RU2731751C1 - Способ изготовления пористых изделий сферической формы на основе диоксида циркония - Google Patents

Способ изготовления пористых изделий сферической формы на основе диоксида циркония Download PDF

Info

Publication number
RU2731751C1
RU2731751C1 RU2019114300A RU2019114300A RU2731751C1 RU 2731751 C1 RU2731751 C1 RU 2731751C1 RU 2019114300 A RU2019114300 A RU 2019114300A RU 2019114300 A RU2019114300 A RU 2019114300A RU 2731751 C1 RU2731751 C1 RU 2731751C1
Authority
RU
Russia
Prior art keywords
suspension
zirconium dioxide
aqueous solution
baddeleyite
zro
Prior art date
Application number
RU2019114300A
Other languages
English (en)
Inventor
Вячеслав Валерьевич Родаев
Андрей Олегович Жигачев
Владимир Михайлович Васюков
Юрий Иванович Головин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" (ФГБОУ ВО "Тамбовский государственный университет имени Г.Р. Державина ТГУ им. Г.Р. Державина")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" (ФГБОУ ВО "Тамбовский государственный университет имени Г.Р. Державина ТГУ им. Г.Р. Державина") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" (ФГБОУ ВО "Тамбовский государственный университет имени Г.Р. Державина ТГУ им. Г.Р. Державина")
Priority to RU2019114300A priority Critical patent/RU2731751C1/ru
Application granted granted Critical
Publication of RU2731751C1 publication Critical patent/RU2731751C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение относится к способу получения изделий сферической формы на основе диоксида циркония с трансформируемой тетрагональной кристаллической фазой и может быть использовано для изготовления пористых износостойких деталей или носителя катализаторов и сорбентов, а также фильтра для очистки выхлопных газов и сточных вод. Способ изготовления изделий сферической формы на основе диоксида циркония, стабилизированного оксидом кальция, включает предварительный мокрый помол диоксида циркония со стабилизатором в вибромельнице для получения шликера, в который добавляют диспергатор и водный раствор альгината натрия, после чего вакуумируют и дозируют в виде капель через сопло в раствор отвердителя. Полученные гранулы промывают, сушат, помещают в высокотемпературную печь и спекают при температуре 1000-1200оС. В качестве основы используют бадделеитовый концентрат, который предварительно измельчают до размера частиц ZrO2 менее 30 нм и механоактивируют путем совместного мокрого высокоэнергетического помола со стабилизатором СаО (2 масс.%). Готовят формовочную суспензию при следующем соотношении компонентов, масс. %: стабилизированный нанопорошок бадделеита 39,5-49,5, дистиллированная вода 25-30, водный раствор 3-4 масс. % альгината натрия 25-30, дисперсант Dolapix СЕ 64 0,5. Проводят гомогенизацию формовочной суспензии ультразвуком, а перед введением в отвердитель дегазируют. Технический результат изобретения – упрощение способа производства гранул. 5 з.п. ф-лы, 3 ил., 4 табл., 1 пр.

