EP3436793A1 - Gaslecksuche mit einer testgassprühvorrichtung - Google Patents

Gaslecksuche mit einer testgassprühvorrichtung

Info

Publication number
EP3436793A1
EP3436793A1 EP17713949.0A EP17713949A EP3436793A1 EP 3436793 A1 EP3436793 A1 EP 3436793A1 EP 17713949 A EP17713949 A EP 17713949A EP 3436793 A1 EP3436793 A1 EP 3436793A1
Authority
EP
European Patent Office
Prior art keywords
test gas
gas
test
spraying
spray device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP17713949.0A
Other languages
German (de)
English (en)
French (fr)
Inventor
Hjalmar Bruhns
Ernst FRANKE
Ralf Kilian
Jörn LIEBICH
Norbert Moser
Jochen Puchalla-König
Norbert Rolff
Randolf Rolff
Daniel Wetzig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inficon GmbH Deutschland
Original Assignee
Inficon GmbH Deutschland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58428291&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3436793(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inficon GmbH Deutschland filed Critical Inficon GmbH Deutschland
Priority to EP20186105.1A priority Critical patent/EP3742148B1/de
Publication of EP3436793A1 publication Critical patent/EP3436793A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems
    • G01M3/205Accessories or associated equipment; Pump constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/207Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material calibration arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators

