RU2728802C2 - Поиск течи газа с помощью распылительного устройства тестового газа - Google Patents

Поиск течи газа с помощью распылительного устройства тестового газа Download PDF

Info

Publication number
RU2728802C2
RU2728802C2 RU2018137195A RU2018137195A RU2728802C2 RU 2728802 C2 RU2728802 C2 RU 2728802C2 RU 2018137195 A RU2018137195 A RU 2018137195A RU 2018137195 A RU2018137195 A RU 2018137195A RU 2728802 C2 RU2728802 C2 RU 2728802C2
Authority
RU
Russia
Prior art keywords
spraying
test gas
gas
data analysis
analysis device
Prior art date
Application number
RU2018137195A
Other languages
English (en)
Other versions
RU2018137195A3 (ru
RU2018137195A (ru
Inventor
Хьялмар БРУНС
Эрнст ФРАНКЕ
Ральф КИЛИАН
Йёрн ЛИБИХ
Норберт МОЗЕР
Йохен ПУХАЛЛА-КЁНИГ
Норберт РОЛЬФФ
Рандольф РОЛЬФФ
Даниэль ВЕТЦИГ
Original Assignee
Инфикон Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58428291&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2728802(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Инфикон Гмбх filed Critical Инфикон Гмбх
Publication of RU2018137195A publication Critical patent/RU2018137195A/ru
Publication of RU2018137195A3 publication Critical patent/RU2018137195A3/ru
Application granted granted Critical
Publication of RU2728802C2 publication Critical patent/RU2728802C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems
    • G01M3/205Accessories or associated equipment; Pump constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/207Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material calibration arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators

Abstract

Изобретение относится к устройству и способу поиска течи газа с помощью распылительного устройства тестового газа. Устройство для поиска течи газа, имеющее распылительное устройство (12) тестового газа для распыления тестового газа на проверяемый объект (20), вакуумную установку (30) для создания разрежения в проверяемом объекте (20), причем вакуумная установка (30) включает в себя вакуумный насос (26) и расположенный ниже по потоку от проверяемого объекта (20) газовый детектор (28) для измерения доли тестового газа, и устройство (32) анализа данных, которое анализирует измерительный сигнал от газового детектора (28), отличающееся тем, что между распылительным устройством (12) и устройством (32) анализа данных предусмотрена линия (34) передачи данных, распылительное устройство (12) выполнено для регистрации по меньшей мере одного момента времени процесса распыления и передачи его через линию (34) передачи данных на устройство (32) анализа данных, и устройство (32) анализа данных выполнено для выдачи соответственно измеренной доли тестового газа в переданный момент времени распыления. Технический результат – возможность проведения поиска течей одним человеком, уменьшение расхода гелия. 2 н. и 6 з.п. ф-лы, 1 ил.