Description

Изобретение относится к способу получения изделий сферической формы на основе диоксида циркония с трансформируемой тетрагональной кристаллической фазой и может применяться в качестве носителя катализаторов и сорбентов, а также как фильтр для очистки выхлопных газов и сточных вод.
Известен способ изготовления высокопористого диоксида циркония, который относится к способам изготовления высокопористых керамических изделий и может быть использован в машиностроении, химической промышленности и медицине для получения носителей катализаторов, фильтрующих элементов, биоимплантов (Пат. РФ 2635161, МПК С04В 35/48 (2006.01), С04В 38/00 (2006.01), C01G 25/02 (2006.01), опубл. 09.11.2017). Способ изготовления высокопористого диоксида циркония включает нанесение водной суспензии порошка на полимерную матрицу, сушку заготовки и спекание. Для приготовления суспензии используют нанопорошок диоксида циркония, который подвергают механической обработке в водном растворе полимера до образования агломератов частиц размером 1-10 мкм. После сушки заготовку выдерживают в течение не менее 24 ч в холодильной камере при температуре ниже 0°С. Обеспечивается получение высокопористого материала на основе диоксида циркония с пониженной температурой спекания без добавок активаторов спекания. Порошок подвергают механической обработке в 0,5%-ном водном растворе полимера (например, поливинилового спирта) в планетарной мельнице с массовым соотношением между жидкостью, порошком и шарами равным 1:1:2. Обработки в течение 30 мин оказалось достаточно для формирования агломератов округлой формы с размерами 1-5 мкм. Суспензию готовят с использованием в качестве дисперсионной среды 4-5%-ного водного раствора поливинилового спирта. Наносят на заготовку пенополиуретана со средним диаметром ячейки 2 мм, отжимают излишки и высушивают на воздухе. Высушенную заготовку выдерживают в течение 24 ч в холодильной камере при температуре ниже 0°С. Спекание проводят в воздушной атмосфере при температуре 1300-1400°С с выдержкой в течение 1,5 ч. Получают материал с пористостью 85% и средним диаметром ячейки 1,2-1,8 мм. Прочность при сжатии полученного материала составила 1,5±0,5 МПа.
Недостатками известного способа являются:
- применение порошка химически чистого диоксида циркония, который в несколько раз дороже минерального сырья бадделеита;
- необходимость применения высокопористой подложки из полимерного материала (пенополиуретана);
- сложный способ получения агломератов округлой формы методом механической обработки в шаровой мельнице.
Способ получения микро- и нанопористой керамики на основе диоксида циркония (Пат. РФ 2417967, МПК С04В 35/486 (2006.01), С04В 35/624 (2006.01), С04В 38/00 (2006.01), опубл. 10.05.2011). Изобретение относится к способам получения микро- и нанопористой керамики и может быть использовано в машиностроении, химической промышленности, энергетике для получения фильтрующих материалов, носителей катализаторов и компонентов пористых систем со специальными свойствами. Способ получения микро- и нанопористой керамики на основе диоксида циркония включает приготовление суспензии ультрадисперсного порошка со связующим компонентом, заливку суспензии в форму, гелеобразование и обезвоживание гелевой субстанции, сушку и спекание материала. Обезвоживание гелевой субстанции проводят путем вакуумирования через микропористую подложку, выполненную из кордиеритовой керамики с распределением пор микро- и наноразмера. Микропористая подложка задает размер и распределение пор, которые реализуются в материале. Технический результат изобретения - получение пористой керамики на основе диоксида циркония с заданными размерами пор.
Недостатком известного способа является сложность процесса формообразования, включающего заливку суспензии в форму, гелеобразование и обезвоживание гелевой субстанции, сушку и спекание материала. Обезвоживание гелевой субстанции проводят путем вакуумирования через микропористую подложку, выполненную из кордиеритовой керамики с распределением пор микро- и наноразмера.
Известен также способ получения пористого керамического материала (Пат. РФ 2476406 МПК С04В 38/00 (2006.01), С04В 35/486 (2006.01), С04В 35/111 (2006.01), опубл. 27.02.2013). Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Способ получения пористого керамического материала включает приготовление смеси из керамического порошка и добавки, выполняющей функцию пластификатора и порообразователя, формование из порошковой смеси изделия требуемой конфигурации и последующее спекание. В качестве керамического порошка используют ультрадисперсный порошок Al2O3 или ультрадисперсный порошок твердых растворов на основе ZrO2 с растворенными в нем компонентами MgO или Y2O3, а в качестве пластификатора и порообразователя используют гидрозоль Al(ОН)3 или Zr(OH)4 в количестве от 1 до 50 об. % от объема смеси. Для придания смеси формовочных свойств добавляют дистиллированную воду. Формование изделия требуемой конфигурации проводят прессованием при давлении 12-25 кН, спекают при температуре 1450-1600°С с изотермической выдержкой в течение 1-5 часов. Технический результат изобретения - повышение прочностных характеристик материала, обладающего развитой пористостью. При пористости 20-45% предел прочности на сжатие керамического материала на основе Al2O3 достигает 1000-800 МПа, а керамического материала на основе ZrO2 (Mg, Y) 800-650 МПа.
