RU2623666C1 - Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах - Google Patents

Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах Download PDF

Info

Publication number
RU2623666C1
RU2623666C1 RU2016141466A RU2016141466A RU2623666C1 RU 2623666 C1 RU2623666 C1 RU 2623666C1 RU 2016141466 A RU2016141466 A RU 2016141466A RU 2016141466 A RU2016141466 A RU 2016141466A RU 2623666 C1 RU2623666 C1 RU 2623666C1
Authority
RU
Russia
Prior art keywords
microwave
width
coupler
film
channel
Prior art date
Application number
RU2016141466A
Other languages
English (en)
Inventor
Александр Владимирович Садовников
Андрей Андреевич Грачев
Сергей Александрович Одинцов
Евгений Николаевич Бегинин
Юрий Павлович Шараевский
Сергей Аполлонович Никитов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук
Priority to RU2016141466A priority Critical patent/RU2623666C1/ru
Application granted granted Critical
Publication of RU2623666C1 publication Critical patent/RU2623666C1/ru

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого граната (ЖИГ), антенны для возбуждения магнитостатических волн, дополнительно введен слой пьезоэлектрического материала, снабженный металлическими электродами для подачи электрического напряжения, размещенный на поверхности микроволноводной структуры с возможностью пьезомагнитного взаимодействия, при этом микроволноводная структура образована тремя параллельными микроволноводами равной ширины, каждый из которых имеет прямоугольную форму и установлен с зазором друг относительно друга с обеспечением режима многомодовой связи, а антенны расположены на концах микроволноводов таким образом, что входная антенна размещена на одном конце срединного волновода, одна выходная антенна размещена на противоположном конце срединного волновода, а две других - на смежных с ним концах периферийных волноводов. Технический результат: создание трехканального микроволнового ответвителя мощности СВЧ сигнала с управлением частотным диапазоном ответвления и шириной полосы частот. 5 з.п. ф-лы, 6 ил.