Description

Изобретение относится к устройству и способу поиска течи газа с помощью распылительного устройства тестового газа.
Известно, что тестовый газ, например гелий, посредством пистолета-распылителя можно распылять на проверяемый объект, в котором с помощью вакуумной установки создают разрежение. Вакуумная установка при этом включает в себя вакуумный насос для создания разрежения в проверяемом объекте и газовый детектор для поиска доли тестового газа в откачанном потоке газа. Если в проверяемом объекте имеется течь, и выпущенная пистолетом-распылителем струя тестового газа приближается к месту течи, доля тестового газа в откачанном потоке газа возрастает. Возрастание доли тестового газа в откачанном потоке газа при этом понимают как указание того, что пистолет-распылитель приближается к месту течи в проверяемом объекте. Путем отслеживания доли тестового газа в откачанном потоке газа в то время, когда пистолет-распылитель перемещают над проверяемым объектом, можно, следовательно, определить местоположение течи. Пистолет-распылитель может представлять собой, например, пневматический пистолет, который через шланг соединен с баллоном высокого давления для тестового газа или резиновой воздуходувкой, наполненной тестовым газом. В случае с газовым баллоном давление на пневматическом пистолете и, следовательно, расход (газа) регулируют с помощью редукционного клапана в газовом баллоне.
В случае с этим способом локализирующей вакуумной проверки на герметичность проблема, главным образом, заключается в том, что подлинные сигналы течи не всегда можно надежно отличить от паразитных сигналов. Паразитные сигналы могут вызываться шумом фонового сигнала, смещением фонового сигнала на крупных проверяемых объектах с многочисленными местами течи, в которые непроизвольно попадает тестовый газ или длительными задержками во времени, обусловленными временем запаздывания и постоянной времени в вакуумной системе, в результате чего корреляция сигналов течи затруднена.
Другой недостаток имеет место, когда точка подсоединения к вакууму и проверяемые точки пространственно расположены далеко друг от друга. Правильное дозирование распыленного облака тестового газа в этом случае затруднено. Поиск течи часто должен осуществляться с участием двух лиц. Тяжелые баллоны с тестовым газом необходимо транспортировать, например переносить по нескольким этажам.
В основу изобретения положена задача разработать усовершенствованный способ и усовершенствованное устройство для локализации места течи газа на проверяемом объекте с использованием распылительного устройства тестового газа.
Устройство согласно изобретению задано отличительными признаками по п. 1 формулы изобретения. Способ согласно изобретению задан отличительными признаками по п. 5 формулы изобретения.
Распылительное устройство выполнено для регистрации по меньшей мере одного момента времени в процессе распыления, например начального момента распыления. Между распылительным устройством и устройством анализа данных, анализирующим измерительный сигнал от детектора тестового газа, предусмотрена линия передачи данных. Через линию передачи данных в устройство анализа данных могут передаваться зарегистрированные распылительным устройством показания времени и по меньшей мере один момент времени процесса распыления. Устройство анализа данных выполнено для определения корреляции между переданными от распылительного устройства моментами времени и соответствующим измерительным сигналом. Благодаря этому можно распознать, вызывается ли возрастание парциального давления тестового газа в измерительном сигнале выполнением распыления с помощью пистолета-распылителя тестового газа. Предпочтительно, от распылительного устройства на устройство анализа данных также передают момент времени завершения распыления тестового газа, и коррелируют его в устройстве анализа данных с измерительным сигналом. В случае с распылительным устройством речь может идти о пистолете-распылителе, который через шланг соединен с содержащим тестовый газ источником сжатого газа.
В предпочтительном конструктивном выполнении согласно изобретению распылительное устройство осуществляет серию многочисленных коротких импульсов тестового газа, то есть тестовый газ выдают из распылительного устройства в импульсной последовательности. При этом на устройство анализа данных передают, по меньшей мере, момент времени начала серии импульсов и, предпочтительно, также момент времени соответствующего завершения серии импульсов тестового газа.
Прежде всего, посредством электроники можно также регистрировать длительность выдачи тестового газа и передавать (показания) на устройство анализа данных. Испускание тестового газа в определенной импульсной последовательности может обеспечить дифференциацию паразитных сигналов фоновых концентраций тестового газа, поскольку таковые постоянные или меняются, по меньшей мере, только медленно, в то время как тестовый газ, проникающий из распылительного устройства в проверяемый объект через место течи, может проникать туда только во время распыления.
В предпочтительном решении измерительный сигнал или
Figure 00000001
характеристику измерительного сигнала можно также передавать от устройства анализа данных на распылительное устройство или на расположенное вблизи распылительного устройства устройство вывода результатов, например монитор.
Таким образом, принципиально изобретение базируется на идее, заключающейся в регистрации моментов времени выполнения распылительным устройством операции распыления, и передаче показаний на устройство анализа данных для осуществления в нем корреляции между измерительным сигналом и моментами времени распыления.
Далее на основе чертежа приведено более подробное разъяснение примера конструктивного выполнения согласно изобретению.
Пистолет-распылитель 12 через шланг 14 подачи сжатого воздуха и запорный клапан 16 соединен с находящимся под давлением источником 18 гелия. Альтернативно, запорный клапан 16 может быть расположен в пистолете-распылителе 12. Гелий представляет собой тестовый газ, который распыляют на проверяемый объект 20 для поиска течи в проверяемом объекте и определения ее местоположения.