Недостатками известного способа являются:
- применение порошка химически чистого диоксида циркония, который в несколько раз дороже минерального сырья бадделеита;
- необходимость применения формующего оборудования требуемой конфигурации, что неприменимо при массовом изготовлении сорбционных материалов;
- чрезмерно высокая температура спекания не позволяет получать изделия из диоксида циркония с максимальной механической прочностью из-за возможного растрескивания изделий.
Известен способ изготовления шариков из керамического материала (ЕР 0677325 А1, МПК B01J 2/08, B01L 3/02, G01F 11/02, опубл. 18.10.1995), в котором материал перемещается в текучем состоянии из резервуара для суспензии, по меньшей мере, в одно сопло и из него по каплям подается в раствор, в котором он оседает при гелеобразовании, причем под действием поршневого узла, при котором через сопло за один ход поршня выдавливается заданное количество материала, соответствующее желаемому диаметру шарика.
Недостаток известного способа заключается в сложности оборудования для капельного дозирования и сложности регулирования количества материала, соответствующего желаемому диаметру шарика.
В принятом за прототип патенте (США US 4621936, МПК: С04В 35/48, опубл. 11.11.1986) описано получение шариков из стабилизированного диоксида циркония, включающий предварительный мокрый помол диоксида циркония со стабилизатором в вибромельнице для получения шликера, в который добавляют диспергатор и водный раствор альгината аммония, после чего вакуумируют и дозируют в виде капель через сопло в раствор отвердителя (водного раствора хлорида кальция). Полученные гранулы промывают, сушат, помещают в высокотемпературную печь и спекают.
Недостатком известного способа является высокая стоимость диоксида циркония, который получают преимущественно переработкой циркона, а также низкая пористость (не превышающая 8%) изделий, что не позволяет использовать такие шарики в качестве носителя катализатора.
Технический результат изобретения заключается в упрощении технологии по сравнению с прототипом, а также за счет увеличения плотности упаковки (количества гранул в единице объема) при использовании пористых гранул в качестве носителя сорбента или катализатора.
Технический результат достигается способом изготовления изделий сферической формы на основе стабилизированного диоксида циркония с трансформируемой тетрагональной фазой ZrO2, включающим предварительный мокрый помол диоксида циркония со стабилизатором в вибромельнице для получения шликера, в который добавляют диспергатор и водный раствор альгината натрия, после чего вакуумируют и дозируют в виде капель через сопло в раствор отвердителя (водного раствора хлорида кальция), полученные гранулы промывают, сушат, помещают в высокотемпературную печь и спекают, согласно изобретению в качестве основы используют бадделеитовый концентрат, который предварительно измельчают до размера частиц ZrO2 менее 30 нм и механоактивируют путем совместного со стабилизатором СаО (2 масс. %) мокрого высокоэнергетического помола, готовят формовочную суспензию, для чего в смесительную емкость помещают компоненты, исходя из следующих соотношений (масс. %) при суммарном содержании компонентов 100 масс. %:
стабилизированный СаО нанопорошок бадделеита 39,5-49,5
водный раствор 3-4 масс. % альгината натрия 25-30
дисперсант Dolapix СЕ 64 0,5
дистиллированная вода 25-30,
затем проводят гомогенизацию формовочной суспензии ультразвуком мощностью не более 1 Вт и частотой 20 кГц в течение 12 мин по схеме: воздействие - 10 с, пауза - 50 с, после чего суспензию дегазируют при комнатной температуре и пониженном давлении 0,02 МПа в течение 1 мин, затем суспензию дозирующим поршневым устройством через калиброванную дюзу в виде капель, вводят в раствор в виде 2 масс. % водного раствора хлорида кальция отвердителя, в котором выдерживают в течение не менее 10 мин и полученный сферический керамический сырец сушат при комнатной температуре в течение 24 ч на протяжении суток, после чего его спекают в муфельной печи в воздушной атмосфере в течение 1 ч при температуре в диапазоне от 1000 до 1300°С при скорости нагрева 5°С/мин.
Технический результат достигается также, если:
- гомогенизацию формовочной суспензии проводят ультразвуком мощностью не более 1 Вт и частотой 20 кГц в течение 12 мин по схеме: воздействие - 10 с, пауза - 50 с;
- суспензию вводят в отвердитель в виде 2 масс. % водного раствора хлорида кальция, в котором выдерживают в течение не менее 10 мин;
