RU2697724C1 - Функциональный элемент магноники - Google Patents
Функциональный элемент магноники Download PDFInfo
- Publication number
- RU2697724C1 RU2697724C1 RU2019102095A RU2019102095A RU2697724C1 RU 2697724 C1 RU2697724 C1 RU 2697724C1 RU 2019102095 A RU2019102095 A RU 2019102095A RU 2019102095 A RU2019102095 A RU 2019102095A RU 2697724 C1 RU2697724 C1 RU 2697724C1
- Authority
- RU
- Russia
- Prior art keywords
- grooves
- yig
- film
- functional element
- msw
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Изобретение относится к СВЧ технике и может быть использовано при конструировании приборов на магнитостатических волнах в гигагерцовом диапазоне частот. Функциональный элемент магноники содержит немагнитную подложку, размещенную на ней ферромагнитную пленку из железоиттриевого граната (ЖИГ), микрополосковые преобразователи для возбуждения и приема магнитостатических спиновых волн (МСВ) в пленке ЖИГ, источник магнитного поля. На поверхности подложки, прилежащей к пленке ЖИГ, образована структура в форме меандра из канавок, продольная ось которых перпендикулярна направлению распространения МСВ. Пленка ЖИГ повторяет контур образованных канавками выступов, боковых граней и пазов, а магнитное поле источника магнитного поля ориентировано перпендикулярно к плоскости подложки с возможностью возбуждения в пленке ЖИГ объемных МСВ. Технический результат – расширение функциональных возможностей элемента, обеспечение возможности соединения между собой магнонных элементов в многослойные трехмерные структуры. 6 з.п. ф-лы, 2 ил.
Description
Изобретение относится к СВЧ технике и может быть использовано при конструировании приборов на магнитостатических волнах в гигагерцовом диапазоне частот.
Устройства на магнитостатических спиновых волнах (МСВ) обладают возможностью перестройки параметров (коэффициенты передачи, время задержки) и частотных режимов работы за счет изменения как величины, так и угла магнитного поля (см., например, обзор «Магноника - новое направление спинтроники и спин-волновой электроники», УФН, т. 185, №10, 2015, с.с. 1099-1128). Эти характеристики позволяют реализовать устройства для обработки сигналов с множеством функций, например, задержки сигналов, направленного ответвления, фильтрации и др. функций. Технологии микроэлектроники дают возможность выполнить на подложках магнитные пленки с особой конфигурацией, толщиной и свойствами (см., например, И.А. Накрап, А.Н. Савин, Ю.П. Шараевский. ВЛИЯНИЕ НАМАГНИЧЕННОЙ ФЕРРОМАГНИТНОЙ ПЛЕНКИ НА ЭЛЕКТРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕАНДРОВОЙ МИКРОПОЛОСКОВОЙ ЛИНИИ/ РАДИОТЕХНИКА И ЭЛЕКТРОНИКА, 2006, том 51, №3, с. 320-327).
Так, известен ответвитель на МСВ (DE 4204299 (A1), Non-reciprocal waveguide coupler using magnetostatic surface waves - whose direction of propagation on epitaxial garnet film is at right angles to fundamental magnetic field, SIEMENS AG, 18.09.1993). Он содержит подложку из галлий-гадолиниевого граната, выращенную на данной подложке пленку из железо-иттриевого граната (ЖИГ) и располагающиеся на данной пленке микрополосковые антенны, обеспечивающие возбуждение спиновых волн в пленке ЖИГ. Устройство может быть использовано в качестве n-портового направленного ответвителя на частотах по меньшей мере нескольких ГГц, а также фазовращателя. Частотно-избирательный ответвитель на основе латерально связанной мультиферроидной структуры работает в многомодовом режиме, позволяет расширить функциональные возможности в системах с большой плотностью информационного сигнала (RU 166410 U1, СГУ, 27.11.2016).
