.
Изображение на фиг. 3B остается применимым к изображению смесительного устройства 3 в плоскости, перпендикулярной плоскости, изображенной на фиг. 5 или фиг. 6.
Согласно одному конкретному варианту осуществления настоящего изобретения, проиллюстрированному на фиг. 6, смесительное устройство 3 дополнительно содержит третий канал 37 для направления газовой фазы 61 охлаждающей текучей среды F1, при этом указанный третий канал 37 проходит в продольном направлении z между вторым каналом 32 и второй поверхностью 3b.
Наличие этого третьего канала 37 позволяет еще больше минимизировать теплообмен между жидкостью, циркулирующей во втором канале 32, и текучими средами, циркулирующими в смежных проходах. Это фактически позволяет создавать газовый барьер, который служит теплоизолятором между вторым каналом и второй пластиной 2b.
Особо отмечается, что первый канал 31 и третий канал 37 могут иметь одинаковые или различные формы и количества. Как показано на фиг. 6, отверстие 321 второго канала 32 обеспечивает преимущество, состоящее в том, что оно открывается в третий канал 37. В этом варианте осуществления смесительное устройство 3 содержит по меньшей мере два прохода 33 для жидкостно-газовой двухфазной смеси.
Разумеется, настоящее изобретение не ограничивается конкретными примерами, описанными и проиллюстрированными в настоящей заявке. Без отступления от объема настоящего изобретения также могут быть рассмотрены другие альтернативные формы или варианты осуществления в пределах компетенции специалистов в данной области техники.
Например, теплообменник согласно настоящему изобретению главным образом описан для случая, в котором проходы 10, 20 проходят в продольном направлении z, первый канал 31 проходит в продольном направлении z, и второй канал 32 проходит в боковом направлении y, ортогональном продольному направлению z. Возможно и обратное, а именно, первый канал 31, проходящий в боковом направлении y, и второй канал 32, проходящий в продольном направлении z. Боковое направление y и продольное направление z также могут не быть взаимно ортогональными.

Claims (18)

