RU2714921C1 - Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора - Google Patents
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора Download PDFInfo
- Publication number
- RU2714921C1 RU2714921C1 RU2019118050A RU2019118050A RU2714921C1 RU 2714921 C1 RU2714921 C1 RU 2714921C1 RU 2019118050 A RU2019118050 A RU 2019118050A RU 2019118050 A RU2019118050 A RU 2019118050A RU 2714921 C1 RU2714921 C1 RU 2714921C1
- Authority
- RU
- Russia
- Prior art keywords
- voltage
- max
- range
- rectified
- stabilization
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000000087 stabilizing effect Effects 0.000 title claims abstract description 7
- 230000006641 stabilisation Effects 0.000 claims abstract description 14
- 238000011105 stabilization Methods 0.000 claims abstract description 14
- 230000001105 regulatory effect Effects 0.000 claims abstract description 5
- 230000001276 controlling effect Effects 0.000 claims abstract 2
- 238000004870 electrical engineering Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 7
- 230000005284 excitation Effects 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- RYAOESLKINBXFH-CMOCDZPBSA-N Arg-Phe-Phe-Cys Chemical compound C([C@H](NC(=O)[C@H](CCCNC(N)=N)N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CS)C(O)=O)C1=CC=CC=C1 RYAOESLKINBXFH-CMOCDZPBSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 208000035051 Malignant migrating focal seizures of infancy Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 208000012054 malignant migrating partial seizures of infancy Diseases 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/02—Details of the control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/14—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
- H02P9/26—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
- H02P9/30—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
- Rectifiers (AREA)
Abstract
Изобретение относится к области электротехники и может быть использовано в системе электропитания автономных объектов. Техническим результатом является улучшение массогабаритных и энергетических показателей при упрощении технической реализации способа, что обеспечивает повышение энергоэффективности процесса стабилизации его напряжения, повышение технологичности его реализации. Способ заключается в том, что переменное напряжение МЭГ выпрямляют с изменяемой частотой вращения его вала и при изменении частоты вращения вала от ƒmin до ƒmax регулируют его в направлении стабилизации на заданном уровне, формируют нерегулируемое основное выпрямленное напряжение Ud0 и дополнительное выпрямленное напряжение ΔUd0, эти два напряжения суммируют в соответствии с выражением Ud0Σ=Ud0±ΔUd0, а стабилизацию этого результирующего выпрямленного напряжения Ud0Σ осуществляют путем регулирования дополнительного выпрямленного напряжения ΔUd0 по уровню и по знаку в диапазоне ±ΔUd0=(+)ΔUd0max÷0÷(-)ΔUd0max, причем в диапазоне изменения частоты от ƒmin до напряжение ΔUd0 суммируют с основным напряжением Ud0, а в диапазоне от до ƒmax вычитают из него. Сущность способа поясняется структурно-функциональной схемой (ВМЭГ). 2 ил.
Description
Изобретение относится к области электротехники, а именно - к области электрических генераторов с переменной частотой вращения вала и может быть использовано при построении вентильных генераторов (ВГ) для систем электропитания автономных объектов, например, для летательных аппаратов, где требуются бесконтактность и минимально возможная масса и габариты.
Известны регулируемые по напряжению бесконтактные генераторы комбинированного возбуждения, включающие в себя два индуктора - нерегулируемый индуктор на постоянных магнитах и регулируемый индуктор с электромагнитным возбуждением, который реализуется на основе конструкции типа сексин - см. стр. 180, рис. 6.16 в Электрооборудование летательных аппаратов: учебник для вузов. В двух томах / под ред. С.А. Грузкова. - М.: Изд.-о МЭИ. - Том 1. Системы электроснабжения летательных аппаратов. - 2005. - 508 с. При подключении к выходу такого генератора выпрямительного блока он превращается в «бесконтактный вентильный генератор (БВГ)». Регулирование возбуждения для стабилизации выходного напряжения БВГ осуществляется с помощью электронного блока регулирования тока возбуждения регулируемого индуктора. Такие БВГ обеспечивают стабилизацию выходного напряжения при изменении частоты вращения вала генератора и нагрузки в заданных диапазонах.