- высокоэнергетический помол и механоактивацию осуществляют в планетарной, либо бисерной мельнице;
- приготовленную суспензию дегазируют в вакуумном сухожаровом шкафу при комнатной температуре;
- в качестве дозировочного устройства используют шприц с калиброванной тупоконечной иглой.
Заявляемый способ в сравнении с прототипом имеет следующие существенные преимущества - обеспечивает снижение затрат и упрощение технологии.
Бадделеитовый концентрат по ТУ 1762-003-00186759-2000 - природный оксид циркония (ZrO2), используется для производства огнеупорных, абразивных и др. материалов. На сегодняшний день ОАО «Ковдорский ГОК» является основным в мире производителем бадделеитового концентрата. Его состав приведен в табл. 1.
Figure 00000001
Для изготовления циркониевых керамик различного назначения традиционно используют диоксид циркония, получаемый химическим путем из природного циркона (ZrSiO4). Минерал бадделеит, содержащий 96,5-98,5 масс % ZrO2, также может быть использован в производстве высококачественной циркониевой керамики.
Альгинат натрия по ТУ 15-02 306-78 - это соль альгиновой кислоты, натуральный полисахарид, добываемый из красных и бурых морских водорослей. В готовом виде он выглядит как светло-бежевый порошок, прекрасно впитывающий воду. Именно гигроскопичность натрия альгината позволяет эффективно использовать его в качестве удерживающего влагу агента, а также загустителя, стабилизатора и вещества для капсулирования.
Оксид кальция по ГОСТ 8677-76 «Реактивы. Кальция оксид. Технические условия». По физико-химическим показателям оксид кальция должен соответствовать нормам, указанным в табл. 2. По физико-химическим показателям оксид кальция должен соответствовать нормам, указанным в табл. 2.
Figure 00000002
Диспергатор Dolapix СЕ 64. Диспергатор и разжижитель. Химическая основа - готовится из карбоновой кислоты.
Характеристические данные:
- внешний вид: желтоватая жидкость,
- активное вещество: прим. 65%,
- растворяется водой.
Технические рекомендации к применению DOLAPIX СЕ 64. Это органическое непенящиеся, бесщелочное разжижающее средство. Оно позволяет изготавливать шликер с высоким содержанием твердых веществ и потому хорошо подходит, в том числе, для разжижения в рамках сушки путем распыления. Так как это вещество само по себе жидкое и полностью диссоциирует, то разжижающее воздействие наступает сразу после его добавки в шликер. Разжижающее действие DOLAPIX СЕ 64 основывается на том, что двухвалентные функциональные группы аддитива взаимодействуют с поверхностными зарядами керамических частиц. Результирующая оболочка частиц влияет на снижение вязкости в шликере.
Хлорид кальция по ГОСТ 450-77 «Кальций хлористый технический. Технические условия». Настоящий стандарт распространяется на технический хлористый кальций, применяемый в химической, лесной и деревообрабатывающей, нефтяной, нефтеперерабатывающей и нефтехимической промышленности, в холодильной технике, в строительстве и изготовлении строительных материалов, в цветной металлургии, при строительстве и эксплуатации автомобильных дорог, а также в качестве осушителя и для других целей. Хлористый кальций выпускается трех марок: кальцинированный, гидратированный и жидкий.
Размер частиц хлористого кальция, выпускаемого в виде чешуек и гранул, не должен превышать 10 мм. По физико-химическим показателям хлористый кальций должен соответствовать нормам, указанным в табл. 3.
Figure 00000003
Метод сферификации может быть использован для получения пористой керамики из бадделеита, если спекать сформованный керамический сырец при температуре ниже 1300°С. Предлагаемый способ получения пористой керамики позволяет сразу формовать изготавливаемую керамику в сферы без какой-либо дополнительной обработки получаемого продукта. Порообразующим агентом является связующее вещество (полимер) - альгинат натрия, который разлагается при спекании керамического сырца. Получаемая керамика имеет однородную структуру.
Для подтверждения возможности осуществления изобретения приводим примеры реализации способа.
Пример 1
Макропористую керамику из бадделеита изготавливали следующим образом. Нанопорошок бадделеита с размером частиц ZrO2 менее 30 нм, содержащий 2 масс. % СаО, получали совместным мокрым помолом в планетарной мельнице Pulverisette 7 Premium Line (Fritsch, Германия) бадделеитового концентрата (Ковдорский ГОК, Россия) с долей ZrO2 не менее 99,3 масс. % и химически чистого оксида кальция. Для приготовления формовочной суспензии брали стабилизированный оксидом кальция нанопорошок бадделеита, дистиллированную воду, водный раствор альгината натрия и дисперсант Dolapix СЕ 64. Суспензию гомогенизировали ультразвуком мощностью не более 1 Вт и частотой 20 кГц в течение 12 мин по схеме: воздействие - 10 с, пауза - 50 с. Затем суспензию дегазировали в сухожарном шкафу OV-11 (Jeio Tech Co., Ltd, Ю. Корея) при комнатной температуре и пониженном давлении 0,02 МПа в течение 1 мин. После этого ее выкапывали при помощи медицинского шприца с тупоконечной иглой калибра 21 G в 2 масс % водный раствор хлорида кальция. Высота выкапывания составляла 1-2 см. Полученный сферический керамический сырец сушили при комнатной температуре в течение 24 ч. Затем его спекали в муфельной печи в воздушной атмосфере в течение 1 ч при температуре в диапазоне 1000 до 1300°С. Скорость нагрева составляла 5°С/мин.