1. Теплообменник (1), содержащий несколько пластин (2a, 2b, 2c,…), размещенных параллельно друг другу таким образом, чтобы образовывать первый ряд проходов (10) для направления по меньшей мере одной охлаждающей текучей среды (F1) и второй ряд проходов (20) для направления по меньшей мере одной теплотворной текучей среды (F2) для приведения ее в теплообменный контакт по меньшей мере с указанной охлаждающей текучей средой (F1), по меньшей мере один проход (10) первого ряда, образованный между второй пластиной (2b), образующей смежный проход (20) второго ряда, и первой пластиной (2a), смесительное устройство (3), также размещаемое в указанном по меньшей мере одном проходе (10) первого ряда и содержащее:
– по меньшей мере один первый канал (31) для направления газовой фазы (61) охлаждающей текучей среды (F1),
– по меньшей мере один второй канал (32) для направления жидкой фазы (62) охлаждающей текучей среды (F1),
отличающийся тем, что продольное сечение второго канала (32), измеряемое параллельно второй пластине (3b), уменьшается в направлении указанной второй пластины (3b).
2. Теплообменник по п. 1, отличающийся тем, что проходное отверстие (34) размещено между первым каналом (31) и вторым каналом (32), при этом указанное проходное отверстие (34) содержит впуск (342), открывающийся во второй канал (32), и выпуск (341), открывающийся в первый канал (31), продольное сечение второго канала (32) уменьшается от впуска (342) проходного отверстия (34) по направлению к второй пластине (2b).
3. Теплообменник по любому из пп. 1 и 2, отличающийся тем, что первый канал (31) и второй канал (32) проходят параллельно первой и второй пластинам (2a, 2b).
4. Теплообменник по одному из предыдущих пунктов, отличающийся тем, что первый канал (31) размещен между вторым каналом (32) и первой пластиной (2a).
5. Теплообменник по одному из предыдущих пунктов, отличающийся тем, что проходы (10, 20) проходят в продольном направлении (z), первый канал (31) проходит в продольном направлении (z), и второй канал (32) проходит в боковом направлении (y), ортогональном продольному направлению (z).
6. Теплообменник по одному из предыдущих пунктов, отличающийся тем, что первый канал (31) образован из первой полости, образованной в смесительном устройстве (3).
7. Теплообменник по п. 6, отличающийся тем, что смесительное устройство (3) содержит первую поверхность (3a), размещенную напротив первой пластины (2a), и вторую поверхность (3b), размещенную напротив второй пластины (2b), при этом первая полость открывается на первую поверхность (3a).
8. Теплообменник по одному из предыдущих пунктов, отличающийся тем, что второй канал (32) образован из второй полости, образованной в смесительном устройстве (3).
9. Теплообменник по п. 8, отличающийся тем, что вторая полость, образованная в смесительном устройстве (3), открывается на вторую поверхность (3b).
10. Теплообменник по одному из предыдущих пунктов, отличающийся тем, что смесительное устройство (3) содержит несколько первых продольных каналов (31), следующих друг за другом в боковом направлении (y).
11. Теплообменник по одному из предыдущих пунктов, отличающийся тем, что второй канал (32) содержит первый конец (322), расположенный на уровне впуска (342) проходного отверстия (34), и второй конец (321), расположенный на стороне второй пластины (2b), при этом соотношение между продольным сечением второго канала (32), измеряемым на втором конце (321), и продольным сечением второго канала (32), измеряемым на первом конце (322), находится в диапазоне от 0 до 0,8, предпочтительно от 0,2 до 0,8.
12. Теплообменник по одному из предыдущих пунктов, отличающийся тем, что продольное сечение второго канала (32) уменьшается по нарастающей по направлению к второй пластине (2b).
13. Теплообменник по одному из предыдущих пунктов, отличающийся тем, что второй канал (32) проходит в боковом направлении (y), поперечное сечение второго канала (32) в плоскости, перпендикулярной боковому направлению (y), по меньшей мере частично имеет форму усеченного конуса, сходящегося по направлению к второй пластине (2b).
14. Теплообменник по одному из пп. 1–11, отличающийся тем, что уменьшение продольного сечения второго канала (32) вызвано боковым сужением (324) указанного второго канала (32), которое происходит в направлении второй пластины (2b).
15. Теплообменник по п. 14, отличающийся тем, что смесительное устройство (3) дополнительно содержит по меньшей мере один третий канал (37), проходящий параллельно первому каналу (31), при этом указанный третий канал (37) размещен между вторым каналом (32) и второй пластиной (2b).
RU2019120798A 2016-12-16 2017-12-12 Теплообменник со смесительным устройством для жидкости/газа с улучшенной геометрией каналов RU2743818C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1662581 2016-12-16
FR1662581A FR3060721B1 (fr) 2016-12-16 2016-12-16 Echangeur de chaleur avec dispositif melangeur liquide/gaz a geometrie de canal amelioree
PCT/FR2017/053505 WO2018109352A1 (fr) 2016-12-16 2017-12-12 Échangeur de chaleur avec dispositif mélangeur liquide/gaz à géométrie de canal améliorée

Publications (3)

Publication Number Publication Date
RU2019120798A RU2019120798A (ru) 2021-01-11
RU2019120798A3 RU2019120798A3 (ru) 2021-01-12
RU2743818C2 true RU2743818C2 (ru) 2021-02-26

Family

ID=58455184

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019120798A RU2743818C2 (ru) 2016-12-16 2017-12-12 Теплообменник со смесительным устройством для жидкости/газа с улучшенной геометрией каналов

Country Status (7)