Description

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности.
Известен направленный ответвитель, выполненный на диэлектрической подложке с нанесенной топологией направленного ответвителя, состоящей из четырех отрезков подводящих полосковых линий и области связанных однородных полосковых линий, при этом в область связанных однородных полосковых линий введены два одинаковых участка дополнительных связанных полосковых линий, расположенных по краям области связанных однородных полосковых линий симметрично относительно ее центра, при этом суммарная длина области связанных полосковых линий L=(0.2÷0.3)λсв, где λсв - длина волны области связанных полосковых линий на центральной частоте (RU 2571302 С1, АО ЦКБА, 20.12.2015). Недостатком данного устройства является невозможность расширения полосы частот работы ответвителя.
Известен направленный ответвитель, состоящий из двух связанных линий передачи, сформированных параллельно друг другу, располагающихся на диэлектрической подложке. Обратная сторона подложки полностью металлизирована. Замкнутый кольцевой проводник сформирован вокруг линии передачи и электромагнитно связан с ними, что обеспечивает более технологичные размеры тонкопленочной структуры на серийно выпускаемых керамических подложках при большей широкополосности ответвителя, достигающей 70% (RU 2101808 C1, Новосибирский ГТУ, 10.01.1998). Недостатком данного устройства является необходимость точного согласования элемента, что обуславливает сложность в интеграции ответвителя для планарной топологии интегральных микросхем.
Известен микрополосковый направленный ответвитель на нерегулярных связанных линиях (RU 107644 U1, ТУСУР, 20.08.2011). Он содержит основную диэлектрическую подложку, на которой расположены связанные микрополосковые линии, в зазор которых перпендикулярно основной подложке установлена дополнительная диэлектрическая подложка. На нижней части боковых поверхностей дополнительной подложки нанесены микрополосковые линии, причем электрический контакт с линиями на основной и дополнительной подложке расположен вдоль линии касания подложек. Микрополосковые линии выполнены в виде ступенчато-нерегулярных линий.
Недостатками данного устройства являются сложная трехмерная конструкция из двух перпендикулярных подложек, а также отсутствие возможности управления частотными характеристиками ответвителя (перестройка частотного диапазона) и невозможность использования широкой полосы частот.
Также известны устройства на основе мультиферроидных слоистых структур (US 8615150 (В2), CHOWDHURY AREF и др., 24.12.2013) и представляющие собой ферритовые слои на подложке, нагруженные со стороны феррита слоем сегнетоэлектрического материала, что позволяет управлять их характеристиками как при помощи изменения внешнего магнитного, так и электрического полей. Недостатками данного класса устройств являются низкая пропускная способность, вызванная одномодовым режимом работы, и невозможность управления спектральными характеристиками различных поперечных мод волн.
Наиболее близким к заявляемому устройству является ответвитель на МСВ (DE 4204299 (A1), Non-reciprocal waveguide coupler using magnetostatic surface waves -whose direction of propagation on epitaxial garnet film is at right angles to fundamental magnetic field, SIEMENS AG, 18.09.1993 - прототип). Он содержит подложку из галлий-гадолиниевого граната, выращенную на данной подложке пленку из железо-иттриевого граната и располагающиеся на данной пленке микрополосковые антенны, обеспечивающие возбуждение спиновых волн в пленке железо-иттриевого граната. Устройство может быть использовано в качестве n-портового направленного ответвителя на частотах по меньшей мере нескольких ГГц, а также фазовращателя.
Недостатком устройства является отсутствие средств регулирования характеристик распространения МСВ в широком диапазоне частот.
Патентуемый направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого граната (ЖИГ), антенны для возбуждения магнитостатических волн.