В изобретении (RU 2623666 С1, ИРЭ им. В.А. Котельникова РАН, 28.06.2017), описан трехканальный микроволновый ответвитель мощности СВЧ сигнала с управлением частотным диапазоном ответвления и шириной полосы частот. Содержит размещенную на подложке из галлий-гадолиниевого граната (ГГГ) микроволноводную структуру из пленки железо-иттриевого граната (ЖИГ), антенны для возбуждения МСВ, слой пьезоэлектрического материала, снабженный металлическими электродами для обеспечения пьезомагнитного взаимодействия.
Известен модулятор с управлением уровнем режекции СВЧ-сигнала в полосе частот (RU 2454788 С1, ИРЭ им. В.А. Котельникова РАН, 27.06.2012), который включает протяженную структуру на основе магнонного кристалла из ферритовой пленки ЖИГ с поверхностной периодической структурой в виде параллельных канавок, глубина которых составляет 0,01-0,2 толщины пленки, размещенных перпендикулярно оси протяженной структуры, микрополосковые преобразователи. Поверхностные МСВ, распространяющиеся в пленке ЖИГ, испытывают периодическое рассеяние, в результате чего в их спектре возникают полосы непропускания.
Известны также функциональные СВЧ-устройства различного назначения, использующие т.н. магнонные кристаллы в качестве среды для распространения МСВ (С.А. Никитов, Ю.А. Филимонов, С.Л. Высоцкий, Е.С. Павлов, Н.Н. Новицкий, А.И. Стогний. “Физические основы фильтрации СВЧ сигналов с использованием магнонных кристаллов”. // Сборник научных трудов “Гетеромагнитная микроэлектроника”. - 2008. - В. 5. - С. 78-86. Магнонные кристаллы представляют собой пленки ЖИГ с вытравленными поверхностными структурами в виде канавок, ось которых перпендикулярна направлению распространения МСВ. Пленка ЖИГ размещается между входным и выходным микрополосковыми преобразователями СВЧ. Однако, в данных функциональных СВЧ-устройствах, использующих одномерные и двумерные магнонные кристаллы, волноведущие структуры для МСВ являются планарными, что не позволяет повышать плотность размещения функциональных элементов путем соединения их в многослойные структуры. Технология выполнения периодических наноструктур в целом известна и описана в применении к среде для магнитной записи (см., например, US 6351339, RONNI CORP., 26.02.2002; RU 2391717 С1, Институт радиотехники и электроники им. В.А. Котельникова РАН, 10.06.2010).
Проблема, на решение которой направлено изобретение, является расширение функциональных возможностей элемента путем трансформации видов МСВ в процессе распространения по структуре для достижения фильтрации, направленного ответвления, СВЧ сигналов, а также обеспечение возможности соединения между собой магнонных элементов в многослойные трехмерные структуры.
Патентуемый функциональный элемент магноники содержит немагнитную подложку, размещенную на ней ферромагнитную пленку из железоиттриевого граната (ЖИГ), микрополосковые преобразователи для возбуждения и приема магнитостатических волн (МСВ) в пленке ЖИГ, источник магнитного поля.
Отличие состоит в том, что на поверхности подложки, прилежащей к пленке ЖИГ, образована структура в форме меандра из канавок, продольная ось которых перпендикулярна направлению распространения МСВ, при этом пленка ЖИГ повторяет контур образованных канавками выступов, боковых граней и пазов, а магнитное поле источника магнитного поля ориентировано перпендикулярно к плоскости подложки с возможностью возбуждения в пленке ЖИГ объемных МСВ.
Элемент может характеризоваться тем, что подложка выполнена из галлий-гадолиниевого граната, кроме того, тем, что глубина w канавок составляет от 0,1 до 0,5 толщины d пленки, а период Т канавок составляет от 50 до 100 толщины d пленки ЖИГ, а также тем, что канавки имеют в сечении прямоугольную или трапециевидную форму, а толщина пленки ЖИГ составляет 1-10 мкм при намагниченности М насыщения в диапазоне от 130 до 150 Гс.
