RU2727342C1 - Адиабатический калориметр - Google Patents
Адиабатический калориметр Download PDFInfo
- Publication number
- RU2727342C1 RU2727342C1 RU2019133121A RU2019133121A RU2727342C1 RU 2727342 C1 RU2727342 C1 RU 2727342C1 RU 2019133121 A RU2019133121 A RU 2019133121A RU 2019133121 A RU2019133121 A RU 2019133121A RU 2727342 C1 RU2727342 C1 RU 2727342C1
- Authority
- RU
- Russia
- Prior art keywords
- vessel
- shells
- calorimetric
- adiabatic
- calorimeter
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
- G01K17/04—Calorimeters using compensation methods, i.e. where the absorbed or released quantity of heat to be measured is compensated by a measured quantity of heating or cooling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/005—Investigating or analyzing materials by the use of thermal means by investigating specific heat
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
Landscapes
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Изобретение относится к измерительной технике, а именно к адиабатической калориметрии, где определяются удельная теплоемкость и энтальпия различных материалов и изделий, и может быть использовано главным образом в метрологии. В предлагаемом адиабатическом калориметре, включающем в себя калориметрический сосуд с нагревателем, три адиабатические оболочки, окружающие сосуд и снабженные нагревателями и термопреобразователями, термопреобразователи совместно с нагревателем калориметрического сосуда подключены к блоку измерения и регулирования температуры. Оболочки и калориметрический сосуд выполнены из высокотеплопроводного материала, нагреватели оболочек размещены на наружных поверхностях оболочек, а их термопреобразователи размещены на внутренних поверхностях оболочек. Калориметрический сосуд снабжен тремя встроенными в него термопреобразователями, два из которых расположены диаметрально-противоположно по краям калориметрического сосуда, а третий - в его центре. Нагреватель калориметрического сосуда равномерно распределен по объему сосуда, калориметрический сосуд выполнен в форме дискового барабана с крышкой и дном. Барабан симметричен относительно вертикальной условной оси вращения и снабжен одинаковыми сквозными цилиндрическими отверстиями заданного диаметра, причем их количество задано исходя из условия, чтобы общий объем, занимаемый отверстиями в барабане, был максимально возможным. Технический результат - повышение точности с одновременным расширением функциональных возможностей устройства - расширением номенклатуры исследуемых изделий и температурного диапазона. 2 ил.
Description
Изобретение относится к измерительной технике, а именно - к адиабатической калориметрии, где определяются удельная теплоемкость и энтальпия различных материалов и изделий, и может быть использовано, главным образом, в метрологии, а также - в приборостроении, машиностроении, экспериментальной физике и теплофизике.
Известен адиабатический калориметр, содержащий калориметрический сосуд с нагревателем и термопреобразователем, окруженный двумя адиабатическими оболочками, нагреватели которых включены параллельно и подключены к выходу блока регулирования температуры, вход которого соединен с датчиками разности температур, установленными между нагревателем сосуда и первой оболочкой (патент Великобритании О 1429365 кл. G ID, опубл. 1976). Недостатком этого калориметра является существенная погрешность термостатирования, т.е. поддержания адиабатического режима и, как следствие, низкая точность измерений.
Известен адиабатический калориметр для измерения теплоемкости веществ, содержащий охлаждаемую вакуумную камеру и расположенный в ней контейнер с исследуемым образцом и системой адиабатических экранов, содержащий внутренний и внешний радиационные экраны с крышками и горячее кольцо, при этом подводящие провода от контейнера, минуя внутренний радиационный экран, выведены на горячее кольцо и затем на внешний радиационный экран, причем связь подводящих проводов, расположенных на различных экранах, осуществляется бестермоточным кольцевым разъемом с подпружиненными контактами из того же матариала, а крышка введена внутрь экрана (Авт. свид. СССР №504105, МКИ G01K 17/00, опубл. 25.02.1976). Данный калориметр обладает сниженной утечкой теплоты через токоподводы, но вследствие дополнительного контактного электрического сопротивления в подпружиненных контактах имеет повышенную погрешность измерения температуры, что приводит к существенному снижению точности получаемых результатов. Кроме этого, калориметр не позволяет исследовать образцы, выполненные в форме цилиндров относительно большой длины, например - стандартных образцов, применяемых в эталоне ГЭТ 24-2007.
