RU2716866C1 - Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций - Google Patents

Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций Download PDF

Info

Publication number
RU2716866C1
RU2716866C1 RU2019117695A RU2019117695A RU2716866C1 RU 2716866 C1 RU2716866 C1 RU 2716866C1 RU 2019117695 A RU2019117695 A RU 2019117695A RU 2019117695 A RU2019117695 A RU 2019117695A RU 2716866 C1 RU2716866 C1 RU 2716866C1
Authority
RU
Russia
Prior art keywords
growth
silicon carbide
type
sic
conductivity
Prior art date
Application number
RU2019117695A
Other languages
English (en)
Inventor
Николай Александрович Гарцев
Ирина Владимировна Наркаева
Original Assignee
Публичное Акционерное Общество "Электровыпрямитель"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное Акционерное Общество "Электровыпрямитель" filed Critical Публичное Акционерное Общество "Электровыпрямитель"
Priority to RU2019117695A priority Critical patent/RU2716866C1/ru
Application granted granted Critical
Publication of RU2716866C1 publication Critical patent/RU2716866C1/ru

Links

Images

Classifications

    • H01L21/205

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

Изобретение относится к области полупроводниковой техники и может быть использовано при росте эпитаксиальных слоев карбида кремния (SiC) с малой плотностью базальных дислокаций. Способ заключается в том, что так же как в известном способе для роста эпитаксиальных слоев SiC используется подложка SiC, поверхность которой разориентирована относительно кристаллографической плоскости Миллера-Бравэ (1120) более чем на 0°, но не более чем на 8°. Поверхность подложки с одной стороны травится в водороде, силане или аргоне при температуре не менее 1450°С и не более 1800°С и давлении водорода не менее 30 мбар и не более 500 мбар в течение не более 90 мин, после чего на травленой поверхности подложки растится буферный слой SiC р-типа проводимости с толщиной не менее 1 мкм и не более 50 мкм, на поверхности которого растится эпитаксиальный слой SiC р-типа проводимости. Изобретение обеспечивает получение бездефектных слоев карбида кремния. 2 ил., 1 табл.