Возможность осуществления изобретения и использования его в промышленных условиях позволяет сделать вывод о соответствии его критерию «Промышленная применимость».
Результаты экспериментов отражены на графических материалах:
- на фиг. 1 показаны фотографии сферической керамики из бадделеита, спеченной при 1000°С (а) и 1300°С (б). Внешний вид полученной сферической керамики представлен на фиг. 1. С увеличением температуры спекания с 1000°С до 1300°С средний диаметр шариков уменьшается с 1,75 мм до 1,29 мм, а их пористость снижается с 59,7% до 1,8%. Вследствие уплотнения керамики она приобретает желтоватый оттенок.
- на фиг. 2 показана микроструктура керамики, спеченной при различных температурах. Приведены изображения микроструктуры сферической керамики из бадделеита, спеченной при 1000°С (а), 1100°С (б), 1200°С (в) и 1300°С (г), полученные при помощи сканирующего электронного микроскопа.
Показано, что керамика, спеченная при 1000°С, макроскопически однородна в поле зрения. Ее структуру формируют агломераты, состоящие из слабо различимых наночастиц ZrO2. Размер агломератов достигает несколько сотен нанометров. Полости произвольной формы и различного размера образованы границами агломератов и распределены случайным образом в объеме керамики. Появление данных пор является следствием термического разложения связующего агента - альгината натрия. Размер пор превышает 50 нм, что позволяет отнести их к макропорам по классификации ИЮПАК. Повышение температуры спекания до 1100°С стимулирует рост зерен ZrO2 и приводит к образованию из агломератов участков спеченного материала. Средний размер зерен ZrO2 составляет 60±8 нм. Дальнейшее повышение температуры спекания до 1200°С вызывает заметное уменьшение пористости керамики. При этом средний размер зерен ZrO2 возрастает до 115±20 нм. При 1300°С наблюдаются только единичные бессистемно расположенные поры. Зерна ZrO2 продолжают расти, и их средний размер достигает 153±32 нм.
На фиг. 3 показаны рентгеновские дифрактограммы керамики, спеченной при 1000°С (а), 1100°С (б), 1200°С (в) и 1300°С (г). При всех используемых температурах спекания керамик содержит, в основном, тетрагональную фазу ZrO2 (t-ZrO2) (не менее 95 об. %). Характеристические пики t-ZrO2 наблюдаются при 2θ=30,2°; 34,6°; 35,2°; 50,2°; 50,7°; 59,3° и 60,2°.
Экспериментальные данные влияния температуры спекания на пористость и механические свойства полученной керамики представлены в табл. 4.
Figure 00000004
Из таблицы 4 видно, что с ростом температуры спекания керамики значения ее механических характеристик резко возрастают. При этом ее пористость наоборот уменьшается. Этот факт можно объяснить изменением эффективности спекания с ростом температуры спекания, что подтверждают данные сканирующей электронной микроскопии (фиг. 2). Низкие значения твердости, модуля Юнга и предельная сила сжатия керамики, спекаемой при 1000°С, свидетельствует о том, что после данного термического воздействия керамика остается не спеченной. В этом случае связь между агломератами наночастиц ZrO2 реализуется за счет сил адгезии. Увеличение температуры спекания до 1100°С приводит к образованию перешейков (локальных зон спекания) между контактирующими зернами ZrO2 вследствие интенсификации диффузионных процессов. При этом наблюдается заметное упрочнение керамики. При 1200°С происходит спекание соседних зерен ZrO2 по всей контактной поверхности, что приводит к образованию прочной связи между ними. Появляются участки с плотной упаковкой зерен ZrO2. Это обуславливает резкое увеличение значений механических характеристик керамики. При дальнейшем повышении температуры спекания рост твердости, модуля Юнга и предельной силы сжатия керамики обусловлен ее уплотнением.
Таким образом, можно заключить, что для получения пористой сферической керамики из бадделеита необходимо проводить процесс ее спекания при температурах в диапазоне 1100±100°С. Однако для практического применения пористой керамики необходимо подобрать такую температуру спекания, которая обеспечивала бы оптимальное сочетание пористости и механических характеристик у изготавливаемой керамики. В нашем случае, согласно таблице 4, такой температурой является 1100°С. При данной температуре спекания получаемая сферическая керамика из бадделеита характеризуется пористостью 54,3%, твердостью 0,44 ГПа, модулем Юнга 14 ГПа и предельной силой сжатия 22 Н.
Макропористая наноструктурированная сферическая керамика из бадделеита может быть использована в качестве носителя для катализаторов и сорбентов, работающих как при комнатной, так и повышенной температурах.