Известен адиабатический калориметр, содержащий ампулу и устройство для разрушения ампулы, установленные в реакционном сосуде, помещенном в вакуумную камеру, окруженную двумя адиабатическими оболочками и термобатареей (Авт. свид. СССР, №373551, МКИ G01K 17/04, 1973). Данный калориметр, как и предыдущий, обладает малой инерционностью, но имеет за счет этого невысокую точность поддержания адиабатического режима и, как следствие, низкую точность измерений. Кроме того, калориметр не позволяет исследовать образцы, выполненные в форме цилиндров относительно большой длины, например - стандартных образцов, применяемых в эталоне ГЭТ 24-2007.
Наиболее близким к предлагаемому является адиабатический калориметр, содержащий калориметрический сосуд для исследуемого вещества, снабженный термопреобразователем, нагревателем и окруженный тремя адиабатическими оболочками с нагревателями, три блока регулирования температуры оболочек, входы которых соединены с датчиками разности температур, а выходы подключены к нагревателям оболочек, при этом датчики температуры установлены между калориметрическим сосудом и каждой адиабатической оболочкой (Авт. свид. СССР №1093913, МКИ G01K 17/04, опубл. 06.04.1984). Недостаток указанного калориметра заключается в том, что имеет существенную инерционность, что выливается в повышенную погрешность измерений. Это обусловлено тем, что датчики разности температур расположены между адиабатическими оболочками, поэтому возникает задержка во включении нагревателей оболочек, обусловленная необходимостью превышения сигналом с данного датчика температуры определенного уровня чувствительности системы поддержания температуры данной оболочки. Указанная задержка сказывается на нарушении адиабатического режима калориметра в большей степени со стороны наружной, второй адиабатической оболочки. Кроме того, при использовании калориметра требуется значительное время для подготовки к опыту, в течение которого необходимо установить температуры обеих, влияющих один на другого оболочек, позволяющие при сохранении определенной инерционности калориметра компенсировать тепловые потери при заданной температуре проведения опыта.
Общие недостатки перечисленных выше калориметров - невысокая точность и ограниченные функциональные возможности, в частности -невозможность получать точные значения удельной теплоемкости и энтальпии таких изделий, как стандартные образцы, применяемые в метрологии для измерений температурного коэффициента линейного расширения, а также - ограничение по верхней границе температурного диапазона (не более 200°С, или 473 К).
Технический результат изобретения - повышение точности с одновременным расширением функциональных возможностей устройства - расширением номенклатуры исследуемых изделий и температурного диапазона.
Данный результат достигается тем, что в адиабатическом калориметре, включающем в себя калориметрический сосуд с нагревателем, три адиабатические оболочки, окружающие сосуд и снабженные нагревателями и термопреобразователями, термопреобразователи совместно с нагревателем калориметрического сосуда подключены к блоку измерения и регулирования температуры, оболочки и калориметрический сосуд выполнены из высокотеплопроводного материала, нагреватели оболочек размещены на наружных поверхностях оболочек, а их термопреобразователи размещены на внутренних поверхностях оболочек, калориметрический сосуд снабжен тремя встроенными в него термопреобразователями, два из которых расположены диаметрально-противоположно по краям калориметрического сосуда, а третий - в его центре, нагреватель калориметрического сосуда равномерно распределен по объему сосуда, калориметрический сосуд выполнен в форме дискового барабана с крышкой и дном, барабан симметричен относительно вертикальной условной оси вращения и снабжен одинаковыми сквозными цилиндрическими отверстиями заданного диаметра, причем их количество задано исходя из условия, чтобы общий объем, занимаемый отверстиями в барабане, был максимально возможным.