Country Link
US (1) US20200109894A1 (ru)
EP (1) EP3555544B1 (ru)
JP (1) JP7019696B2 (ru)
CN (1) CN110234952B (ru)
FR (1) FR3060721B1 (ru)
RU (1) RU2743818C2 (ru)
WO (1) WO2018109352A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3103543B1 (fr) * 2019-11-21 2021-10-22 Air Liquide Echangeur de chaleur avec agencement de dispositifs mélangeurs améliorant la distribution d’un mélange diphasique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646822A (en) * 1984-04-27 1987-03-03 Linde Aktiengesellschaft Heat exchanger
RU2005973C1 (ru) * 1990-11-05 1994-01-15 Западно-Сибирский научно-исследовательский и проектно-конструкторский институт технологии глубокого разведочного бурения Теплообменник
CN202382638U (zh) * 2011-12-08 2012-08-15 杭州中泰深冷技术股份有限公司 用于铝制板翅式热交换器的液体均布器
CN103983138A (zh) * 2014-05-16 2014-08-13 杭州杭氧股份有限公司 一种铝制板翅式换热器大气量两相流均布装置
CN203928851U (zh) * 2014-05-16 2014-11-05 杭州杭氧股份有限公司 铝制板翅式换热器大气量两相流均布装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236271C (zh) * 2002-12-30 2006-01-11 西安交通大学 低温两相流气液均匀分配板翅式相变换热器
US9151540B2 (en) * 2010-06-29 2015-10-06 Johnson Controls Technology Company Multichannel heat exchanger tubes with flow path inlet sections
CN105486106A (zh) * 2015-12-29 2016-04-13 无锡佳龙换热器股份有限公司 一种天然气气液均布换热装置
CN205784010U (zh) * 2016-07-05 2016-12-07 天津商业大学 一种抽气式板翅式换热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646822A (en) * 1984-04-27 1987-03-03 Linde Aktiengesellschaft Heat exchanger
RU2005973C1 (ru) * 1990-11-05 1994-01-15 Западно-Сибирский научно-исследовательский и проектно-конструкторский институт технологии глубокого разведочного бурения Теплообменник
CN202382638U (zh) * 2011-12-08 2012-08-15 杭州中泰深冷技术股份有限公司 用于铝制板翅式热交换器的液体均布器
CN103983138A (zh) * 2014-05-16 2014-08-13 杭州杭氧股份有限公司 一种铝制板翅式换热器大气量两相流均布装置
CN203928851U (zh) * 2014-05-16 2014-11-05 杭州杭氧股份有限公司 铝制板翅式换热器大气量两相流均布装置

Also Published As

Publication number Publication date
EP3555544A1 (fr) 2019-10-23
FR3060721B1 (fr) 2019-08-16
JP2020514654A (ja) 2020-05-21
RU2019120798A (ru) 2021-01-11
CN110234952B (zh) 2021-06-08
EP3555544B1 (fr) 2021-02-24
JP7019696B2 (ja) 2022-02-15
FR3060721A1 (fr) 2018-06-22
RU2019120798A3 (ru) 2021-01-12
CN110234952A (zh) 2019-09-13
US20200109894A1 (en) 2020-04-09
WO2018109352A1 (fr) 2018-06-21

Similar Documents

Publication Publication Date Title
CN110462331B (zh) 热交换器
US9423190B2 (en) Refrigerant distributor for heat exchanger and heat exchanger
EP2228615B1 (de) Vorrichtung zum Austausch von Wärme, insbesondere zur Wärmerückgewinnung aus Abgasen eines Kraftfahrzeugs
KR100349399B1 (ko) 냉매 증발기
US4646822A (en) Heat exchanger
CN107560472B (zh) 包括用于分配液体/气体混合物的装置的热交换器
US20130213627A1 (en) Refrigerant guiding pipe and heat exchanger having refrigerant guiding pipe
US11592238B2 (en) Plate heat exchanger with overlapping fins and tubes heat exchanger
RU2743818C2 (ru) Теплообменник со смесительным устройством для жидкости/газа с улучшенной геометрией каналов
WO2007025766A1 (de) Wärmetauschervorrichtung zum schnellen aufheizen oder abkühlen von fluiden
RU2750511C2 (ru) Теплообменник со смесительным устройством для жидкости/газа, имеющим отверстия с улучшенной формой
US20200408466A1 (en) Heat exchanger with improved liquid/gas mixing device
WO2012113836A1 (de) Wärmetauscher
EP3569959A1 (en) Water heat exchanger
EP3707455B1 (en) Refrigerant fluid distribution device intended to be accommodated in a header of a heat exchanger
US20230003447A1 (en) Heat exchanger having an arrangement of mixing devices improving the dispensing of a biphasic material
US20230125515A1 (en) Mixing device promoting a homogeneous distribution of a diphasic mixture, heat exchange facility and associated mixing method
JP2005300073A (ja) 蒸発器
JP2004089835A (ja) 気液分配構造体
DE102020001773A1 (de) Plattenwärmetauscher, Verfahren zum Betreiben eines Plattenwärmetauschers und Verfahren zum Herstellen eines Plattenwärmetauschers
EP3653983A1 (de) Plattenwärmetauscher, verfahren zum betreiben eines plattenwärmetauschers und verfahren zum herstellen eines plattenwärmetauschers