RU2736286C1 - Управляемый четырехканальный пространственно распределённый мультиплексор на магнитостатических волнах - Google Patents

Управляемый четырехканальный пространственно распределённый мультиплексор на магнитостатических волнах Download PDF

Info

Publication number
RU2736286C1
RU2736286C1 RU2020120142A RU2020120142A RU2736286C1 RU 2736286 C1 RU2736286 C1 RU 2736286C1 RU 2020120142 A RU2020120142 A RU 2020120142A RU 2020120142 A RU2020120142 A RU 2020120142A RU 2736286 C1 RU2736286 C1 RU 2736286C1
Authority
RU
Russia
Prior art keywords
microwave
microwaves
magnetic field
output
antenna
Prior art date
Application number
RU2020120142A
Other languages
English (en)
Inventor
Александр Владимирович Садовников
Сергей Александрович Одинцов
Евгений Николаевич Бегинин
Светлана Евгеньевна Шешукова
Сергей Аполлонович Никитов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук
Priority to RU2020120142A priority Critical patent/RU2736286C1/ru
Application granted granted Critical
Publication of RU2736286C1 publication Critical patent/RU2736286C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/16Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using saturable magnetic devices

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Изобретение относится к радиотехнике СВЧ. Технический результат – обеспечение возможности управления режимами функционирования управляемого мультиплексора на магнитостатических волнах как путем изменения частоты входного сигнала, так и изменения параметров внешнего магнитного поля. Устройство содержит размещенную на подложке структуру, содержащую линейные микроволноводы из пленки ЖИГ, микрополосковые антенны для возбуждения и приема магнитостатических спиновых волн (МСВ), источник управляющего магнитного поля, при этом первый и второй микроволноводы размещены параллельно друг другу с зазором в плоскости подложки, третий и четвертый микроволноводы расположены поверх них через слой немагнитного диэлектрика. Толщины упомянутых зазора и слоя выбраны из условия возбуждения в микроволноводах поверхностных МСВ (ПМСВ) и обеспечения режима многомодовой связи между микроволноводами. Входная антенна для возбуждения ПМСВ размещена на одном конце первого микроволновода, на другом его конце - выходная антенна для приема ПМСВ, причем другие выходные антенны для приема ПМСВ размещены на концах второго, третьего и четвертого микроволноводов со стороны размещения выходной антенны первого микроволновода, при этом магнитное поле источника управляющего магнитного поля направлено в плоскости структуры. 1 з.п. ф-лы, 5 ил.