Отличие состоит в том, что дополнительно введен слой пьезоэлектрического материала, снабженный металлическими электродами для подачи электрического напряжения, размещенный на поверхности микроволноводной структуры с возможностью пьезомагнитного взаимодействия, при этом микроволноводная структура образована тремя параллельными микроволноводами равной ширины, каждый из которых имеет прямоугольную форму и установлен с зазором друг относительно друга с обеспечением режима многомодовой связи, а антенны расположены на концах микроволноводов таким образом, что входная антенна размещена на одном конце срединного волновода, одна выходная антенна размещена на противоположном конце срединного волновода, а две других - на смежных с ним концах периферийных волноводов.
Ответвитель может характеризоваться тем, что пленка ЖИГ имеет длину в диапазоне от 4000 до 6000 мкм, толщину в диапазоне от 8 до 12 мкм и намагниченность М насыщения в диапазоне от 130 до 150 Гс, а также тем, что ширина микроволноводов составляет от 150 до 250 мкм, преимущественно 200 мкм.
Ответвитель может характеризоваться и тем, что ширина h микроволноводов и зазор s между ними удовлетворяет условию: s меньше или равно 0,25 h.
Ответвитель может характеризоваться также тем, что слой пьезоэлектрического материала представляет собой лантангаллиевый танталат, имеет толщину в диапазоне от 350 до 450 мкм, ширину - от 600 до 800 мкм, а длину от 2800 до 3200 мкм, а металлические пленочные электроды выполнены из хрома.
Ответвитель может характеризоваться, кроме того, тем, что пленка ЖИГ имеет длину 5000 мкм, ширину 200 мкм, толщину 10 мкм и намагниченность насыщения М=139 Гс, а слой пьезоэлектрического материала представляет собой лантангаллиевый танталат, имеет толщину 400 мкм, ширину - 680 мкм, а длину 3000 мкм.
Технический результат - создание трехканального микроволнового ответвителя мощности СВЧ сигнала с управлением частотным диапазоном ответвления и шириной полосы частот посредством воздействия статическим электрическим и магнитным полями при уменьшении размеров до микроразмерной области и упрощении конструкции.
Изобретение поясняется чертежами, где:
фиг. 1 представлена конструкция устройства;
фиг. 2 - конструкция устройства, вид сверху;
фиг. 3, 4, 5 - результат численного моделирования процесса перекачки мощности;
фиг. 6 - таблица режимов работы трехканального ответвителя.
Позициями на чертежах обозначены:
1 - входная микрополосковая антенна;
2, 3, 4 - микроволноводы из пленки ЖИГ;
5 - металлические электроды;
6 - подложка из пленки галлий гадолиниевого граната (ГГГ);
7 - пьезоэлектрический слой (ЛТ);
8 - выходная микрополосковая антенна 1;
9 - выходная микрополосковая антенна 2;
10 - выходная микрополосковая антенна 3.
Устройство содержит подложку, представляющую собой пленку 6 галлий гадолиниевого граната (ГГГ) с размерами (Ш×Д×Т) 680 мкм×5000 мкм×500 мкм. На поверхности пленки 6 ГГГ сформирована система латерально связанных микроволноводов 2, 3, 4 на основе пленок железо-иттриевого граната (ЖИГ) толщиной 10 мкм, расстояние между пленками 40 мкм и намагниченностью насыщения М=139 Гс. Назовем «первым каналом» микроволновод 2, «вторым каналом» - микроволновод 3, «третьим каналом» - микроволновод 4. На системе латерально связанных микроволноводов расположены микрополосковые антенны 1, 8, 9, 10 шириной 30 мкм, обеспечивающие возбуждение и прием магнитостатических волн. При этом входная антенна 1 расположена на одном конце второго микроволновода 3, первая выходная антенна 8 расположена на втором конце первого микроволновода 2, вторая выходная антенна 9 расположена на конце второго микроволновода 3 со стороны первой выходной антенны 8, третья выходная антенна 10 расположена на конце третьего микроволновода 4 со стороны первой выходной антенны 8. На поверхности латерально связанных микроволноводов 2, 3 и 4 между входной и выходными антеннами расположен пьезоэлектрический слой 6 лантангаллиевого танталата (ЛТ) (лангатата La3Ga5,5Ta0,5O14) с размерами (Ш×Д×Т) 680 мкм×3000 мкм×400 мкм. Металлические электроды 5 из хрома нанесены на обе поверхности пьезоэлектрического слоя 7, т.е. один электрод расположен на, а другой - под слоем 7 на поверхности микроволноводов 2, 3, 4. Ширина каждого из ЖИГ микроволноводов составляет 200 мкм, длина каждого - 5000 мкм. Внешнее магнитное поле Н0 направлено касательно вдоль оси x (см. фиг. 1).