Claims (8)

1. Способ изготовления пористых изделий сферической формы на основе диоксида циркония, стабилизированного оксидом кальция с трансформируемой тетрагональной фазой ZrO2, включающий предварительный мокрый помол диоксида циркония со стабилизатором для получения шликера, в который добавляют диспергатор и водный раствор альгината натрия, после чего его дегазируют при пониженном давлении и дозируют в виде капель через сопло в раствор отвердителя, полученные гранулы промывают, сушат, помещают в высокотемпературную печь и спекают, отличающийся тем, что в качестве основы используют бадделеитовый концентрат, который предварительно измельчают до размера частиц ZrO2 менее 30 нм и механоактивируют путем совместного со стабилизатором СаО (2 масс. %) мокрого высокоэнергетического помола, готовят формовочную суспензию, для чего в смесительную емкость помещают компоненты, исходя из следующих соотношений (масс. %) при суммарном содержании компонентов 100 масс. %:
стабилизированный СаО нанопорошок бадделеита 39,5-49,5 водный раствор 3-4 масс. % альгината натрия 25-30 дисперсант Dolapix СЕ 64 0,5 дистиллированная вода 25-30
затем проводят гомогенизацию формовочной суспензии, после чего суспензию дегазируют при комнатной температуре и пониженном давлении 0,02 МПа в течение 1-10 мин, затем суспензию дозирующим поршневым устройством через калиброванную дюзу в виде капель вводят в отвердитель, после выдержки в котором полученный сферический керамический сырец сушат при комнатной температуре в течение 24 ч, затем его спекают в муфельной печи в воздушной атмосфере в течение 1 ч при температуре 1100±100°С при скорости нагрева 5°С/мин.
2. Способ по п. 1, отличающийся тем, что гомогенизацию формовочной суспензии проводят ультразвуком мощностью не более 1 Вт и частотой 20 кГц в течение 12 мин по схеме: воздействие - 10 с, пауза - 50 с.
3. Способ по п. 1, отличающийся тем, что суспензию вводят в отвердитель в виде 2 масс. % водного раствора хлорида кальция, в котором выдерживают в течение не менее 10 мин.
4. Способ по п. 1, отличающийся тем, что высокоэнергетический помол и механоактивацию осуществляют в планетарной либо бисерной мельнице.
5. Способ по п. 1, отличающийся тем, что приготовленную суспензию дегазируют в вакуумном сухожаровом шкафу.
6. Способ по п. 1, отличающийся тем, что в качестве дозировочного устройства используют шприц с калиброванной тупоконечной иглой.
RU2019114300A 2019-05-07 2019-05-07 Способ изготовления пористых изделий сферической формы на основе диоксида циркония RU2731751C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019114300A RU2731751C1 (ru) 2019-05-07 2019-05-07 Способ изготовления пористых изделий сферической формы на основе диоксида циркония