Definitions

  • the invention relates to a device and a method for gas leak detection with a Testgassprühvorraum.
  • the vacuum arrangement in this case has a vacuum pump for evacuating the test specimen and a gas detector for detecting the proportion of test gas in the evacuated gas flow. If the sample has a leak and the test gas stream dispensed by the spray gun approaches the leak, the proportion of test gas in the evacuated gas stream increases. The increase in the proportion of test gas in the evacuated gas flow is understood as an indication that the spray gun is approaching a leak in the test specimen.
  • the spray gun may for example be a compressed air gun which is connected via a hose with a test gas pressure cylinder or with a filled with the test gas rubber bladder.
  • a compressed air gun which is connected via a hose with a test gas pressure cylinder or with a filled with the test gas rubber bladder.
  • the pressure on the compressed air gun and thus the flow rate through a pressure reducer in the gas cylinder is set.
  • the device according to the invention is defined by the features of claim 1.
  • the method according to the invention is defined by the features of claim 5.
  • the spraying device is designed to detect at least one point in time of the spraying process, for example the start of spraying.
  • the times recorded by the spray device and the at least one point in time of the spraying process can be transmitted to the evaluation unit via the data communication connection.
  • the evaluation unit is designed to correlate the times transmitted by the spraying device with the respective measuring signal. This makes it possible to detect whether the increase in the test gas partial pressure in the measurement signal is caused by spraying with the test gas spray gun.
  • the time of the end of the test gas spray is also transmitted from the spray device to the evaluation unit and correlated with the measurement signal in the evaluation unit.
  • the spray device may be a spray gun which is connected via a hose to a compressed gas source containing the test gas.
  • the spray device generates a series of several short test gas pulses, that is, the test gas is pulsed output from the spray device.
  • the test gas is pulsed output from the spray device.
  • at least the time of the beginning of a pulse train is transmitted to the evaluation unit and preferably also the times of the respective end of a test gas pulse train.
  • the duration of the test gas delivery can also be recorded electronically and transmitted to the evaluation unit.
  • the application of the test gas in a particular pulse sequence may allow differentiation of interfering test gas background concentrations, as these are constant or at least slowly variable, while a test gas entering the sample through a leak can only enter from the spray device during spraying.
  • the measurement signal or the time profile of the measurement signal can also be transmitted from the evaluation unit to the spraying device or to an output device, for example a monitor, arranged in the vicinity of the spraying device.
  • the invention is thus based on the idea of detecting times of the spraying action with the spraying device and of transmitting them to the evaluation unit in order to correlate the measuring signal with the spraying times.
  • a spray gun 12 is connected via a compressed air hose 14 and a shut-off valve 16 to a pressurized helium source 18.
  • the shut-off valve 16 may alternatively be arranged in the spray gun 12.
  • the helium is the test gas with which the test piece 20 is sprayed to detect and locate a leak on the test piece.
  • the test object 20 is connected via a gas-conducting connection 22 via a shut-off valve 24 to a vacuum pump 26 for evacuating the test object 20. Downstream of the vacuum pump 26, a gas detector in the form of a mass spectrometer 28 is arranged. The mass spectrometer determines the helium partial pressure in the gas stream extracted from the test specimen 20. The elements 22, 24, 26, 28 form a vacuum arrangement 30. The mass spectrometer 28 is connected to an evaluation unit 32, which continuously evaluates and displays the measurement signal.
  • a data communication connection 34 between the spray gun 12 and the evaluation unit 32 is shown in dashed lines.
  • This can be a wireless connection, for example radio, WLAN, infrared, Bluetooth, or a wired data connection.
  • 32 times are transmitted at least from the spray gun 12 to the evaluation unit, namely at least the time of the start of spraying and preferably also the duration of spraying and the time of spraying.
  • a pulsed spray that can be controlled via the valve 16
  • the beginning of the spray, the duration and the spray end of each spray pulse or of the spray pulse series are transmitted to the evaluation unit 32.
  • the evaluation unit 32 transmits the measurement signals to an output unit connected to the spray gun 12 or arranged in the vicinity of the spray gun 12 (not shown in the figure). This makes it possible for the user to have a simple view of the measurement results and to modify the spray action accordingly. Once the user detects an increase in helium concentration, he can selectively direct the spray gun 12 in the required direction to determine the spray location to produce the maximum leakage signal.
  • the measurement signal can be transmitted via the data connection 34 to a smartphone or a tablet PC.
  • the vacuum assembly 30 may be a helium vacuum leak detector connected to the test object 20.
  • the connection point may be the fore-vacuum region of a multi-stage pumping system on the test sample. Alternatively, the connection can also be made directly to the vacuum chamber or the exhaust of the backing pump of the pumping system.
  • the reaction time - the vacuum time constant - of the system is determined.
  • a spray-on pen leak is to be flanged to the vacuum chamber to be checked. This is permanently sprayed with helium, during which the signal is detected by the leak detector. The pen leak is sprayed until a stable signal is displayed on the leak detector.
  • the vacuum time constant of the system can be determined.
  • the time constant may be determined from the decay curve measured after the completion of helium spraying. Typical time constants of plants are in the range of 1 to 10 seconds and are sometimes significantly longer.
  • a spraying process consists of several successive spray pulses.
  • the duration of the helium spray pulses and the time interval between the pulses can be determined.
  • the duration of the pulses and the time interval of the pulses should be about half a vacuum time constant or less.
  • pulse durations of 1/10 or less are selected.
  • the number of spray pulses per spray should be about three to five.
  • the duration between the individual pulses can be different. The more characteristic the pulse sequence is, the better the signal sequence at the leak detector can be recognized in the event of a leak.
  • the vacuum chamber is sprayed at the inspection sites to locate leaks.
  • the pulse sequence which is characterized by helium spraying, is transmitted during the spraying of a leak to the time profile of the measured leakage rate signal. Disturbances of the signal due to drift, noise or other causes, which do not exhibit this pulse train pattern, or occur too early or too late with respect to the time of spraying, can thus be distinguished from true leak rate signals in the signal evaluation.
  • the helium can be actively blown between the helium pulses, eg with a cyclically starting fan on the spray gun.
  • the operator gets the result directly at the test site and does not need any direct contact with the measuring device (the vacuum leak detector).
  • the operator may be provided with recommendations on spray behavior to the spray gun via the data link 34.
  • the leak detection is feasible with only one person.
  • the carrying of heavy helium bottles can be omitted. Helium consumption can be reduced.
  • a compact design with improved accessibility is possible. Faulty settings of the spray gun, such as too much or too little helium, can be prevented.
  • To optimize the spraying process a lot of helium can be sprayed for localization and then less helium can be sprayed for quantification.
EP17713949.0A 2016-03-31 2017-03-28 Gaslecksuche mit einer testgassprühvorrichtung Ceased EP3436793A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20186105.1A EP3742148B1 (de) 2016-03-31 2017-03-28 Verfahren zum testen einer gaslecksuchvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016205381.7A DE102016205381B4 (de) 2016-03-31 2016-03-31 Gaslecksuche mit einer Testgassprühvorrichtung
PCT/EP2017/057294 WO2017167738A1 (de) 2016-03-31 2017-03-28 Gaslecksuche mit einer testgassprühvorrichtung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP20186105.1A Division EP3742148B1 (de) 2016-03-31 2017-03-28 Verfahren zum testen einer gaslecksuchvorrichtung