Description

Изобретение относится к радиотехнике СВЧ, в частности к устройствам на магнитостатических волнах и может использоваться как пространственно распределенный делитель мощности.
Известен магнитооптический мультиплексор (WO2008067597 (A1), St Synergy Limited, 06.12.2008). Устройство включает в себя первый волновод, поддерживающий распространение сигнала излучения от первого порта ко второму порту; второй волновод, включающий в себя второй порт; и генератор, имеющий замкнутый путь распространения, включающий магнитооптические материалы, причем указанный кольцевой генератор функционально связан с указанными волноводами и реагирует на управляющее воздействие для переключения между первой модой и второй модой. Недостатками устройства является невозможность частотной перестройки.
Известно устройство, выполняющее функции мультиплексора, содержащее волноводный оптический кольцевой резонатор, окруженный верхней и нижней шинами (US6947632 (В2), FISCHER SYLVAIN G, 20.09.2005). Первая резонансная и интенсивная оптическая волна подается в верхнюю шину, а вторая резонансная оптическая волна - в нижнюю шину. Эти резонансные волны распространяются от одной шины к другой через резонатор в противоположных направлениях. Недостатком устройства является наличие нескольких частотных пиков в спектре прохождения ввиду наличия высокодобротной оптической системы.
Известен оптический мультиплексор ввода-вывода (US6928209 (В2), INTEL CORP., 09.08.2005). Недостаток устройства состоит в том, что для настройки параметров используются нагреватели, установленные в ветвях тракта, что является достаточно инерционным процессом, при этом отсутствует возможность перестройки характеристик путем изменения величины и направления внешнего магнитного поля.
Описан мультиплексор ввода-вывода (RU2617143 С1, ИРЭ им. В.А. Котельникова РАН, 21.04.2017 - прототип), который может быть использован в качестве мультиплексора за счет пространственно-частотной фильтрации и разделения СВЧ сигнала между областями микрополосковых преобразователей СВЧ сигнала. Устройство содержит два параллельных линейных канала распространения магнитостатических спиновых волн (МСВ), имеющих две пары микрополосковых преобразователей. Структура образована на пленке железо -иттриевого граната (ЖИГ), выращенной на диэлектрической подложке из гадолиний-галлиевого граната (ГГГ). Недостатками устройства является невозможность управления пространственно-частотными режимами распространения СВЧ-сигнала в режиме работы в качестве мультиплексора.
Наиболее близким к патентуемому является мультиплексор ввода-вывода (RU2707391 С1, ИРЭ им. В.А. Котельникова РАН, 26.11.2019 - прототип). Содержит размещенную на подложке структуру, содержащую два линейных микроволновода из пленки ЖИГ с микрополосковыми антеннами на концах для возбуждения и приема МСВ, и кольцевой резонатор МСВ, размещенный с зазором между микроволноводами с возможностью обеспечения многомодовой связи, источник управляющего магнитного поля. Резонатор поверхностных МСВ выполнен из пленки ЖИГ в виде прямоугольного замкнутого контура, смежные ребра которого параллельны линейным микроволноводам, а ширина контура равна ширине микроволноводов, причем магнитное поле источника управляющего магнитного поля направлено в плоскости структуры. Недостатками устройства является невозможность управления пространственно-частотными режимами распространения СВЧ-сигнала в вертикальном и латеральном направлении одновременно.
Проблема, на решение которой направлено настоящее изобретение, состоит в построении управляемого мультиплексора на МСВ, выполненного с возможностью получения различных режимов пространственно-частотной селекции сигнала.
Предлагаемый мультиплексор ввода-вывода содержит размещенную на подложке структуру, содержащую линейные микроволноводы из пленки ЖИГ, микрополосковые нтенны для возбуждения и приема магнитостатических спиновых волн (МСВ), источник управляющего магнитного поля,
Отличие состоит в том, что содержит четыре линейных микроволновода, из которых первый и второй микроволноводы размещены параллельно друг другу с зазором в плоскости подложки, третий и четвертый микроволноводы - расположены поверх них через слой немагнитного диэлектрика. Толщины упомянутых зазора и слоя выбраны из условия возбуждения в микроволноводах поверхностных МСВ (ПМСВ) и обеспечения режима многомодовой связи между микроволноводами. Входная антенна для возбуждения ПМСВ размещена на одном конце первого микроволновода, на другом его конце - выходная антенна для приема ПМСВ, причем выходные антенны для приема ПМСВ размещены на концах второго, третьего и четвертого микроволноводов со стороны размещения выходной антенны первого микроволновода, при этом магнитное поле источника управляющего магнитного поля направлено в плоскости структуры.
Мультиплексор может характеризоваться тем, что микроволноводы из ЖИГ имеют длину 8000 мкм, ширину 30 мкм толщину 10 мкм и намагниченность насыщения МН=139Гс, при этом зазор составляет 40 мкм, а толщина слоя немагнитного диэлектрика - 80 мкм.
Технический результат - реализация мультиплексора ввода-вывода на поверхностных магнитостатических волнах, в котором управление режимами функционирования возможно осуществлять как путем изменения частоты входного сигнала, так и изменения параметров внешнего магнитного поля.