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019114300A RU2731751C1 (ru) 2019-05-07 2019-05-07 Способ изготовления пористых изделий сферической формы на основе диоксида циркония

Publications (1)

Publication Number Publication Date
RU2731751C1 true RU2731751C1 (ru) 2020-09-08

Family

ID=72421911

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019114300A RU2731751C1 (ru) 2019-05-07 2019-05-07 Способ изготовления пористых изделий сферической формы на основе диоксида циркония

Country Status (1)

Country Link
RU (1) RU2731751C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768519C1 (ru) * 2021-08-18 2022-03-24 Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный университет имени Г.Р. Державина» Способ получения плотной конструкционной циркониевой керамики из бадделеита

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1047879A1 (ru) * 1982-03-31 1983-10-15 Украинский научно-исследовательский институт огнеупоров Способ получени пустотелых керамических гранул
US4621936A (en) * 1983-10-14 1986-11-11 Corning Glass Works Zirconia pen balls
SU826681A1 (ru) * 1978-07-14 1992-04-30 Институт высоких температур АН СССР Композиционный керамический материал
RU2595703C1 (ru) * 2015-10-29 2016-08-27 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения пористой биоактивной керамики на основе оксида циркония
AU2015289117B2 (en) * 2014-07-16 2018-11-29 Magotteaux International S.A. Ceramic grains and method for their production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU826681A1 (ru) * 1978-07-14 1992-04-30 Институт высоких температур АН СССР Композиционный керамический материал
SU1047879A1 (ru) * 1982-03-31 1983-10-15 Украинский научно-исследовательский институт огнеупоров Способ получени пустотелых керамических гранул
US4621936A (en) * 1983-10-14 1986-11-11 Corning Glass Works Zirconia pen balls
AU2015289117B2 (en) * 2014-07-16 2018-11-29 Magotteaux International S.A. Ceramic grains and method for their production
RU2595703C1 (ru) * 2015-10-29 2016-08-27 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения пористой биоактивной керамики на основе оксида циркония

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768519C1 (ru) * 2021-08-18 2022-03-24 Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный университет имени Г.Р. Державина» Способ получения плотной конструкционной циркониевой керамики из бадделеита

Similar Documents

Publication Publication Date Title
Ishizaki et al. Porous Materials: Process technology and applications
US3108888A (en) Colloidal, anisodiametric transition aluminas and processes for making them
EP0778250B1 (en) Sintered or compacted inorganic porous body and use therof as a filter
KR100814730B1 (ko) 나노-매크로 사이즈의 계층적 기공구조를 가지는 다공성 생체활성유리 및 이의 합성방법
JPH07194688A (ja) 生体インプラント材料及びその製造方法
US10807869B2 (en) Method for producing porous calcium deficient hydroxyapatite granules
KR101746128B1 (ko) MgAl2O4 Spinel 성형체의 제조방법
JP2021121701A (ja) アルミナ繊維集合体及びその製造方法
RU2691207C1 (ru) Способ получения пористой керамики с бимодальным распределением пористости
Pype et al. Development of alumina microspheres with controlled size and shape by vibrational droplet coagulation
RU2476406C2 (ru) Способ получения пористого керамического материала
KR20150092518A (ko) 세라믹 코팅층을 가지는 다공질 점토 기반 세라믹 분리막 제조방법 및 이에 의해 제조된 세라믹 분리막
RU2731751C1 (ru) Способ изготовления пористых изделий сферической формы на основе диоксида циркония
JP3981988B2 (ja) 研磨焼成体及びその製造法
KR20190078621A (ko) 고강도이며 열전도율이 낮은 산화 아연 소결체 제작용 산화 아연 분말
GB2464473A (en) A method of forming granules from a nanopowder
KR102411462B1 (ko) 다공성 알루미나 조성물 및 이를 포함하는 유기 염료 흡착제 제조방법
CN108863435B (zh) 一种由铝溶胶自凝胶成型制备氧化铝泡沫陶瓷的方法
JP5610842B2 (ja) アルミナ水和物微粒子、アルミナ水和物微粒子の製造方法、結合剤およびセラミック成型体
RU2698880C1 (ru) Способ изготовления керамики на основе диоксида циркония
Postnova et al. Dependence of SBA-15 formation on the block copolymer concentration in the course of synthesis with precursor containing ethylene glycol residues
US20060135652A1 (en) Method for preparing ziconia ceramics using hybrid composites as precursor materials shaped by CAD/CAM process
Zālīte et al. Porous ceramics from Al2O3 nanopowders
Kamitani et al. Fabrication of highly porous alumina-based ceramics with connected spaces by employing PMMA microspheres as a template
Ananthakumar et al. Microstructural features and mechanical properties of Al2O3-Al2TiO5 composite processed by gel assisted ceramic extrusion