Проверяемый объект 20 через газопроводное соединение 22 и через запорный клапан 24 соединен с вакуумным насосом 26 для создания разрежения в проверяемом объекте 20. Ниже по потоку от вакуумного насоса 26 расположен газовый детектор в виде масс-спектрометра 28. Масс-спектрометр 28 определяет парциальное давление гелия в потоке газа, откачанного из проверяемого объекта 20. Элементы 22, 24, 26, 28 образуют вакуумную установку 30. Масс-спектрометр 28 соединен с устройством 32 анализа данных, которое непрерывно анализирует и отображает измерительный сигнал.
На чертеже пунктирной линией представлена линия 34 передачи данных между пистолетом-распылителем 12 и устройством 32 анализа данных. При этом речь может идти о беспроводном соединении, например радиосвязи, беспроводной локальной сети WLAN, инфракрасной связи, устройстве Bluetooth или же о кабельном канале передачи данных.
Согласно изобретению, по меньшей мере, с пистолета-распылителя 12 на устройство 32 анализа данных передают моменты времени, а именно, по меньшей мере, момент времени начала распыления, а также, предпочтительно, длительность распыления и момент времени завершения распыления. При управляемом через клапан 16 импульсном распылении на устройство 32 анализа данных передают начало распыления, длительность и завершение распыления каждого импульса распыления или серии импульсов распыления.
В обратном направлении от устройства 32 анализа данных на соединенное с пистолетом-распылителем 12 или расположенное вблизи пистолета-распылителя 12 (на чертеже не представленное) устройство вывода результатов передают измерительные сигналы. Благодаря этому обеспечена возможность того, что пользователь легко просматривает результаты измерений и соответственно может вносить изменения в операцию распыления. Как только пользователь обнаружит возрастание концентрации гелия, он может целенаправленно подвести пистолет-распылитель 12 в нужном направлении для определения того места распыления, в котором генерируется максимальный сигнал течи. Через линию 34 передачи данных измерительный сигнал может передаваться, например, на смартфон или планшетный компьютер.
В случае с вакуумной установкой 30 речь может идти о вакуумном течеискателе с использованием гелия, который (течеискатель) подсоединен к проверяемому объекту 20. В отношении точки подсоединения речь может идти о секции предварительного разрежения в многоступенчатой насосной системе на проверяемом объекте. При этом, альтернативно, подсоединение может осуществляться также непосредственно к вакуумной камере или выходу насоса предварительного разрежения в насосной системе.
Выполняют определение времени реакции системы - постоянной времени вакуума. Для этого к проверяемой вакуумной камере при помощи фланцев должен быть присоединен опрыскиваемый штифт-имитатор течи. На этот штифт длительное время распыляют гелий и при этом течеискателем регистрируют характеристики сигнала. Распыление на штифт-имитатор течи выполняют до тех пор, пока на течеискателе не будет выдаваться индикация стабильного сигнала. По характеристикам нарастания сигнала можно определить постоянную времени вакуума системы. Постоянную времени альтернативно можно определить по кривой затухания сигнала, которую измеряют после завершения распыления гелия. Типовые значения постоянной времени для установок приходятся на диапазон в 1-10 секунд, а в отдельных случаях они явно еще больше.
При проверке герметичности процесс распыления состоит из нескольких последовательных импульсов распыления. Зная измеренную постоянную времени вакуума системы, можно определить длительность импульсов распыления гелия и временной интервал между импульсами. Длительность импульсов и временной интервал между импульсами должны составлять примерно половину постоянной времени вакуума или менее того. При значениях постоянной времени системы свыше 10 секунд значения длительности импульсов выбирают равными 1/10 или менее того. Количество импульсов распыления на один процесс распыления должно составлять примерно от трех до пяти. Длительность интервала между отдельными импульсами может быть различной. Чем более характерно задана последовательность импульсов, тем лучше возможность распознавания последовательности сигналов на течеискателе в случае с обнаруженной течью.
С помощью этой заданной последовательности импульсов (например, с помощью способа согласно публикации US 8,297,109 В2) для определения местоположения разгерметизированных участков на проверяемые участки вакуумной камеры распыляют гелий.
Характерно заданную для распыления гелия последовательность импульсов во время распыления на разгерметизированный участок интерполируют на
Figure 00000001
временную характеристику измеренного сигнала интенсивности течи. Искажения сигнала(-ов) в результате смещения сигнала, шума или других причинных связей, которые не заложены в этот шаблон последовательности импульсов или проявляются с большим упреждением или большим запозданием по отношению к моменту времени распыления, при анализе сигналов можно, таким образом, дифференцировать от подлинных сигналов интенсивности течи.
Для поддержания (выраженной) последовательности импульсов гелий между импульсами распыления гелия можно активно сдувать в сторону, например, с помощью срабатывающего в цикличном режиме вентилятора на пистолете-распылителе.
Благодаря изобретению представляется возможным исключение влияния помех из анализа измерительных сигналов. Оператор получает в распоряжение результат непосредственно на месте проверки и ему не нужно непосредственно контактировать с измерительным прибором (вакуумным течеискателем). Рекомендации относительно параметров режима распыления могут посылаться оператору на (находящийся у него) пистолет-распылитель через линию 34 передачи данных. Поиск течей может производиться только одним человеком. Переноска тяжелых баллонов с гелием может быть исключена. Расход гелия может быть уменьшен. Обеспечивается компактное конструктивное выполнение с улучшенной доступностью. Существует возможность воспрепятствования ошибочным настройкам пистолета-распылителя, таким, как например, слишком большой или слишком малый расход гелия. Для оптимизации процесса распыления можно распылять большое количество гелия для определения местоположения (течи), а затем уже распылять меньше гелия для получения количественной оценки (течи).