Publications (1)

Publication Number Publication Date
EP3436793A1 true EP3436793A1 (de) 2019-02-06

Family

ID=58428291

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20186105.1A Active EP3742148B1 (de) 2016-03-31 2017-03-28 Verfahren zum testen einer gaslecksuchvorrichtung
EP17713949.0A Ceased EP3436793A1 (de) 2016-03-31 2017-03-28 Gaslecksuche mit einer testgassprühvorrichtung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20186105.1A Active EP3742148B1 (de) 2016-03-31 2017-03-28 Verfahren zum testen einer gaslecksuchvorrichtung

Country Status (9)

Country Link
US (1) US10837857B2 (ru)
EP (2) EP3742148B1 (ru)
JP (1) JP6862472B2 (ru)
KR (1) KR102377323B1 (ru)
CN (1) CN109073495B (ru)
DE (1) DE102016205381B4 (ru)
RU (1) RU2728802C2 (ru)
TW (1) TWI730076B (ru)
WO (1) WO2017167738A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668687A (zh) * 2019-02-28 2019-04-23 山东新华医疗器械股份有限公司 一种旋转真空检漏机
CN111999010B (zh) * 2020-09-01 2022-11-15 国网安徽省电力有限公司池州供电公司 一种配电箱密封性实验装置
CN112289469A (zh) * 2020-11-03 2021-01-29 浙江伦特机电有限公司 一种泄漏测试装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2914086B1 (de) 1979-04-07 1980-09-18 Basf Ag Isoindolinfarbstoffe und deren Verwendung
JPS6217627A (ja) * 1985-07-16 1987-01-26 Ulvac Corp 漏れ検出器の信号伝送方法
CN1012847B (zh) * 1985-08-16 1991-06-12 巴布科克和威尔科斯公司 密闭空间内气体的声测法及其设备
JPS62140431U (ru) * 1986-02-26 1987-09-04
JPH02120635A (ja) * 1988-10-28 1990-05-08 Shimadzu Corp リークデテクタ
US4898021A (en) 1988-11-30 1990-02-06 Westinghouse Electric Corp. Quantitative air inleakage detection system and method for turbine-condenser systems
DE4228148A1 (de) * 1992-08-25 1994-03-03 Leybold Ag Vakuum-Lecksuchgerät für die Testgaslecksuche mit leichten Gasen
DE4408877A1 (de) * 1994-03-16 1995-09-21 Leybold Ag Testgaslecksucher
DE4445829A1 (de) 1994-12-22 1996-06-27 Leybold Ag Gegenstrom-Schnüffellecksucher
DE19960174A1 (de) * 1999-12-14 2001-06-28 Leybold Vakuum Gmbh Verfahren zur Lecksuche und Lecklokalisierung sowie zur Durchführung dieser Verfahren geeignete Vorrichtungen
TWI281538B (en) * 2004-04-28 2007-05-21 Prodisc Technology Inc Gas leak detecting apparatus
US20060075968A1 (en) * 2004-10-12 2006-04-13 Applied Materials, Inc. Leak detector and process gas monitor
DE102004050762A1 (de) * 2004-10-16 2006-04-20 Inficon Gmbh Verfahren zur Lecksuche
DE102005022157A1 (de) * 2005-05-13 2006-11-16 Inficon Gmbh Schnüffellecksuchgerät
US20070000310A1 (en) * 2005-06-29 2007-01-04 Varian, Inc. Leak detection system with wireless remote unit
US8297109B2 (en) 2010-04-09 2012-10-30 Inficon Gmbh Method for performing a leak test on a test object
FR3047074B1 (fr) 2016-01-21 2018-01-26 Pfeiffer Vacuum Dispositif d'aspersion et module de detection de fuites