Элемент может характеризоваться и тем, что, по меньшей мере, один микрополосковый преобразователь для возбуждения МСВ размещен на образованных выступах, а по меньшей мере один микрополосковый преобразователь для приема МСВ - на боковых гранях выступов и/или в пазах, образованных канавками, с возможностью приема прямых и обратных объемных МСВ.
Элемент может характеризоваться и тем, что, при реализации многоотводного полосно-заграждающего фильтра на объемных МСВ, период Т канавок выбран из условия кратности целому числу длин полуволн.
Технический результат - расширение функциональных возможностей элемента путем трансформации видов объемных МСВ в процессе распространения по структуре для достижения фильтрации, направленного ответвления СВЧ сигналов, а также обеспечение возможности соединения между собой магнонных элементов в многослойные трехмерные структуры.
Существо изобретения поясняется на чертежах, где:
фиг. 1 - показана структура функционального элемента магноники;
фиг. 2 - блок-схема многоотводного полосно-заграждающего фильтра на МСВ, реализованного на описанной структуре.
Структура содержит немагнитную диэлектрическую подложку 1, размещенную на ней ферромагнитную пленку 2 из железоиттриевого граната (ЖИГ) (фиг. 1). Подложка выполнена из галлий-гадолиниевого граната (ГГГ).
Микрополосковые преобразователи 3 для возбуждения и приема МСВ связаны с пленкой 2 ЖИГ. Элемент содержит источник магнитного поля (на фигурах условно не показан). Вектор Н напряженности магнитного поля направлен по нормали к плоскости подложки 1 с образованной на ее поверхности структурой и совпадает с направлением Z тройки векторов (показанной на фиг. 1). Направление X совпадает с длиной подложки 1 структуры, направление Y - с шириной b структуры. Внешний источник магнитного поля (на фиг. не показан) выполнен регулируемым в диапазоне напряженностей Н=2-10 кЭ.
На поверхности немагнитной подложки 1 толщиной S, прилежащей к пленке 2 ЖИГ, образована структура в форме меандра из прямоугольных канавок 4, продольная ось 41 которых перпендикулярна направлению распространения объемных МСВ и совпадает с направлением Y. Пленка 2 ЖИГ повторяет контур выступов 42, боковых граней 43 и пазов 44, образованных канавками 4. Толщина d пленки 2 ЖИГ выбирается в диапазоне d=0,1-10 мкм. Период Т меандра, образованного канавками 4, много больше толщины d пленки 2 (T>>d) и выбран из условия распространения в пленке ЖИГ объемных спиновых МСВ. Глубина W канавок (W<<S) не превышает двух толщин ферромагнитной пленки 2 ЖИГ (т.е. W≤2d) и определяется желаемыми свойствами фильтрации объемных МСВ. Ширина t1 выступов 42 и ширина t2 пазов 44 равны периоду Т меандра.
Пример реализации. Блок-схема многоотводного полосно-заграждающего фильтра на объемных МСВ, выполненного на описанной структуре, показана на фиг. 2. Микрополосковые преобразователи 3 для возбуждения и приема МСВ размещены на образованных канавками 4 выступах 42 с возможностью возбуждения и приема объемных МСВ. Микрополосковый преобразователь 31 предназначен для возбуждения МСВ и размещен на выступе 421. Другие микрополосковые преобразователи 32, 33, 34 (их число выбирается исходя из назначения фильтра и числа отводов) размещены на выступах 422, боковых гранях 431, 432 канавок 4 и обеспечивают прием объемных МСВ (выходы от преобразователей 32-34 условно обозначены поз. 35).
Соответственно, для данной конфигурации приемный преобразователь 32 обеспечивает прием прямых (forward), а преобразователи 33 и 34 - обратных (backward) объемных МСВ.
Рабочая область частот магнонного элемента при его различных применениях, например, в качестве фильтра на МСВ или логического вентиля, управляемого магнитным полем может быть легко перестроена в широких пределах путем изменения насыщающего магнитного поля.