Недостатком данного решения являются технологические сложности реализации конструкции второго индуктора типа сексин, которые возрастают с ростом мощности и частоты вращения вала.
Наиболее близким по технической сущности к предложенному изобретению является БВГ с возбуждением только от постоянных магнитов. Они выполняются в виде последовательно соединенных бесконтактной фазной электрической машины (ЭМ) и управляемого вентильного блока (УВБ), который может выполняться, например, на тиристорах (см. стр. 279 в [2]: Комлев И.В. Регулируемый магнитоэлектрический вентильный генератор Труды н/т-й конф. «Электрификация летательных аппаратов», посвященная 125-летию академика В.С. Кулебакина. Москва, 1 ноября 2016 г. ИД Академии Жуковского, 2016. - 322 с.) Способ стабилизации напряжения вентильного магнитоэлектрического генератора (МЭГ) заключается в том, что переменное напряжение МЭГ с изменяемой частотой вращения его вала выпрямляют, при изменении частоты вращения вала от ƒmin до ƒmax, регулируют его в направлении стабилизации на заданном уровне. Стабилизация напряжения осуществляется путем фазового управления 18 тиристорами, на которых выполняется выполнения выпрямительный мост. Управление (УВБ) для стабилизации напряжения осуществляется фазовым способом с помощью блока управления (БУ).
Недостатком этого решения является повышенная сложность УВБ и недостаточно высокая его помехоустойчивость. Кроме того, входной коэффициент мощности УВБ сильно уменьшается с ростом угла регулирования тиристоров, что при стабилизации выходного напряжения БВГ в режиме максимальной частоты вращения вала приводит к увеличению проектно необходимой габаритной мощности ЭМ, то есть к ухудшению ее массогабаритных и энергетических показателей.
Технической задачей изобретения является улучшение массогабаритных и энергетических показателей при упрощении технической реализации способа.
Технический результат способа заключается в повышении энергоэффективности процесса стабилизации его напряжения (при переменной частоте вращения вала) и технологичности практической его реализации.
Это достигается тем, что при известном способе стабилизации выходного напряжения вентильного магнитоэлектрического генератора (МЭГ), состоящем в том, что переменное напряжение МЭГ с изменяемой частотой вращения его вала выпрямляют, при изменении частоты вращения вала от ƒmin до ƒmax регулируют его в направлении стабилизации на заданном уровне, формируют нерегулируемое основное выпрямленное напряжение Ud0 и дополнительное выпрямленное напряжение ΔUd0, эти два напряжения суммируют в соответствии с выражением: Ud0Σ=Ud0±ΔUd0, а стабилизацию этого результирующего выпрямленного напряжения Ud0Σ осуществляют путем регулирования дополнительного выпрямленного напряжения ΔUd0 по уровню и по знаку в диапазоне: ±Ud0=(+)ΔUd0max÷0÷(-)ΔUd0max, причем в диапазоне изменения частоты от ƒmin до напряжение ΔUd0 суммируют с основным напряжением Ud0, а в диапазоне от до ƒmax вычитают из него.
Изобретение поясняется чертежами где на фиг. 1 показана структурно-функциональная схема вентильного магнитоэлектрического генератора (ВМЭГ), реализующая способ стабилизации, на фиг. 2 приведена скоростная характеристика ВМЭГ, поясняющая зависимость его выходного напряжения от частоты вращения вала для двух диапазонов ее изменения: от 6000 об/мин до 9000 об/мин и от 6000 об/мин до 12000 об/мин.