Принцип работы данного ответвителя заключается в том, что входной микроволновый сигнал, частота которого должна лежать в диапазоне частот, определяемым величиной внешнего постоянного магнитного поля, подается на 1. Далее микроволновый сигнал преобразуется в поверхностную магнитостатическую волну (МСВ), распространяющуюся вдоль микроволновода 3 (второй канал). Электрическая перестройка частоты возможна благодаря магнитоэлектрическому (МЭ) взаимодействию в структуре, которое заключается в следующем. Электрическое поле вызывает деформацию слоя пьезоэлектрика вследствие обратного пьезоэффекта. Деформация передается микроволноводам, которые механически связаны с пьезоэлектрическим слоем. Из-за пьезомагнитного эффекта изменяется внутреннее магнитное поле в микроволноводах, приводящее к изменению дисперсионной характеристики волнового процесса в структуре, что и позволяет реализовать двойное управление свойствами волны и, соответственно, характеристиками устройства. При этом управление осуществляется путем воздействия на материальные характеристики микроволноводов и пьезоэлектрика, при изменении приложенных к ним соответственно внешнего магнитного и электрического полей. По мере распространения волны за счет провисающих в латеральном направлении электромагнитных полей происходит возбуждение микроволноводов 2 и 4 (каналы один и три). Ввиду конечной ширины микроволноводов (2, 3 и 4) при распространении поверхностной магнитостатической волны реализуется многомодовый режим распространения. Поскольку расстояние между микроволноводами 2, 3 и 4 меньше поперечной ширины микроволноводов, то реализуется режим многомодовой связи, при котором каждая из поперечных мод волны связывается с модой такой же четности.
На фиг. 2 показан результат численного моделирования процесса перекачки мощности в рассматриваемой структуре при возбуждении центрального микроволновода. Возбуждалась первая поперечная мода микроволновода 3 (второй канал). Если прикладывать напряжение только к центральному второму каналу, то в области центрального канала величина внутреннего магнитного поля уменьшится, следовательно, изменятся волновые числа собственных мод центральной пленки и она перестанет взаимодействовать с боковыми микроволноводами и сигнал пойдет только по центральному каналу. Это соответствует фиг. 4. Аналогично, если прикладывать напряжение к третьему каналу, то и сигнал на выходе попадет, как показано на фиг. 4, в первый канал. Если прикладывать напряжение к первому каналу, то сигнал на выходе попадет, как показано на фиг. 5, в третий канал.
На фиг. 6 показана таблица режимов работы трехканального предлагаемого ответвителя мощности. Названия столбцов соответствуют режиму работы, при приложении напряжения к соответствующему каналу. Например, столбец «001» - соответствует случаю приложения напряжения к первому каналу; столбец «011» - случаю приложения напряжения к первому и второму каналу и т.д. Название строки соответствует режимам работы ответвителя, при которых сигнал выходит из соответствующего канала. Так, строка с названием «100» соответствует режиму, при котором сигнал выходит из третьего канала; строка с названием «101» - режиму, при котором сигнал выходит из первого и третьего каналов, при этом мощность сигнала разделяется поровну между каналами. Знаком «X» показано, что при соответствующем режиме приложения напряжения к одному из каналов, отмеченных в заголовке столбцов таблицы, сигнал на выходе попадает в соответствующий канал (каналы), отмеченный в заголовке строк таблицы. Так, например, в случае приложения напряжения к первому каналу (столбец с заголовком «001») сигнал на выходе может попасть во второй канал (строка с заголовком «010»), в третий канал (строка с заголовком «100») или мощность сигнала может разделиться пополам между вторым и третьим каналами (строка с заголовком «110»). Конкретный режим работы ответвителя будет в данном случае определяться величиной приложенного магнитного поля. Так, например, если при величине магнитного поля Н0 мощность сигнала разделяется пополам между вторым и третьим каналами, то при уменьшении магнитного поля на величину 0.02 Н0 сигнал на выходе попадет в третий канал, а при увеличении магнитного поля на величину 0.02 Н0 сигнал на выходе попадет во второй канал.
За счет конечной ширины микроволноводов, частотно-избирательный ответвитель мощности на основе латерально связанной структуры работает в многомодовом режиме, что, в свою очередь, позволяет расширить функциональные возможности ответвителя в телекоммуникационных системах с большой плотностью информационного сигнала, в частности использовать его как трехканальный направленный ответвитель с двойным управлением как функциональный элемент магнонной сети.