Also Published As

Publication number Publication date
TWI730076B (zh) 2021-06-11
CN109073495A (zh) 2018-12-21
RU2018137195A (ru) 2020-04-30
DE102016205381B4 (de) 2023-11-30
US20190120715A1 (en) 2019-04-25
KR102377323B1 (ko) 2022-03-21
RU2728802C2 (ru) 2020-07-31
DE102016205381A1 (de) 2017-10-05
CN109073495B (zh) 2021-09-17
JP6862472B2 (ja) 2021-04-21
EP3742148B1 (de) 2022-02-16
EP3742148A1 (de) 2020-11-25
RU2018137195A3 (ru) 2020-05-26
KR20180128000A (ko) 2018-11-30
WO2017167738A1 (de) 2017-10-05
JP2019510228A (ja) 2019-04-11
US10837857B2 (en) 2020-11-17
TW201736808A (zh) 2017-10-16

Similar Documents

Publication Publication Date Title
EP1238253B1 (de) Verfahren zur lecksuche und lecklokalisierung sowie zur durchführung dieser verfahren geeignete vorrichtungen
DE102011086486B4 (de) Vorrichtung und Verfahren zur schnellen Lecksuche an formsteifen/schlaffen Verpackungen ohne Zusatz von Prüfgas
EP3742148B1 (de) Verfahren zum testen einer gaslecksuchvorrichtung
EP3788340B1 (de) Verfahren zum ermitteln der relativen lage eines gaslecks
DE102008008262A1 (de) Schnüffellecksucher nach dem Referenzmessprinzip
EP3374746B1 (de) Druckmessung am prüfgaseinlass
EP0750738B1 (de) Testgaslecksucher
EP1993082B1 (de) Detektion und Ortsbestimmung eines Brandes
WO2017084974A1 (de) Lecksuche mit sauerstoff
EP2171416A1 (de) Lecksuchgerät mit positionsbestimmungssystem für die handgeführte sonde
DE102014013822A1 (de) Gasspürgerät und Betriebsverfahren
DE102008037058A1 (de) Verfahren zur Bestimmung einer Gesamt-Leckrate einer Vakuumanlage sowie eine Vakuumanlage
DE2827537A1 (de) Betriebsverfahren fuer eine einrichtung zur lecksuche, gasanalyse o.dgl. und dazu geeignete einrichtung
DE102015001443B3 (de) Gasspürgerät und Gasmessverfahren
DE4333951A1 (de) Verfahren und Anordnung zum Prüfen der Dichtigkeit des Gasentnahmesystems einer Gasanalysevorrichtung
DE102016217948A1 (de) Verfahren zur Prognose der Qualität von Klebverbindungen
DE102007025691A1 (de) Verfahren zur Prüfung der Dichtigkeit eines Luftfederbalges
DE3818372A1 (de) Vorrichtung zur entnahme einer gasprobe
DE102017217374A1 (de) Vorrichtung und Verfahren zur Unterscheidung eines aus einem Leck austretenden Prüfgases von Störgas
DE202008013327U1 (de) Aerosolquellsystem mit Aerosolausströmern für eine gleichmäßige Verteilung von Aerosol eines Aerosolgenerators zu Prüfzwecken in die Umgebung
DE102021115463A1 (de) Leckdetektionsvorrichtung
DE102016102794A1 (de) Prüfen von Fahrzeug-Medienleitungen
DE19853368A1 (de) Verfahren und Vorrichtung zur Messung der Wassermenge und Leckage in Behältern
DE202011051243U1 (de) System für tiefenorientiertes Profiling und getriggerte Probenahme mit zweifachen Leitungskreislauf

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191022

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20201125