Стабилизированный по выходному напряжению вентильный магнитоэлектрический генератор (ВМЭГ) содержит: синхронный генератор 1 с возбуждением от постоянных магнитов, своим выходом подключенный ко входам выпрямительного блока 2, а также последовательно включенное в цепь постоянного тока этого блока 2 выход реверсивного вольтодобавочного канала (РВДК). Силовая часть РВДК включает в себя высокочастотный инвертор напряжения (ВЧИН) 3, выполненный на транзисторах 3.1, 3.2 с делителем напряжения 3 на конденсаторах 3.3, 3.4, которые своими выводами 3.5, 3.6, подключены к выходным выводам 2.1, 2.2 выпрямительного блока 2, между которыми включен также накопительный конденсатор 2.3; согласующий трансформатор напряжения 4 (установленный на выходе инвертора 3) с первичной 4.1 и двумя вторичными обмотками 4.2, 4.3, причем последние с двумя полностью управляемыми ключами с односторонней проводимостью 5, 6 образуют реверсивный вольтодобавочный выпрямитель (РВДВ) по нулевой схеме. Точка соединения силовых выводов ключей 5, 6 через дроссель 7 подключена к одному выходному выводу 8 ВМЭГ, а второй его выходной вывод 9 объединен с выходным выводом выпрямительного блока 2.2. Между выходными выводами 8, 9 ВМЭГ включен конденсатор 10, который совместно с дросселем 7 образует сглаживающий Г образный LC фильтр. Нагрузку 11 подключают к выходным выводам 8, 9 ВМЭГ. Управление инвертором напряжения 3 осуществляется блоком управления (БУ) 12, выходы которого через драйверы 13 подключены к управляющим входам ключей инвертора напряжения 3. Для стабилизации напряжения ВМЭГ при возмущающих воздействиях по нагрузке используется контур отрицательной обратной связи (КООС) по напряжению 14. При реализации драйверов 13 и КООС 14 используются стандартные решения. Электропитание узлов 12, 13, 14 осуществляется блоком питания внутренних нужд (БПВН) 15.
Для пояснения принципа работы реверсивного вольтодобавочного канала (РВДК) воспользуемся зависимостью выходного напряжения ВМЭГ от частоты вращения приводного вала ЭМ, представленной на фиг. 2. На ней в качестве примера показаны два возможных диапазона изменения частоты вращения вала: 1-й диапазон - от nmin=6000 об/мин до nmax=9000 об/мин и 2-й диапазон - от nmin=6000 об/мин до nmax=12000 об/мин. Линии 0-k1 и 0-k2 на фиг. 2 отражают скоростные характеристики (в относительных единицах) для двух диапазонов изменения частоты вращения вала U* МЭГ=ƒ(n); а линии 0-g1 и 0-g2 - скоростные характеристики регулируемой части ВМЭГ - U* РГ=ƒ(n). Стабилизация выходного напряжения ВМЭГ характеризуется линиями h-02 и h-c соответственно. Для 1-го диапазона изменения частоты отрезки h-01 и 01-02 определяют 1-ю и 2-ю зоны стабилизации напряжения: в 1-й зоне (h-02) реализуется режим вольтодобавки (ВД), а во 2-й зоне (01-02) - режим вольтовычитания (ВВ). Аналогичный комментарий распространяется и на 2-й диапазон изменения частоты.
Процесс регулирования рассмотрим только для 1-го диапазона. За номинальную частоту вращения вала здесь принимается значение: Функциональная задача РВДК заключается в следующем: в 1-й зоне изменения частоты вращения nmin<nном к напряжению Ud0 основного канала (напряжение на накопительном конденсаторе 2.3) должно добавляться напряжение вольтодобавочного (стабилизирующего) канала ΔUd0, которое с ростом частоты вращения вала n должно автоматически уменьшаться по уровню от (+)ΔUd0max при nmin до 0 при nном (отрезок n1-h на фиг. 2.), а во 2-й зоне при nmax>n>nном из основного напряжения Ud0 дополнительное напряжение должно вычитаться и с ростом частоты вращения вала n автоматически увеличиваться по уровню от 0 при nном до (-)ΔUd0max при nmax (отрезок 02-k1 на фиг. 2). Это означает, что при переходе из 1-ой зоны (ВД) во 2-ю зону (ВВ) логика работы регулятора ширины импульсов (РШИ) должна изменяться на обратную. Из этого следует, что датчик напряжения МЭГ должен обладать V-образной характеристикой, на фиг. 2 определяемой изогнутой линией . В 1-й зоне транзисторы 3.1, 3.2 ВЧИН включают попеременно с задержкой на угол регулирования α, а транзисторы 5.1, 6.1 должны быть включены постоянно, т.е. РВДК здесь работает в выпрямительном режиме. Во 2-й зоне транзисторы 3.1, 3.2 выключают, а ВЧИН работает в выпрямительном режиме. Здесь транзисторы 5.1, 6.1 РВДК должны работать попеременно, но на интервалах, определяемых углом регулирования α, они должны находиться во включенном состоянии, т.е. на этих интервалах мощность МЭГ передается в нагрузку непосредственно. Это означает, что РВДК работает здесь в обращенном, т.е. в инверторном режиме. При этом обратный поток энергии идет на подзаряд накопительного конденсатора 2.3. В результате напряжение на нем возрастает, диоды выпрямительного моста 2 запираются, и отбор мощности от МЭГ 1 прекращается до того момента, когда конденсатор 2.3 разрядится на нагрузку 11, и напряжение на нем станет меньше, чем напряжение на выходе выпрямителя 2. Далее процесс подзаряда и разряда конденсатора 2.3 будет повторяться. Вышеописанные процессы работы РВДК обеспечивают стабилизацию выходного напряжения ВМЭГ.