Изобретение поясняется чертежами, где:
фиг. 1 - конструкция устройства;
фиг. 2 - вид на устройство с торца в направлении оси у;
фиг. 3 - вид на устройство с торца в направлении оси х;
фиг. 4 - амплитудно-частотные характеристики ПМСВ на выходных антеннах;
фиг. 5 - результаты численного эксперимента путем микромагнитного моделирования.
Конструкция мультиплексора ввода-вывода представлена на фиг. 1, 2. Позициями на чертеже обозначены: микроволноводы 1, 2, 3, 4 в форме полосок из пленок ЖИГ, подложка 5 из ГГГ, антенна 6 для возбуждения поверхностных магнитостатических волн (ПМСВ); антенны 7, 8, 9, 10 для приема МСВ.
Элементы электромагнитной связи выполнены в виде микроволноводной структуры для магнитостатических волн на подложке 5 из ГГГ. Микроволноводы 1,2,3,4 выполнены на основе ЖИГ в форме четырех удлиненных полосок длиной L=8000 мкм равной ширины w, две из которых (1, 2) размещены параллельно друг другу с зазором, выбранным из условия обеспечения режима многомодовой связи ПМСВ между пленками, а 3 и 4 - расположены над ними, соответственно. На концах указанных полосок микроволноводов 1,2,3,4 образованы микрополосковые антенны 6,7,8,9,10 для возбуждения и приема МСВ.
Режим работы мультиплексора определяется выбранными параметрами распространения ПМСВ: величиной внешнего магнитного поля, а также частотой входного сигнала. Так, от величины внешнего магнитного поля зависит частотный диапазон, в то же время от частоты входного сигнала зависит длина волны ПМСВ, и соответственно длина связи, которая и определяет, по какому из микроволноводов будет распространяться ПМСВ и соответственно на какую из выходных антенн попадет сигнал. Длина связи - это расстояние, на котором ПМСВ, распространяющаяся сначала по микроволноводу 1, полностью перекачивается в микроволноводы 2, 3 и 4.
Подложка 5 представляет собой пленку ГГГ, размеры которой составляют (Ш×Д×Т): 450 мкм × 8000 мкм × 500 мкм. На поверхности пленки ГГГ из пленки ЖИГ толщиной 10 мкм сформирована система микроволноводов 1,2,3 и 4 связанных латерально и вертикально. Расстояние между расположенными параллельно микроволноводами 1,2 в области связи составляет 40 мкм, расстояние между ними и микроволноводами 3,4, определяемое толщиной слоя немагнитного диэлектрика 11, например, из слюды, составляет 80 мкм. Намагниченность насыщения составляет МН=139Гс.
На системе микроволноводов 1,2,3,4 расположены антенны 6,7,8,9,10 шириной w=30 мкм, обеспечивающие возбуждение и прием магнитостатических волн. Входная антенна 6 расположена на одном конце микроволновода 1, на другом - выходная антенна 8. Другие выходные антенны 7, 9 и 10 расположены на концах микроволноводов 2, 3 и 4, соответственно. Внешнее магнитное поле Н0 направлено касательно вдоль оси х (см. фиг. 1).
Принцип работы данного устройства заключается в том, что входной микроволновый сигнал, частота которого должна лежать в диапазоне частот, определяемым величиной Н0 внешнего постоянного магнитного поля, подается на входную антенну 6. Далее микроволновый сигнал преобразуется в ПМСВ, распространяющуюся вдоль микроволновода 1. Далее по мере распространения, ПМСВ будет перекачиваться из микроволновода 1 в микроволновод 2, при этом также ПМСВ будет перекачиваться в микроволновод 3 и микроволновод 4. В зависимости от выбранной конфигурации магнитного поля и частоты, сигнал попадет на выходные антенны 7, 8, 9 либо 10.
На фиг. 4 приведены результаты численного микромагнитного моделирования. Показаны амплитудно-частотные характеристики ПМСВ на выходных антеннах 7, 9 и 10, которые были получены методом Фурье-преобразования по временной реализации z-компоненты динамической намагниченности в области выходных антенн.
Кривая 12 соответствует сигналу на выходной антенне 7, кривая 13 - на антенне 9, кривая 14 - на антенне 10. Видно, что система связи, выполненная в вертикальной и латеральной геометрии, оказывает влияние на распределение амплитуды выходного сигнала на антеннах 7, 9, 10. Моделирование показывает, что если подать на входную антенну 6 сигнал частотой 5,25 ГГц, то ПМСВ дальше будет распространяться в сторону выходных антенн 7 и 9. В то же время, если подавать на входную антенну 6 сигнал с частотой 4,86 ГГц, то ПМСВ будет приниматься выходной антенной 10.
На фиг. 5 показаны результаты численного эксперимента путем микромагнитного моделирования. На верхней фотографии показано распределение интенсивности ПМСВ в нижних микроволноводах 1,2, а на нижнем рисунке - в верхних микроволноводах 3 и 4. Видно, что верхние микроволноводы влияют на распределение интенсивности, так как ПМСВ перекачивается еще и по вертикальной связи с микроволноводами 3 и 4. Таким образом, на выходе можно получить режимы пространственно - частотной селекции сигнала.
Таким образом, представленные данные подтверждают достижение технического результата, а именно возможность реализации мультиплексора ввода-вывода на поверхностных магнитостатических волнах, в котором управление режимами функционирования возможно осуществлять как путем изменения частоты входного сигнала, так и изменения параметров внешнего магнитного поля.