Description

Изобретение относится к области полупроводниковой техники и может быть использовано при росте эпитаксиальных слоев карбида кремния (SiC) с малой плотностью базальных дислокаций.
Ключевой технологией в создании биполярных полупроводниковых приборов на основе карбида кремния является технология роста эпитаксиальных слоев (ЭС) карбида кремния р-типа проводимости с низкой плотностью базальных дислокаций. Это обусловлено тем, что именно на основе этого технологического процесса создаются полупроводниковые структуры электронных приборов на SiC. ЭС полупроводниковых приборов, как правило, создаются на основе SiC 4Н-политипа.
В настоящее время основным методом роста эпитаксиальных слоев (ЭС) SiC р-типа проводимости является метод высокотемпературного газофазного осаждения - CVD-метод (ChemicalVaporDeposition). При использовании этого метода рост ЭС р-типа проводимости проводится в ростовой ячейке установки эпитаксии на поверхности пластины монокристаллического SiC (подложки) n-типа проводимости.
Сущность метода CVD заключается в том, что потоком газа-носителя, в качестве которого обычно используется водород, в ростовую ячейку, в которой установлена подложка, доставляются газы-источники кремния и углерода. В качестве кремниевого источника используется моносилан (SiH4), в качестве углеродного источника - пропан (С3Н8).
В горячей зоне ростовой ячейки происходит разложение газов-источников. Типичная температура при проведении высокотемпературного газофазного осаждения карбида кремния составляет 1500-1650°С.
Продукты разложения источников адсорбируются на поверхности подложки и разлагаются на ней окончательно с образованием атомов кремния и углерода, которые встраиваются в кристаллическую структуру растущего слоя, обеспечивая тем самым рост эпитаксиальных слоев.
Для обеспечения требуемого уровня легирования в ростовую ячейку в процессе роста эпитаксиального слоя подаются пары источника легирующей примеси - триметилалюминия (Al(СН3)3) для легирования ЭС р-типа проводимости.
В процессе эпитаксии SiC методом CVD возникают дефекты.
На Рис. 1 приведен внешний вид основных дефектов, наблюдаемых в 4H-SiC(0001) эпитаксиальных слоях (TED- винтовая дислокация, BPD - базальная дислокация).
Наиболее опасными дефектами для биполярных полупроводниковых приборов являются базальные дислокации (BPD).
Они вызывают деградацию прямой и обратной ветви вольт-амперной характеристики (ВАХ) биполярных приборов на основе карбида кремния. Это выражается в увеличении прямого напряжения и токов утечки приборов при их работе.
Это явление является губительным для надежности биполярных приборов, созданных на SiC.
В настоящее время проблема с наличием базальных дислокаций в эпитаксиальных слоях карбида кремния р-типа проводимости является главной причиной, сдерживающей развитие биполярных приборов на основе карбида кремния. Для производства биполярных приборов величина плотности BPD не должна превышать 1 см-2.
Известен способ роста ЭС с малой плотностью базальных дислокаций [1], в котором для снижения плотности базальных дислокаций в эпитаксиальных структурах SiC рост ЭС осуществляют на подложках монокристаллического SiC, у которых поверхность подложки ориентирована по кристаллографической плоскости с индексами Миллера-Бравэ (1120).
Данный способ достаточно прост, однако, выращенных этим способом ЭС SiC возникает недопустимо большое количество дефектов, а также они имеют недопустимо высокую шероховатость поверхности. Это делает данный способ неприемлемым для роста эпитаксиальных слоев р-типа проводимости.
Известен способ роста ЭС SiC с малой плотностью базальных дислокаций [2]. В этом способе для роста эпитаксиального слоя используется подложка монокристаллического SiC4H-политипа, у которой поверхность разориентирована по отношению к кристаллографической плоскости с индексами Миллера-Бравэ (1120) более 0°, но не более 8°. До начала роста ЭС SiC поверхность подложки травится в водороде, силане или аргоне при температуре от 1450°С до 1800°С при давлении газа от 30 до 500 мбар. Время травления составляет не более 90 мин. Затем на травленой поверхности подложки растится буферный слой монокристаллического SiC толщиной от 0,5 до 30 мкм, легированный азотом (N+) или фосфором (Р+), на поверхности которого растится эпитаксиальный слой монокристаллического карбида кремния.
Недостатком данного метода является то, что плотность дефектов, в выращенных таким способом ЭС, часто оказывается недопустимо высокой. Причиной этого является то, что величина концентрации легирующей примеси - алюминия (NA) в буферном слое ЭС, создаваемой этим способом может быть более чем 8⋅1018 см-3. Как известно [3, 4] это может приводить к возникновению большего количества дислокаций и других дефектов кристаллической решетки SiC.
Предлагается способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций устраняющий перечисленные выше недостатки. Способ заключается в том, что также как в известном способе для роста ЭС SiC используется подложка SiC, поверхность, которой разориентирована относительно кристаллографической плоскости Миллера-Бравэ (1120) более чем на 0°, но не более чем на 8° (рис. 2). Поверхность подложки с одной стороны травится в водороде, силане или аргоне при температуре не менее 1450°С и не более 1800°С и давлении водорода не менее 30 мбар и не более 500 мбар в течение не более 90 минут, после чего на травленной поверхности подложки растится буферный слой SiC р-типа проводимости с толщиной не менее 1 мкм и не более 50 мкм, на поверхности которого растится эпитаксиальный слой SiC р-типа проводимости.