Использование изобретения обеспечивает повышение КПД и уменьшение общей массы МЭГ и РВДК за счет преобразования не полной мощности МЭГ, а лишь его части. Численная оценка результата определяется диапазоном изменения частоты вращения вала МЭГ. Например, при кратности изменения частоты вращения вала Kn=nmax/nmin=1/5 максимальная мощность РВДК (в крайних точках частотного диапазона - nmin и nmax) составляет 20% от выходной номинальной мощности ВМЭГ, а при Kn=2 уже 30%. Мощность электронного блока уменьшается в 5 раз в первом случае и в 3 раза - во втором.
Claims (1)
- Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора (МЭГ), заключающийся в том, что переменное напряжение МЭГ выпрямляют с изменяемой частотой вращения его вала и при изменении частоты вращения вала от ƒmin до ƒmax регулируют его в направлении стабилизации на заданном уровне, отличающийся тем, что формируют нерегулируемое основное выпрямленное напряжение Ud0 и дополнительное выпрямленное напряжение ΔUd0, эти два напряжения суммируют в соответствии с выражением Ud0Σ=Ud0±ΔUd0, а стабилизацию этого результирующего выпрямленного напряжения Ud0Σ осуществляют путем регулирования дополнительного выпрямленного напряжения ΔUd0 по уровню и по знаку в диапазоне ±ΔUd0=(+)ΔUd0max÷0÷(-)ΔUd0max, причем в диапазоне изменения частоты от ƒmin до напряжение ΔUd0 суммируют с основным напряжением Ud0, а в диапазоне от до ƒmax вычитают из него.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019118050A RU2714921C1 (ru) | 2019-06-11 | 2019-06-11 | Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019118050A RU2714921C1 (ru) | 2019-06-11 | 2019-06-11 | Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2714921C1 true RU2714921C1 (ru) | 2020-02-21 |
Family
ID=69630847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019118050A RU2714921C1 (ru) | 2019-06-11 | 2019-06-11 | Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2714921C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2726950C1 (ru) * | 2020-03-12 | 2020-07-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет" "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Стабилизированный по напряжению вентильный магнитоэлектрический генератор |
RU2762286C1 (ru) * | 2021-04-22 | 2021-12-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Стабилизированный по напряжению вентильный магнитоэлектрический генератор |
RU2792170C1 (ru) * | 2022-10-31 | 2023-03-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Вентильный магнитоэлектрический генератор с коррекцией входного коэффициента мощности его выпрямителя |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2256509A (en) * | 1991-06-04 | 1992-12-09 | Mitsubishi Electric Corp | Magnetoelectric generating system |
CN2229726Y (zh) * | 1995-06-13 | 1996-06-19 | 王锡山 | 机动车、船用大功率永磁直流发电机 |
RU81609U1 (ru) * | 2008-12-05 | 2009-03-20 | Марк Миронович Юхнин | Система генерирования стабильного напряжения переменного тока |
US20120181794A1 (en) * | 2011-01-18 | 2012-07-19 | Hsu Fu-Tzu | Magnetoelectric cogenerator |
RU168788U1 (ru) * | 2016-07-18 | 2017-02-21 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" | Устройство генерирования стабильного напряжения переменного тока |
JP2017204953A (ja) * | 2016-05-12 | 2017-11-16 | 株式会社デンソー | 回転電機ユニット |
RU2637767C2 (ru) * | 2016-03-16 | 2017-12-07 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Способ стабилизации выходного напряжения магнитоэлектрического генератора |
-
2019