Claims (6)

1. Направленный ответвитель на магнитостатических волнах, содержащий размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого граната (ЖИГ), микрополосковые антенны для возбуждения магнитостатических волн, отличающийся тем, что дополнительно введен слой пьезоэлектрического материала, снабженный металлическими электродами для подачи электрического напряжения, размещенный на поверхности микроволноводной структуры с возможностью пьезомагнитного взаимодействия, при этом микроволноводная структура образована тремя параллельными микроволноводами равной ширины, каждый из которых имеет прямоугольную форму и установлен с зазором друг относительно друга с обеспечением режима многомодовой связи, а антенны расположены на концах микрополосковых волноводов таким образом, что входная антенна размещена на одном конце срединного волновода, одна выходная антенна размещена на противоположном конце срединного волновода, а две других - на смежных с ним концах периферийных волноводов.
2. Ответвитель по п. 1, отличающийся тем, что пленка ЖИГ имеет длину в диапазоне от 4000 до 6000 мкм, толщину в диапазоне от 8 до 12 мкм и намагниченность М насыщения в диапазоне от 130 до 150 Гс.
3. Ответвитель по п. 1, отличающийся тем, что ширина микроволноводов составляет от 150 до 250 мкм, преимущественно 200 мкм.
4. Ответвитель по п. 1, отличающийся тем, что ширина h микроволноводов и зазор s между ними удовлетворяет условию: s меньше или равно 0,25 h.
5. Ответвитель по п. 1, отличающийся тем, что слой пьезоэлектрического материала представляет собой лантангаллиевый танталат, имеет толщину в диапазоне от 350 до 450 мкм, ширину - от 600 до 800 мкм, а длину от 2800 до 3200 мкм, а металлические пленочные электроды выполнены из хрома.
6. Ответвитель по п. 1, отличающийся тем, что пленка ЖИГ имеет длину 5000 мкм, ширину 200 мкм, толщину 10 мкм и намагниченность насыщения М=139 Гс, а слой пьезоэлектрического материала представляет собой лантангаллиевый танталат, имеет толщину 400 мкм, ширину - 680 мкм, а длину 3000 мкм.
RU2016141466A 2016-10-21 2016-10-21 Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах RU2623666C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016141466A RU2623666C1 (ru) 2016-10-21 2016-10-21 Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016141466A RU2623666C1 (ru) 2016-10-21 2016-10-21 Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Publications (1)

Publication Number Publication Date
RU2623666C1 true RU2623666C1 (ru) 2017-06-28

Family

ID=59312397

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016141466A RU2623666C1 (ru) 2016-10-21 2016-10-21 Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Country Status (1)

Country Link
RU (1) RU2623666C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2686584C1 (ru) * 2018-07-25 2019-04-29 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Управляемый ответвитель СВЧ сигнала на магнитостатических волнах
RU2702916C1 (ru) * 2019-05-07 2019-10-14 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности
RU2706441C1 (ru) * 2019-05-07 2019-11-19 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Управляемый многоканальный фильтр свч-сигнала на основе магнонного кристалла
RU2707756C1 (ru) * 2019-04-10 2019-11-29 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Управляемый электрическим полем делитель мощности на магнитостатических волнах с функцией фильтрации
RU196689U1 (ru) * 2019-08-06 2020-03-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Многоканальный мультиплексор свч сигнала
RU2717257C1 (ru) * 2019-06-28 2020-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Направленный 3d ответвитель на магнитостатических волнах
RU2738452C1 (ru) * 2020-05-28 2020-12-14 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Датчик для измерения силы на магнитостатических волнах
RU2813745C1 (ru) * 2023-11-02 2024-02-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Управляемый пространственно-частотный фильтр свч сигнала на спиновых волнах

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576626B2 (en) * 2006-09-08 2009-08-18 Stmicroelectronics Ltd. Directional couplers for RF power detection
RU2364997C1 (ru) * 2008-07-15 2009-08-20 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Направленный ответвитель
RU128786U1 (ru) * 2012-09-03 2013-05-27 Открытое Акционерное Общество "Государственный Ракетный Центр Имени Академика В.П. Макеева" Двунаправленный ответвитель
US20140111285A1 (en) * 2012-10-18 2014-04-24 Harris Corporation Directional couplers with variable frequency response
RU2571302C1 (ru) * 2014-10-07 2015-12-20 Акционерное общество Центральное конструкторское бюро аппаратостроения Направленный ответвитель