На Рис. 2 показан эпитаксиальный слой карбида кремния р-типа проводимости и буферный слой карбида кремния р-типа проводимости, выращенные на подложке карбида кремния n-типа проводимости.
Однако, в отличие от известного способа [2], при использовании предлагаемого способа в процессе роста буферного слоя р-типа проводимости осуществляется контроль за величиной отношения объема газа-источника легирующей примеси, поступающего в ростовую ячейку (Vлег) к общему объему газов поступающих в ростовую ячейку (Vобщ), в том числе: газа-носителя, газов-источников кремния, углерода и легирующей примеси. В соответствии с предлагаемым способом для обеспечения малой плотности эпитаксиальных дефектов в выращенном эпитаксиальном слое, в процессе роста буферного слоя величина этого отношения должна удовлетворять соотношению
Figure 00000001
где m - величина отношения, при котором концентрация легирующей примеси в выращенном буферном слое р-типа проводимости равна 8⋅1018 см-3.
В [3, 4] представлена подробная информация о влиянии условий роста ЭС на их свойства, в частности, указано, что при высоких концентрациях легирующей примеси (≥8⋅1018 см-3) в кристаллической решетке SiC возникает много дефектов, вследствие чего в ЭС в процессе ее роста возникает значительное количество эпитаксиальных дефектов.
Величина концентрации легирующей примеси в эпитаксиальном слое р-типа проводимости пропорциональна величине отношения объема паров источника легирующей примеси р-типа проводимости, поступающих в ростовую ячейку (Vлег) к общему объему газов поступающих в ростовую ячейку (Vобщ), в том числе: газа-носителя, газов-источников кремния, углерода и паров легирующей примеси, поэтому для обеспечения малой плотности эпитаксиальных дефектов в выращенном эпитаксиальном слое р-типа проводимости, в процессе роста буферного слоя р-типа проводимости, необходимо чтобы выполнялось соотношение (1).
С целью проверки предлагаемого способа на установке VP508GFR (фирмы Aixtron) проводился рост ЭС карбида кремния р-типа проводимости.
При выполнении этой работы были изготовлены три опытных партий ЭС SiC в количестве по 3 шт. в каждой.
В качестве подложки в них использовались одинаковые подложки с малой (≤1000 см-2) плотностью BPD типа W4NPE4C-B200 изготовленные компанией CreeInc. (США) n-типа проводимости 4-Н политипа диаметром 100,0 мм. Они имели разориентацию базовой плоскости относительно кристаллографической оси 4±0,5°. До начала роста ЭС поверхности всех подложек протравлены в водороде при температуре 1650°С и давлении 100 мБар в течение 15 минут. После этого на травленной поверхности для ЭС всех партий выращивались буферные слои толщиной 10 мкм. При их выращивании в реактор подавался газ носитель - водород (Н2) в объеме 60 л/мин, газ источник кремния - моносилан (SiH4) в объеме 150 мл/мин, газ источник углерода - пропан (С3Н8) в объеме 65 мл/мин. В качестве источника легирующей примеси р-типа проводимости использовался триметилалюминий. Величина его объема, подаваемого в реактор для партий 1-3, приведена в таблице 1. Затем на поверхности буферного слоя р-типа проводимости выращивался эпитаксиальный слой р-типа проводимости с концентрацией легирующей примеси 8⋅1015 см-3 толщиной 6 мкм.
На выращенных ЭС проводился контроль основных параметров: толщины, концентрации легирующей примеси, плотности эпитаксиальных дефектов.
Контроль толщины выращенных буферного и эпитаксиального слоев р-типа проводимости проводился на установке ИК Фурье спектрометр Nicolet 6700.
Контроль концентрации легирующей примеси в буферном и эпитаксиальном слоях р-типа проводимости проводился на установке ртутный зонд CVMap 92А.
Контроль плотности эпитаксиальных дефектов проводился с использованием оптического микроскопа Nikon LV100D.
Все вышеперечисленные виды контроля проводились на основе методов разработанных авторами [5].
Контроль плотности BPD проводился с использованием оптического микроскопа Nikon LV100D с предварительным травлением поверхности эпитаксиального слоя р-типа проводимости в расплаве KOH при температуре 500°С в течении 20 мин.
Результаты испытаний приведены в таблице 1.
Figure 00000002
где Nб - среднеарифметическое значение величины концентрации легирующей примеси в буферном слое ЭС р-типа проводимости для опытных партий;
NЭС - среднеарифметическое значение плотности эпитаксиальных дефектов для опытных партий.
Результаты.
Из приведенных в таблице данных, следует, что при значениях Nб≤8⋅1018 см-3 (k=0,013) величина NЭС имеет допустимые значения (≤1 см-2). При значениях Nб>8⋅1018 см-3 величина NЭС становится недопустимо высокой. Это свидетельствует о высокой эффективности предлагаемого способа.
Список используемых источников
[1] N. Thierry-Jebali, J. Hassan, M. Lazar, D. Planson, E. Bano, etall. Observation of the generation of stacking faults and active degradation measurements off-axis and on-axis 4H-SiC PiN diodes// Applied Physics Letters, American Institute of Physics. - 2012 - P. 8.
[2] Pat. US 20140190399. Reduction of basal plane dislocations in epitaxial SiC using an in-situ etch process/ Appl. No US 14/204.045. - 10.07.2014.
[3] Kimoto T. Cooper J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Application // 2014.
[4] La Via F. Silicon Carbide Epitaxy // CNR-IMM, Z.I. Strada VIII 5, 95121 Catania, Italy-2012.
[5] Geyfman E.M., Chibirkin V.V. Gartsev N.A., and at. Complex study of SiC epitaxial films / Silicon Carbide and Related Materials (2012), p. 593-596.