Компоновочная схема предлагаемого устройства изображена на фиг. 1. На фиг. 2 представлено поперечное сечение калориметрического сосуда, выполненного в виде барабана. Адиабатический калориметр содержит калориметрический сосуд 1, адиабатические оболочки 2, 3, 4 с встроенными в них нагревателями 5 и термопреобразователями 6, подвес 7, центрирующую втулку 8. Управление работой калориметра осуществляется при помощи блока регулирования и измерения температуры 9 и компьютера 10. Калориметрический сосуд 1 калориметра содержит одинаковые сквозные цилиндрические отверстия 11 для размещения в них исследуемых изделий, два периферийных термопреобразователя 12, один центральный термопреобразователь 13, нагреватель 14, равномерно размещенный по объему сосуда 1, крепежные винты 15, дно 16 и крышку 17. Нагреватели 5 размещены на внешней стороне оболочек, а термопреобразователи 6 - на их внутренней стороне. Термопреобразователи 6, 12 используются для поддержания адиабатических условий, а термопреобразователь 13, расположенный в центре калориметрического сосуда, используется для измерений температурного хода калориметрического сосуда. Нагреватели 5 обеспечивают поддержание заданного уровня температуры с одновременным обеспечением адиабатических условий для калориметрического сосуда 1. Нагреватель 14 обеспечивает подачу дополнительного количества теплоты в калориметрический сосуд 1 при измерениях. Блок регулирования и измерения температуры 9 выполняет функцию регулирования и измерения температуры калориметрического сосуда 1 и адиабатических оболочек 2, 3, 4. Компьютер 10 выполняет функцию управления работой блока регулирования 9, функцию программной обработки измеряемых данных и получения искомого значения удельной теплоемкости или энтальпии исследуемого образца. Винты 15 крепят дно 16 и крышку 17 к калориметрическому сосуду 1 (барабану).
Калориметр работает по принципу периодического ввода теплоты в диапазоне температур 293-800 К следующим образом. С помощью нагревательного элемента внешней оболочки 4 задается требуемая температура термостатирования. С помощью нагревателей оболочек 2, 3 обеспечиваются адиабатические условия для калориметрического сосуда 1. Адиабатический режим калориметра обеспечивается комплексной системой, состоящей из трех адиабатических оболочек 2, 3, 4 с тремя термопреобразователями 6 и двух термопреобразователей 12. При этом наилучшая минимальная разность температуры между калориметрическим сосудом 1 и первой оболочкой 2 обеспечивается за счет осреднения показаний двух периферийных термопреобразователей 12 и последующего сведения к минимуму разности между данным средним значением и измеряемой температурой оболочки 2. Благодаря этому достигается наилучшая адиабатичность калориметрического сосуда 1. После достижения стационарного теплового режима через нагреватель 14 калориметрического сосуда 1 в течение определенного времени пропускается электрический ток, количество затраченной на нагрев мощности и измеряется с помощью блока регулирования и измерения температуры 9 и компьютера 10, а прирост температуры калориметрического сосуда - с помощью платинового термопреобразователя сопротивления 13.
Конкретный калориметр имеет следующие технические характеристики. Габаритные размеры калориметра - диаметр 415 мм, высота 741 мм; габаритные размеры калориметрического сосуда - диаметр 42 мм, высота 125 мм, диаметр отверстий 5,2 мм (под образцы эталона ГЭТ 24-2007), количество отверстий 14. Материал калориметрического сосуда 1 и адиабатических оболочек 2, 3, 4 - серебро; нагреватели 5, 14 выполнены из нихрома, термопреобразователи - платиновые термометры сопротивления типа pt100 с номинальным электрическим сопротивлением 100 Ом.
В результате испытаний калориметра достигнутая адиабатичность характеризуется разностью температуры калориметрического сосуда 1 и первой оболочки 2, равной 0,0001 К при заданном подъеме температуры равном ΔT=5 К. Оцениваемая относительная неопределенность измерения теплоемкости с помощью данного калориметра составляет не хуже 5⋅10-4. Воспроизводимость результатов измерения теплового эквивалента калориметра, т.е. среднеквадратичное отклонение экспериментальных точек от сглаженной кривой составляет 0,05% в интервале температур 293-800 К. Благодаря конструкции калориметрического сосуда и новому расположению датчиков температуры значительно уменьшается зависимость температур оболочек 2, 3, 4 от температуры опыта при сохранении заданного качества адиабатического режима, что подтверждается практическим использованием калориметра. Так, во всем интервале рабочих температур 293-800 К, температуры адиабатических оболочек практически не изменяются, при сохранении температурного хода калориметра не более 0,00001 К/мин в начальный и конечный периоды опыта.