Claims (2)

1. Мультиплексор ввода-вывода, включающий размещенную на подложке структуру, содержащую линейные микроволноводы из пленки железоиттриевого граната (ЖИГ), микрополосковые антенны для возбуждения и приема магнитостатических спиновых волн (МСВ), источник управляющего магнитного поля, отличающийся тем, что содержит четыре линейных микроволновода, из которых первый и второй микроволноводы размещены параллельно друг другу с зазором в плоскости подложки, третий и четвертый микроволноводы расположены поверх них через слой немагнитного диэлектрика, а толщины упомянутых зазора и слоя выбраны из условия возбуждения в микроволноводах поверхностных МСВ и обеспечения режима многомодовой связи между микроволноводами, при этом входная антенна для возбуждения поверхностных МСВ размещена на одном конце первого микроволновода, на другом его конце - выходная антенна для приема поверхностных МСВ, причем другие выходные антенны для приема поверхностных МСВ размещены на концах второго, третьего и четвертого микроволноводов со стороны размещения выходной антенны первого микроволновода, при этом магнитное поле источника управляющего магнитного поля направлено в плоскости структуры.
2. Мультиплексор по п. 1, отличающийся тем, что микроволноводы из ЖИГ имеют длину 8000 мкм, ширину 30 мкм, толщину 10 мкм и намагниченность насыщения МН=139 Гс, при этом зазор составляет 40 мкм, а толщина слоя немагнитного диэлектрика - 80 мкм.
RU2020120142A 2020-06-11 2020-06-11 Управляемый четырехканальный пространственно распределённый мультиплексор на магнитостатических волнах RU2736286C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020120142A RU2736286C1 (ru) 2020-06-11 2020-06-11 Управляемый четырехканальный пространственно распределённый мультиплексор на магнитостатических волнах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020120142A RU2736286C1 (ru) 2020-06-11 2020-06-11 Управляемый четырехканальный пространственно распределённый мультиплексор на магнитостатических волнах

Publications (1)

Publication Number Publication Date
RU2736286C1 true RU2736286C1 (ru) 2020-11-13

Family

ID=73461154

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020120142A RU2736286C1 (ru) 2020-06-11 2020-06-11 Управляемый четырехканальный пространственно распределённый мультиплексор на магнитостатических волнах

Country Status (1)

Country Link
RU (1) RU2736286C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758000C1 (ru) * 2021-04-21 2021-10-25 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Мажоритарный элемент на спиновых волнах
RU210763U1 (ru) * 2021-12-03 2022-04-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Спин-волновой концентратор свч-мощности
RU2786635C1 (ru) * 2022-09-26 2022-12-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Логическое устройство на магнитостатических волнах

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040091333A (ko) * 2003-04-21 2004-10-28 삼성전자주식회사 재구성 가능한 광 추가/분기 다중화기
US6928209B2 (en) * 2003-02-15 2005-08-09 Intel Corporation Optical add and drop multiplexer using ring resonators
US6947632B2 (en) * 2002-01-03 2005-09-20 Fischer Sylvain G Method of implementing the kerr effect in an integrated ring resonator (the kerr integrated optical ring filter) to achieve all-optical wavelength switching, as well as all-optical tunable filtering, add-and -drop multiplexing, space switching and optical intensity modulation
WO2008067597A1 (en) * 2006-12-06 2008-06-12 St Synergy Limited Magneto-opto micro-ring resonator and switch
US8891922B2 (en) * 2006-09-11 2014-11-18 The Boeing Company Scalable reconfigurable optical add-drop multiplexer
RU2594382C1 (ru) * 2015-07-31 2016-08-20 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Регулируемая свч линия задержки на поверхностных магнитостатических волнах
RU2617143C1 (ru) * 2016-03-30 2017-04-21 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Функциональный элемент на магнитостатических спиновых волнах
RU2707391C1 (ru) * 2019-04-24 2019-11-26 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Реконфигурируемый мультиплексор ввода-вывода на основе кольцевого резонатора