Claims (9)
1. Функциональный элемент магноники, содержащий немагнитную подложку, размещенную на ней ферромагнитную пленку из железоиттриевого граната (ЖИГ), микрополосковые преобразователи для возбуждения и приема магнитостатических спиновых волн (МСВ) в пленке ЖИГ, источник магнитного поля,
отличающийся тем, что
на поверхности подложки, прилежащей к пленке ЖИГ, образована структура в форме меандра из канавок, продольная ось которых перпендикулярна направлению распространения МСВ, при этом пленка ЖИГ повторяет контур образованных канавками выступов, боковых граней и пазов, а магнитное поле источника магнитного поля ориентировано перпендикулярно к плоскости подложки с возможностью возбуждения в пленке ЖИГ объемных МСВ.
2. Функциональный элемент магноники по п. 1, отличающийся тем, что подложка выполнена из галлий-гадолиниевого граната.
3. Функциональный элемент магноники по п. 1, отличающийся тем, что глубина канавок составляет от 0,1 до 0,5 толщины пленки ЖИГ, а период канавок составляет от 50 до 100 толщины пленки ЖИГ.
4. Функциональный элемент магноники по п. 1, отличающийся тем, что канавки имеют в сечении прямоугольную или трапециевидную форму.
5. Функциональный элемент магноники по п. 1, отличающийся тем, что толщина пленки ЖИГ составляет 1-10 мкм при намагниченности М насыщения в диапазоне от 130 до 150 Гс.
6. Функциональный элемент магноники по п. 1, отличающийся тем, что по меньшей мере один микрополосковый преобразователь для возбуждения МСВ размещен на образованных выступах, а по меньшей мере один микрополосковый преобразователь для приема МСВ - на боковых гранях выступов и/или в пазах, образованных канавками, с возможностью приема прямых и обратных объемных МСВ.
7. Функциональный элемент магноники по п. 1, отличающийся тем, что при реализации многоотводного полосно-заграждающего фильтра на объемных МСВ период канавок выбран из условия кратности целому числу длин полуволн.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019102095A RU2697724C1 (ru) | 2019-01-25 | 2019-01-25 | Функциональный элемент магноники |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019102095A RU2697724C1 (ru) | 2019-01-25 | 2019-01-25 | Функциональный элемент магноники |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2697724C1 true RU2697724C1 (ru) | 2019-08-19 |
Family
ID=67640551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019102095A RU2697724C1 (ru) | 2019-01-25 | 2019-01-25 | Функциональный элемент магноники |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2697724C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2745541C1 (ru) * | 2020-08-06 | 2021-03-26 | Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук | Управляемый электрическим полем функциональный элемент магноники |
RU205097U1 (ru) * | 2020-12-23 | 2021-06-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" | Фильтр на основе 3d-магнонной структуры |
RU2758000C1 (ru) * | 2021-04-21 | 2021-10-25 | Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук | Мажоритарный элемент на спиновых волнах |
RU223471U1 (ru) * | 2023-12-18 | 2024-02-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" | Фильтр свч-сигнала на магнитостатических спиновых волнах |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2454788C1 (ru) * | 2011-04-04 | 2012-06-27 | Учреждение Российской академии наук Институт радиотехники и электроники им. В.А. Котельникова РАН | Модулятор свч на поверхностных магнитостатических волнах |
US8487391B2 (en) * | 2008-05-28 | 2013-07-16 | Seoul National University Industry Foundation | Magnonic crystal spin wave device capable of controlling spin wave frequency |
US20170104150A1 (en) * | 2015-10-09 | 2017-04-13 | Jing Shi | Spin Current Devices and Methods of Fabrication Thereof |
RU2617143C1 (ru) * | 2016-03-30 | 2017-04-21 | Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук | Функциональный элемент на магнитостатических спиновых волнах |
RU2666969C1 (ru) * | 2017-12-12 | 2018-09-13 | Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук | Нелинейный делитель мощности свч сигнала на спиновых волнах |
-
2019
- 2019-01-25 RU RU2019102095A patent/RU2697724C1/ru active IP Right Revival