Также благодаря тому, что общий объем, занимаемый отверстиями 11 в барабане 1, сделан максимально возможным, достигнуто наилучшее соотношение полезного измеряемого сигнала (с образцами) к сигналу от пустого калориметрического сосуда, т.е. - достигнуто максимальное отношение полной теплоемкости исследуемых образцов к теплоемкости калориметрического сосуда 1. Кроме этого, выполнение калориметрического сосуда из высокотеплопроводного материала (серебра) в сочетании с равномерно-распределенными по его объему отверстиями для образцов обеспечивает наилучшую равномерность температурного поля в заполненном калориметрическом сосуде, что выгодно отличает данный калориметр от аналогов и прототипа и обеспечивает более высокую достоверность значений измеряемой температуры. В совокупности данные технические решения существенно повышают точность измерений.
Кроме того, калориметр позволяет измерять теплоемкость цилиндрических образцов относительно большой длины, например - стандартных образцов, применяемых в эталоне ГЭТ 24-2007, что делает его более многофункциональным и расширяет номенклатуру исследуемых изделий.
Таким образом, предлагаемый адиабатический калориметр позволяет исследовать широкую номенклатуру материалов и изделий с одновременным повышением точности измерений и расширением температурного диапазона.
Claims (1)
- Адиабатический калориметр, включающий в себя калориметрический сосуд с нагревателем, три адиабатические оболочки, окружающие сосуд и снабженные нагревателями и термопреобразователями, в котором термопреобразователи совместно с нагревателем калориметрического сосуда подключены к блоку измерения и регулирования температуры, отличающийся тем, что с целью повышения точности и расширения номенклатуры исследуемых изделий, оболочки и калориметрический сосуд выполнены из высокотеплопроводного материала, нагреватели оболочек размещены на наружных поверхностях оболочек, а их термопреобразователи размещены на внутренних поверхностях оболочек, калориметрический сосуд снабжен тремя встроенными в него термопреобразователями, два из которых расположены диаметрально-противоположно по краям калориметрического сосуда, а третий - в его центре, нагреватель калориметрического сосуда равномерно распределен по объему сосуда, калориметрический сосуд выполнен в форме дискового барабана с крышкой и дном, барабан симметричен относительно вертикальной условной оси вращения и снабжен одинаковыми сквозными цилиндрическими отверстиями заданного диаметра, причем их количество задано исходя из условия, чтобы общий объем, занимаемый отверстиями в барабане, был максимально возможным.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019133121A RU2727342C1 (ru) | 2019-10-16 | 2019-10-16 | Адиабатический калориметр |
DE102020126865.3A DE102020126865B4 (de) | 2019-10-16 | 2020-10-13 | Adiabatisches Kalorimeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019133121A RU2727342C1 (ru) | 2019-10-16 | 2019-10-16 | Адиабатический калориметр |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2727342C1 true RU2727342C1 (ru) | 2020-07-21 |
Family
ID=71741256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019133121A RU2727342C1 (ru) | 2019-10-16 | 2019-10-16 | Адиабатический калориметр |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102020126865B4 (ru) |
RU (1) | RU2727342C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114594131A (zh) * | 2020-12-07 | 2022-06-07 | 中国科学院大连化学物理研究所 | 一种量热仪中的绝热屏固定装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU373551A1 (ru) * | 1971-03-29 | 1973-03-12 | Авторы изобретени витель | Адиабатический калорил\етр |
SU744251A1 (ru) * | 1975-12-08 | 1980-06-30 | Институт Физической Химии Ан Ссср | Калориметр |
JPS5630638A (en) * | 1979-08-22 | 1981-03-27 | Shisaka Kenkyusho:Kk | Adiabatic calorimeter |
SU1093913A1 (ru) * | 1982-04-06 | 1984-05-23 | Ленинградский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Технологический Институт Им.Ленсовета | Адиабатический калориметр |