Claims (14)

1. Устройство для поиска течи газа, имеющее распылительное устройство (12) тестового газа для распыления тестового газа на проверяемый объект (20), вакуумную установку (30) для создания разрежения в проверяемом объекте (20), причем вакуумная установка (30) включает в себя вакуумный насос (26) и расположенный ниже по потоку от проверяемого объекта (20) газовый детектор (28) для измерения доли тестового газа, и устройство (32) анализа данных, которое анализирует измерительный сигнал от газового детектора (28),
отличающееся тем, что
- между распылительным устройством (12) и устройством (32) анализа данных предусмотрена линия (34) передачи данных,
- распылительное устройство (12) выполнено для регистрации по меньшей мере одного момента времени процесса распыления и передачи его через линию (34) передачи данных на устройство (32) анализа данных, и
- устройство (32) анализа данных выполнено для выдачи соответственно измеренной доли тестового газа в переданный момент времени распыления.
2. Устройство по п. 1, отличающееся тем, что линия (34) передачи данных выполнена для передачи измеренных значений от устройства (32) анализа данных на распылительное устройство (12).
3. Устройство по п. 2, отличающееся тем, что распылительное устройство (12) снабжено устройством вывода результатов для выдачи измеренного значения.
4. Устройство по одному из предшествующих пунктов, отличающееся тем, что распылительное устройство (12) выполнено для импульсной выдачи тестового газа, и что на устройство (32) анализа данных передают соответственно моменты времени начала и завершения одного импульса тестового газа или серии последовательных импульсов тестового газа.
5. Способ поиска течи газа с помощью распылительного устройства (12) тестового газа и подсоединяемой к проверяемому объекту вакуумной установки (30) с вакуумным насосом (26) для создания разрежения в проверяемом объекте и расположенным ниже по потоку детектором тестового газа, причем в откачанном из проверяемого объекта (20) потоке газа определяют долю тестового газа,
отличающийся тем, что
по меньшей мере один момент времени процесса распыления регистрируют с помощью распылительного устройства (12), передают на осуществляющее анализ измерительного сигнала устройство (32) анализа данных, и коррелируют с измерительным сигналом для определения, по меньшей мере, доли тестового газа в соответствующий момент времени процесса распыления.
6. Способ по п. 5, отличающийся тем, что от распылительного устройства (12) на устройство (32) анализа данных передают момент времени начала распыления и/или завершения распыления, и коррелируют их/его с измерительным сигналом детектора тестового газа.
7. Способ по одному из пп. 5 или 6, отличающийся тем, что во время измерения измерительный сигнал передают на распылительное устройство или на расположенное вблизи распылительного устройства (12) устройство вывода результатов.
8. Способ по одному из пп. 5-7, отличающийся тем, что тестовый газ выдают из распылительного устройства (12) короткими импульсами, и что соответственно момент времени начала и завершения одного импульса тестового газа или серии последовательных импульсов тестового газа передают на устройство (32) анализа данных для корреляции с измерительным сигналом.
RU2018137195A 2016-03-31 2017-03-28 Поиск течи газа с помощью распылительного устройства тестового газа RU2728802C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016205381.7A DE102016205381B4 (de) 2016-03-31 2016-03-31 Gaslecksuche mit einer Testgassprühvorrichtung
DE102016205381.7 2016-03-31
PCT/EP2017/057294 WO2017167738A1 (de) 2016-03-31 2017-03-28 Gaslecksuche mit einer testgassprühvorrichtung