Claims (3)

  1. Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций, заключающийся в том, что поверхность подложки карбида кремния 4Н-политипа, которая разориентирована относительно кристаллографической плоскости Миллера-Бравэ (1120) более чем на 0°, но не более чем на 8°, с одной стороны травится в водороде, силане или аргоне при температуре не менее 1450°С и не более 1800°С и давлении газа не менее 30 мбар и не более 500 мбар в течение не более 90 мин, после чего на травленой поверхности подложки растится буферный слой р-типа проводимости карбида кремния с толщиной не менее 1 мкм и не более 50 мкм, в процессе роста которого в ростовую ячейку подаются пары источника легирующей примеси - триметилалюминия, затем на поверхности буферного слоя р-типа проводимости растится эпитаксиальный слой карбида кремния р-типа проводимости, отличающийся тем, что в процессе роста буферного слоя р-типа проводимости величина отношений объема паров источника легирующей примеси р-типа проводимости, поступающих в ростовую ячейку (Vлег), к общему объему газов, поступающих в ростовую ячейку (Vобщ), в том числе газа-носителя, газов-источников кремния, углерода и паров легирующей примеси, должно удовлетворять соотношению
  2. Figure 00000003
  3. где m - величина отношения, при котором концентрация легирующей примеси в выращенном буферном слое р-типа проводимости равна 8⋅10 см-3.
RU2019117695A 2019-06-06 2019-06-06 Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций RU2716866C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019117695A RU2716866C1 (ru) 2019-06-06 2019-06-06 Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019117695A RU2716866C1 (ru) 2019-06-06 2019-06-06 Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций

Publications (1)

Publication Number Publication Date
RU2716866C1 true RU2716866C1 (ru) 2020-03-17

Family

ID=69898338

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019117695A RU2716866C1 (ru) 2019-06-06 2019-06-06 Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций

Country Status (1)