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947632B2 (en) * 2002-01-03 2005-09-20 Fischer Sylvain G Method of implementing the kerr effect in an integrated ring resonator (the kerr integrated optical ring filter) to achieve all-optical wavelength switching, as well as all-optical tunable filtering, add-and -drop multiplexing, space switching and optical intensity modulation
US6928209B2 (en) * 2003-02-15 2005-08-09 Intel Corporation Optical add and drop multiplexer using ring resonators
KR20040091333A (ko) * 2003-04-21 2004-10-28 삼성전자주식회사 재구성 가능한 광 추가/분기 다중화기
US8891922B2 (en) * 2006-09-11 2014-11-18 The Boeing Company Scalable reconfigurable optical add-drop multiplexer
WO2008067597A1 (en) * 2006-12-06 2008-06-12 St Synergy Limited Magneto-opto micro-ring resonator and switch
RU2594382C1 (ru) * 2015-07-31 2016-08-20 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Регулируемая свч линия задержки на поверхностных магнитостатических волнах
RU2617143C1 (ru) * 2016-03-30 2017-04-21 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Функциональный элемент на магнитостатических спиновых волнах
RU2707391C1 (ru) * 2019-04-24 2019-11-26 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Реконфигурируемый мультиплексор ввода-вывода на основе кольцевого резонатора

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758000C1 (ru) * 2021-04-21 2021-10-25 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Мажоритарный элемент на спиновых волнах
RU210763U1 (ru) * 2021-12-03 2022-04-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Спин-волновой концентратор свч-мощности
RU2786635C1 (ru) * 2022-09-26 2022-12-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Логическое устройство на магнитостатических волнах
RU2815014C1 (ru) * 2023-12-18 2024-03-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Логическое устройство на основе системы ферромагнитных микроволноводов

Similar Documents

Publication Publication Date Title
JP5234667B2 (ja) 伝送線路マイクロ波装置
US9054406B2 (en) Nonreciprocal transmission line apparatus having asymmetric structure of transmission line
RU2736286C1 (ru) Управляемый четырехканальный пространственно распределённый мультиплексор на магнитостатических волнах
RU2623666C1 (ru) Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах
RU2707391C1 (ru) Реконфигурируемый мультиплексор ввода-вывода на основе кольцевого резонатора
US2728050A (en) Device for modulating ultra-short waves in a transmission line
RU2771455C1 (ru) Мультиплексор на основе кольцевого резонатора
RU2666968C1 (ru) Частотный фильтр свч сигнала на магнитостатических волнах
RU2686584C1 (ru) Управляемый ответвитель СВЧ сигнала на магнитостатических волнах
RU2666969C1 (ru) Нелинейный делитель мощности свч сигнала на спиновых волнах
RU2697724C1 (ru) Функциональный элемент магноники
US3016495A (en) Magnetostatic microwave devices
RU166410U1 (ru) Частотно-избирательный ответвитель мощности на основе латерально связанных мультиферроидных структур
RU167504U1 (ru) Свч-фильтр с двойным управлением на основе феррит-сегнетоэлектрической структуры
RU2706441C1 (ru) Управляемый многоканальный фильтр свч-сигнала на основе магнонного кристалла
RU2707756C1 (ru) Управляемый электрическим полем делитель мощности на магнитостатических волнах с функцией фильтрации
US2849686A (en) Ferromagnetic devices
RU2702915C1 (ru) Функциональный компонент магноники на многослойной ферромагнитной структуре
RU2702916C1 (ru) Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности
RU2690020C1 (ru) Логическое устройство на основе фазовращателя свч сигнала на магнитостатических волнах
RU2754086C1 (ru) Фильтр-демультиплексор свч-сигнала
RU2691981C1 (ru) Демультиплексор на магнитостатических волнах
RU2754126C1 (ru) Логическое устройство на магнитостатических волнах
RU2717257C1 (ru) Направленный 3d ответвитель на магнитостатических волнах
RU210122U1 (ru) Пространственно-частотный фильтр на магнитостатических волнах