Publications (3)

Publication Number Publication Date
RU2018137195A RU2018137195A (ru) 2020-04-30
RU2018137195A3 RU2018137195A3 (ru) 2020-05-26
RU2728802C2 true RU2728802C2 (ru) 2020-07-31

Family

ID=58428291

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018137195A RU2728802C2 (ru) 2016-03-31 2017-03-28 Поиск течи газа с помощью распылительного устройства тестового газа

Country Status (9)

Country Link
US (1) US10837857B2 (ru)
EP (2) EP3436793A1 (ru)
JP (1) JP6862472B2 (ru)
KR (1) KR102377323B1 (ru)
CN (1) CN109073495B (ru)
DE (1) DE102016205381B4 (ru)
RU (1) RU2728802C2 (ru)
TW (1) TWI730076B (ru)
WO (1) WO2017167738A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668687A (zh) * 2019-02-28 2019-04-23 山东新华医疗器械股份有限公司 一种旋转真空检漏机
CN111999010B (zh) * 2020-09-01 2022-11-15 国网安徽省电力有限公司池州供电公司 一种配电箱密封性实验装置
CN112289469A (zh) * 2020-11-03 2021-01-29 浙江伦特机电有限公司 一种泄漏测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217627A (ja) * 1985-07-16 1987-01-26 Ulvac Corp 漏れ検出器の信号伝送方法
JPH02120635A (ja) * 1988-10-28 1990-05-08 Shimadzu Corp リークデテクタ
DE4228148A1 (de) * 1992-08-25 1994-03-03 Leybold Ag Vakuum-Lecksuchgerät für die Testgaslecksuche mit leichten Gasen
DE102004050762A1 (de) * 2004-10-16 2006-04-20 Inficon Gmbh Verfahren zur Lecksuche
US8297109B2 (en) * 2010-04-09 2012-10-30 Inficon Gmbh Method for performing a leak test on a test object