DE4321688A1 (de) * | 1993-06-30 | 1995-02-16 | Zirox Sensoren & Elektronik Gm | Kalorimeter zur präzisen Messung von Temperatursignalen in Flüssigphasen |
RU2287788C2 (ru) * | 2005-02-03 | 2006-11-20 | Лев Борисович Машкинов | Калориметр |
CN101354365A (zh) * | 2008-04-02 | 2009-01-28 | 中国科学院大连化学物理研究所 | 一种绝热量热计及其量热系统 |
RU2529664C1 (ru) * | 2013-07-11 | 2014-09-27 | Ярослав Олегович Иноземцев | Калориметр переменной температуры (варианты) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3267728A (en) * | 1964-08-25 | 1966-08-23 | Honeywell Inc | Dynamic automatically controlled calorimeter and melting point device |
WO2012003553A1 (en) * | 2010-07-08 | 2012-01-12 | Katholieke Universiteit Leuven | Adiabatic scanning calorimeter |
GB201101846D0 (en) * | 2011-02-03 | 2011-03-23 | Univ Leuven Kath | Differential adiabatic scanning calorimeter |
-
2019
- 2019-10-16 RU RU2019133121A patent/RU2727342C1/ru active
-
2020
- 2020-10-13 DE DE102020126865.3A patent/DE102020126865B4/de not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU373551A1 (ru) * | 1971-03-29 | 1973-03-12 | Авторы изобретени витель | Адиабатический калорил\етр |
SU744251A1 (ru) * | 1975-12-08 | 1980-06-30 | Институт Физической Химии Ан Ссср | Калориметр |
JPS5630638A (en) * | 1979-08-22 | 1981-03-27 | Shisaka Kenkyusho:Kk | Adiabatic calorimeter |
SU1093913A1 (ru) * | 1982-04-06 | 1984-05-23 | Ленинградский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Технологический Институт Им.Ленсовета | Адиабатический калориметр |
DE4321688A1 (de) * | 1993-06-30 | 1995-02-16 | Zirox Sensoren & Elektronik Gm | Kalorimeter zur präzisen Messung von Temperatursignalen in Flüssigphasen |
RU2287788C2 (ru) * | 2005-02-03 | 2006-11-20 | Лев Борисович Машкинов | Калориметр |
CN101354365A (zh) * | 2008-04-02 | 2009-01-28 | 中国科学院大连化学物理研究所 | 一种绝热量热计及其量热系统 |
RU2529664C1 (ru) * | 2013-07-11 | 2014-09-27 | Ярослав Олегович Иноземцев | Калориметр переменной температуры (варианты) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114594131A (zh) * | 2020-12-07 | 2022-06-07 | 中国科学院大连化学物理研究所 | 一种量热仪中的绝热屏固定装置 |
Also Published As
Publication number | Publication date |
---|---|
DE102020126865B4 (de) | 2021-09-23 |
DE102020126865A1 (de) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Buck et al. | Thermal properties | |
Fowler | A third generation water bath based blackbody source | |
JP2001349855A (ja) | 変調差分走査熱量計 | |
US3665762A (en) | Calorimeter | |
RU2727342C1 (ru) | Адиабатический калориметр | |
US5099441A (en) | Method for determining thermal conductivity incorporating differential scanning calorimetry | |
US3266307A (en) | Adiabatic calorimeter | |
GB2280506A (en) | Thermostatic device | |
CN104792821B (zh) | 微型量热仪 | |
CA1158892A (en) | Sample combustion chamber for measurement of calorific values | |
US3022664A (en) | Differential calorimeter | |
Razouk et al. | A new in situ electrical calibration system for high temperature Calvet calorimeters | |
Razouk et al. | Towards accurate measurements of specific heat of solids by drop calorimetry up to 3000 C | |
JPS6119935B2 (ru) | ||
RU2510491C2 (ru) | Способ измерения степени черноты | |
Kim et al. | Temperature and Heat Flow Rate Calibration of a Calvet Calorimeter from 0^ ∘ C 0∘ C to 190^ ∘ C 190∘ C | |
RU2392591C1 (ru) | Калориметр | |
RU2732341C1 (ru) | Способ бездемонтажной проверки термопары и значения ее термоэлектрической способности | |
RU154799U1 (ru) | Калориметр для определения удельной теплоёмкости пищевых продуктов | |
Venkateshan et al. | Measurements of Temperature | |
Mokdad et al. | A Self-Validation Method for High-Temperature Thermocouples Under Oxidizing Atmospheres | |
Rani et al. | Investigating temperature distribution of two different types of blackbody sources using infrared pyrometry techniques | |
SU590720A1 (ru) | Термостат | |
Abdalla et al. | Temperature Measurement And Calibration Setup (TH1) | |
RU2654824C1 (ru) | Устройство для измерения теплоемкости материалов |