Country Link
RU (1) RU2716866C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU913762A1 (ru) * 1980-02-20 1996-11-20 Физико-технический институт им. А.Ф.Иоффе Способ эпитаксиального выращивания карбида кремния политипа 4h
US20110045281A1 (en) * 2009-08-20 2011-02-24 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Reduction of basal plane dislocations in epitaxial sic
US20120280254A1 (en) * 2009-12-14 2012-11-08 Showa Denko K.K. Sic epitaxial wafer and method for manufacturing same
US20140190399A1 (en) * 2009-08-20 2014-07-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy REDUCTION OF BASAL PLANE DISLOCATIONS IN EPITAXIAL SiC USING AN IN-SITU ETCH PROCESS
US20140193965A1 (en) * 2009-08-20 2014-07-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy REDUCTION OF BASAL PLANE DISLOCATIONS IN EPITAXIAL SiC USING AN IN-SITU ETCH PROCESS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU913762A1 (ru) * 1980-02-20 1996-11-20 Физико-технический институт им. А.Ф.Иоффе Способ эпитаксиального выращивания карбида кремния политипа 4h
US20110045281A1 (en) * 2009-08-20 2011-02-24 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Reduction of basal plane dislocations in epitaxial sic
US20140190399A1 (en) * 2009-08-20 2014-07-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy REDUCTION OF BASAL PLANE DISLOCATIONS IN EPITAXIAL SiC USING AN IN-SITU ETCH PROCESS
US20140193965A1 (en) * 2009-08-20 2014-07-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy REDUCTION OF BASAL PLANE DISLOCATIONS IN EPITAXIAL SiC USING AN IN-SITU ETCH PROCESS
US20120280254A1 (en) * 2009-12-14 2012-11-08 Showa Denko K.K. Sic epitaxial wafer and method for manufacturing same

Similar Documents

Publication Publication Date Title
EP2700739B1 (en) Process for producing an epitaxial silicon carbide single-crystal substrate
US7531433B2 (en) Homoepitaxial growth of SiC on low off-axis SiC wafers
KR101410436B1 (ko) 에피택셜 탄화규소 단결정 기판의 제조 방법 및 이 방법에 의하여 얻은 에피택셜 탄화규소 단결정 기판
US4912063A (en) Growth of beta-sic thin films and semiconductor devices fabricated thereon
CN110192266B (zh) SiC外延晶片及其制造方法
Kong et al. Epitaxial growth of β‐SiC thin films on 6H α‐SiC substrates via chemical vapor deposition
US5709745A (en) Compound semi-conductors and controlled doping thereof
Zhao Surface defects in 4H-SiC homoepitaxial layers
KR20190102210A (ko) 기저면 전위가 탄화규소 에피택셜층에 미치는 영향을 줄이는 방법
US9422640B2 (en) Single-crystal 4H-SiC substrate
US9758902B2 (en) Method for producing 3C-SiC epitaxial layer, 3C-SiC epitaxial substrate, and semiconductor device
Mazzola et al. Observation of the D‐center in 6 H‐SiC p‐n diodes grown by chemical vapor deposition
Ji et al. Low resistivity, thick heavily Al-doped 4H-SiC epilayers grown by hot-wall chemical vapor deposition
RU2691772C1 (ru) Способ роста эпитаксиальной структуры монокристаллического карбида кремния с малой плотностью эпитаксиальных дефектов
RU2716866C1 (ru) Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций
JP3628079B2 (ja) 炭化珪素薄膜製造方法並びに炭化珪素薄膜および積層基板
Janzen et al. SiC material for high-power applications
Masumoto et al. Growth of silicon carbide epitaxial layers on 150-mm-diameter wafers using a horizontal hot-wall chemical vapor deposition
Kimoto et al. Chemical vapor deposition and deep level analyses of 4H-SiC (112̄0)
JP6295537B2 (ja) 炭化珪素基板ならびに半導体素子
CN113078205B (zh) 基于Al-N共掺的SiC外延结构及其制备方法
CN113913931A (zh) 一种具有p型缓冲层的外延结构及其制备方法
CN113913930A (zh) 一种具有n型缓冲层的外延结构及其制备方法
US20220310795A1 (en) Silicon carbide epitaxial substrate and method for manufacturing same
Lilja et al. Influence of n-type doping levels on carrier lifetime in 4H-SiC epitaxial layers