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8487391B2 (en) * | 2008-05-28 | 2013-07-16 | Seoul National University Industry Foundation | Magnonic crystal spin wave device capable of controlling spin wave frequency |
RU2454788C1 (ru) * | 2011-04-04 | 2012-06-27 | Учреждение Российской академии наук Институт радиотехники и электроники им. В.А. Котельникова РАН | Модулятор свч на поверхностных магнитостатических волнах |
US20170104150A1 (en) * | 2015-10-09 | 2017-04-13 | Jing Shi | Spin Current Devices and Methods of Fabrication Thereof |
RU2617143C1 (ru) * | 2016-03-30 | 2017-04-21 | Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук | Функциональный элемент на магнитостатических спиновых волнах |
RU2666969C1 (ru) * | 2017-12-12 | 2018-09-13 | Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук | Нелинейный делитель мощности свч сигнала на спиновых волнах |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2745541C1 (ru) * | 2020-08-06 | 2021-03-26 | Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук | Управляемый электрическим полем функциональный элемент магноники |
RU205097U1 (ru) * | 2020-12-23 | 2021-06-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" | Фильтр на основе 3d-магнонной структуры |
RU2758000C1 (ru) * | 2021-04-21 | 2021-10-25 | Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук | Мажоритарный элемент на спиновых волнах |
RU223471U1 (ru) * | 2023-12-18 | 2024-02-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" | Фильтр свч-сигнала на магнитостатических спиновых волнах |
RU2822613C1 (ru) * | 2023-12-18 | 2024-07-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" | Пространственно-частотный фильтр на магнитостатических волнах |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2697724C1 (ru) | Функциональный элемент магноники | |
Bongianni | Magnetostatic propagation in a dielectric layered structure | |
US3560893A (en) | Surface strip transmission line and microwave devices using same | |
Zhu et al. | Magnon-photon strong coupling for tunable microwave circulators | |
RU2617143C1 (ru) | Функциональный элемент на магнитостатических спиновых волнах | |
RU2623666C1 (ru) | Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах | |
RU2666968C1 (ru) | Частотный фильтр свч сигнала на магнитостатических волнах | |
Demidov et al. | Electrical tuning of dispersion characteristics of surface electromagnetic-spin waves propagating in ferrite-ferroelectric layered structures | |
RU2686584C1 (ru) | Управляемый ответвитель СВЧ сигнала на магнитостатических волнах | |
Fetisov et al. | Ferrite/piezoelectric microwave phase shifter: studies on electric field tunability | |
RU2594382C1 (ru) | Регулируемая свч линия задержки на поверхностных магнитостатических волнах | |
Goto et al. | One-dimensional magnonic crystal with Cu stripes for forward volume spin waves | |
Beginin et al. | Collective and localized modes in 3D magnonic crystals | |
RU2707391C1 (ru) | Реконфигурируемый мультиплексор ввода-вывода на основе кольцевого резонатора | |
RU2702915C1 (ru) | Функциональный компонент магноники на многослойной ферромагнитной структуре | |
RU2702916C1 (ru) | Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности | |
US3748605A (en) | Tunable microwave filters | |
RU2736286C1 (ru) | Управляемый четырехканальный пространственно распределённый мультиплексор на магнитостатических волнах | |
RU2707756C1 (ru) | Управляемый электрическим полем делитель мощности на магнитостатических волнах с функцией фильтрации | |
RU2706441C1 (ru) | Управляемый многоканальный фильтр свч-сигнала на основе магнонного кристалла | |
Vysotskii et al. | Bragg resonances of magnetostatic surface waves in a ferrite-magnonic-crystal-dielectric-metal structure | |
RU2754086C1 (ru) | Фильтр-демультиплексор свч-сигнала | |
Tsai | Wideband tunable microwave devices using ferromagnetic film–gallium arsenide material structures | |
US4777462A (en) | Edge coupler magnetostatic wave structures | |
RU2736922C1 (ru) | Элемент пространственно-частотной фильтрации сигнала на основе магнонных кристаллов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210126 |
|
NF4A | Reinstatement of patent |
Effective date: 20220124 |