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576626B2 (en) * 2006-09-08 2009-08-18 Stmicroelectronics Ltd. Directional couplers for RF power detection
RU2364997C1 (ru) * 2008-07-15 2009-08-20 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Направленный ответвитель
RU128786U1 (ru) * 2012-09-03 2013-05-27 Открытое Акционерное Общество "Государственный Ракетный Центр Имени Академика В.П. Макеева" Двунаправленный ответвитель
US20140111285A1 (en) * 2012-10-18 2014-04-24 Harris Corporation Directional couplers with variable frequency response
RU2571302C1 (ru) * 2014-10-07 2015-12-20 Акционерное общество Центральное конструкторское бюро аппаратостроения Направленный ответвитель

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2686584C1 (ru) * 2018-07-25 2019-04-29 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Управляемый ответвитель СВЧ сигнала на магнитостатических волнах
RU2707756C1 (ru) * 2019-04-10 2019-11-29 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Управляемый электрическим полем делитель мощности на магнитостатических волнах с функцией фильтрации
RU2702916C1 (ru) * 2019-05-07 2019-10-14 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности
RU2706441C1 (ru) * 2019-05-07 2019-11-19 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Управляемый многоканальный фильтр свч-сигнала на основе магнонного кристалла
RU2717257C1 (ru) * 2019-06-28 2020-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Направленный 3d ответвитель на магнитостатических волнах
RU196689U1 (ru) * 2019-08-06 2020-03-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Многоканальный мультиплексор свч сигнала
RU2738452C1 (ru) * 2020-05-28 2020-12-14 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Датчик для измерения силы на магнитостатических волнах
RU2813745C1 (ru) * 2023-11-02 2024-02-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Управляемый пространственно-частотный фильтр свч сигнала на спиновых волнах

Similar Documents

Publication Publication Date Title
RU2623666C1 (ru) Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах
US3560893A (en) Surface strip transmission line and microwave devices using same
US7528688B2 (en) Ferrite-piezoelectric microwave devices
EP3403293B1 (en) Frequency selective limiter
RU2666968C1 (ru) Частотный фильтр свч сигнала на магнитостатических волнах
Apaydin et al. Nonreciprocal and magnetically scanned leaky-wave antenna using coupled CRLH lines
RU2686584C1 (ru) Управляемый ответвитель СВЧ сигнала на магнитостатических волнах
US6593833B2 (en) Tunable microwave components utilizing ferroelectric and ferromagnetic composite dielectrics and methods for making same
US9711839B2 (en) Frequency selective limiter
RU2666969C1 (ru) Нелинейный делитель мощности свч сигнала на спиновых волнах
RU2594382C1 (ru) Регулируемая свч линия задержки на поверхностных магнитостатических волнах
Zhang et al. Slot-coupled directional filters in multilayer LCP substrates at 95 GHz
RU166410U1 (ru) Частотно-избирательный ответвитель мощности на основе латерально связанных мультиферроидных структур
RU2697724C1 (ru) Функциональный элемент магноники
US3448409A (en) Integrated microwave circulator and filter
RU2707756C1 (ru) Управляемый электрическим полем делитель мощности на магнитостатических волнах с функцией фильтрации
Ueda et al. Design of dispersion-free phase-shifting non-reciprocity in composite right/left handed metamaterials
CN107331966B (zh) 一种基于矩形波导的大功率二阶及N阶Butler矩阵
RU2702916C1 (ru) Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности
RU2702915C1 (ru) Функциональный компонент магноники на многослойной ферромагнитной структуре
RU2706441C1 (ru) Управляемый многоканальный фильтр свч-сигнала на основе магнонного кристалла
RU2690020C1 (ru) Логическое устройство на основе фазовращателя свч сигнала на магнитостатических волнах
RU2754086C1 (ru) Фильтр-демультиплексор свч-сигнала
USH432H (en) Slot line tunable bandpass filter
Wang et al. Arbitrary frequency tunable radio frequency bandpass filter based on nano-patterned Permalloy coplanar waveguide