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2914086B1 (de) 1979-04-07 1980-09-18 Basf Ag Isoindolinfarbstoffe und deren Verwendung
CN1012847B (zh) * 1985-08-16 1991-06-12 巴布科克和威尔科斯公司 密闭空间内气体的声测法及其设备
JPS62140431U (ru) * 1986-02-26 1987-09-04
US4898021A (en) 1988-11-30 1990-02-06 Westinghouse Electric Corp. Quantitative air inleakage detection system and method for turbine-condenser systems
DE4408877A1 (de) 1994-03-16 1995-09-21 Leybold Ag Testgaslecksucher
DE4445829A1 (de) 1994-12-22 1996-06-27 Leybold Ag Gegenstrom-Schnüffellecksucher
DE19960174A1 (de) * 1999-12-14 2001-06-28 Leybold Vakuum Gmbh Verfahren zur Lecksuche und Lecklokalisierung sowie zur Durchführung dieser Verfahren geeignete Vorrichtungen
TWI281538B (en) * 2004-04-28 2007-05-21 Prodisc Technology Inc Gas leak detecting apparatus
US20060075968A1 (en) * 2004-10-12 2006-04-13 Applied Materials, Inc. Leak detector and process gas monitor
DE102005022157A1 (de) * 2005-05-13 2006-11-16 Inficon Gmbh Schnüffellecksuchgerät
US20070000310A1 (en) * 2005-06-29 2007-01-04 Varian, Inc. Leak detection system with wireless remote unit
FR3047074B1 (fr) 2016-01-21 2018-01-26 Pfeiffer Vacuum Dispositif d'aspersion et module de detection de fuites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217627A (ja) * 1985-07-16 1987-01-26 Ulvac Corp 漏れ検出器の信号伝送方法
JPH02120635A (ja) * 1988-10-28 1990-05-08 Shimadzu Corp リークデテクタ
DE4228148A1 (de) * 1992-08-25 1994-03-03 Leybold Ag Vakuum-Lecksuchgerät für die Testgaslecksuche mit leichten Gasen
DE102004050762A1 (de) * 2004-10-16 2006-04-20 Inficon Gmbh Verfahren zur Lecksuche
US8297109B2 (en) * 2010-04-09 2012-10-30 Inficon Gmbh Method for performing a leak test on a test object

Also Published As

Publication number Publication date
EP3742148B1 (de) 2022-02-16
JP6862472B2 (ja) 2021-04-21
KR20180128000A (ko) 2018-11-30
DE102016205381A1 (de) 2017-10-05
WO2017167738A1 (de) 2017-10-05
RU2018137195A3 (ru) 2020-05-26
EP3436793A1 (de) 2019-02-06
DE102016205381B4 (de) 2023-11-30
US20190120715A1 (en) 2019-04-25
RU2018137195A (ru) 2020-04-30
TWI730076B (zh) 2021-06-11
TW201736808A (zh) 2017-10-16
CN109073495B (zh) 2021-09-17
US10837857B2 (en) 2020-11-17
EP3742148A1 (de) 2020-11-25
KR102377323B1 (ko) 2022-03-21
JP2019510228A (ja) 2019-04-11
CN109073495A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
RU2728802C2 (ru) Поиск течи газа с помощью распылительного устройства тестового газа
US8117918B2 (en) Method and apparatus for determining pipewall thickness using one or more ultrasonic sensors
US20120296580A1 (en) Method and system for identifying leaks in liquid pipe construction
CN106595994B (zh) 泄漏检测
BR112018014522A8 (pt) Detecção dielétrica para caracterização de amostra
WO2017011850A8 (en) Method and system for pipeline condition analysis
US11441969B2 (en) Method for determining the relative position of a gas leak
US20140096599A1 (en) Method of and apparatus for determining a flow rate of a fluid and detecting non-fluid elements
UA102230C2 (ru) Способы и устройства для определения импульсной характеристики каналов распространения, которые включают эмиттеры, рефлекторы и датчики, являющиеся фиксированными или подвижными
US9134277B2 (en) Apparatus and method for real time monitoring of tube systems
CN108474713B (zh) 喷射装置和泄漏检测模块
EP2005135B8 (de) Verfahren und vorrichtung zur leckprüfung
CN107024377A (zh) 废气中总烃在线稀释监测装置
CN104913886A (zh) 氟利昂阀门检漏新方法
CN107064281A (zh) 废气中总烃在线稀释监测方法
JP2019510228A5 (ru)
WO2009127879A3 (en) Improvements in and relating to steam wastage measurement and management
Koruk et al. Detection of air leakage into vacuum packages using acoustic measurements and estimation of defect size
RU2422814C1 (ru) Способ и устройство для обнаружения и диагностики дефектов газовых трубопроводов
CN110440993A (zh) 一种页岩气试气流程防刺蚀在线预警系统
CN217304901U (zh) 带有激光检测可燃气体浓度的气体流量计或燃气表
US20230204447A1 (en) Sniffing gas leak detector with hand probe
Lapshin et al. Features of the search for leaks in pipelines of heat networks using the acoustic-emission method