- 2019-06-11 RU RU2019118050A patent/RU2714921C1/ru active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2256509A (en) * | 1991-06-04 | 1992-12-09 | Mitsubishi Electric Corp | Magnetoelectric generating system |
CN2229726Y (zh) * | 1995-06-13 | 1996-06-19 | 王锡山 | 机动车、船用大功率永磁直流发电机 |
RU81609U1 (ru) * | 2008-12-05 | 2009-03-20 | Марк Миронович Юхнин | Система генерирования стабильного напряжения переменного тока |
US20120181794A1 (en) * | 2011-01-18 | 2012-07-19 | Hsu Fu-Tzu | Magnetoelectric cogenerator |
RU2637767C2 (ru) * | 2016-03-16 | 2017-12-07 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Способ стабилизации выходного напряжения магнитоэлектрического генератора |
JP2017204953A (ja) * | 2016-05-12 | 2017-11-16 | 株式会社デンソー | 回転電機ユニット |
WO2017195799A1 (ja) * | 2016-05-12 | 2017-11-16 | 株式会社デンソー | 回転電機ユニット |
RU168788U1 (ru) * | 2016-07-18 | 2017-02-21 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" | Устройство генерирования стабильного напряжения переменного тока |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2726950C1 (ru) * | 2020-03-12 | 2020-07-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет" "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Стабилизированный по напряжению вентильный магнитоэлектрический генератор |
RU2762286C1 (ru) * | 2021-04-22 | 2021-12-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Стабилизированный по напряжению вентильный магнитоэлектрический генератор |
RU2792170C1 (ru) * | 2022-10-31 | 2023-03-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Вентильный магнитоэлектрический генератор с коррекцией входного коэффициента мощности его выпрямителя |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9294001B2 (en) | Power converter with dead-time control function | |
US5376877A (en) | Engine-driven generator | |
EP2807716B1 (en) | Circuit for transferring power between a direct current line and an alternating-current line | |
KR101102802B1 (ko) | 영구 자석 교류기용 제어기 | |
Bhende et al. | Novel control of photovoltaic based water pumping system without energy storage | |
JP6062058B2 (ja) | 電力変換装置 | |
RU2714921C1 (ru) | Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора | |
JP6065753B2 (ja) | Dc/dcコンバータおよびバッテリ充放電装置 | |
Ahmed | Modeling and simulation of ac–dc buck-boost converter fed dc motor with uniform PWM technique | |
US8217618B2 (en) | Energy-saving controller for three-phase induction motors | |
RU142160U1 (ru) | Тиристорный регулятор переменного напряжения | |
RU2467893C1 (ru) | Устройство для компенсации реактивной мощности электроподвижного состава | |
RU2597248C1 (ru) | Дизель-генераторная установка | |
RU2732851C2 (ru) | Регулируемый повышающий выпрямитель напряжения | |
RU2687049C1 (ru) | Способ управления электроагрегатом с асинхронным генератором | |
Sudhakar et al. | Design of DC-DC converter for wind power application | |
RU151665U1 (ru) | Асинхронизированный синхронный генератор | |
Bhardwaj et al. | Performance analysis of SPRS-based induction motor drive using multi-level inverter and buck-boost chopper | |
Krithiga et al. | A microcontroller based power electronic controller for PV assisted DC motor control | |
RU2701169C1 (ru) | Малогабаритная система генерирования постоянного | |
RU176888U1 (ru) | Полупроводниковый выпрямитель | |
RU2709101C1 (ru) | Стабилизированный по напряжению генератор на основе асинхронной машины с короткозамкнутой роторной обмоткой | |
Waghare et al. | PWM controlled high power factor single phase Fan regulator | |
TW201635696A (zh) | 交流馬達驅動系統及驅動方法 | |
RU180843U1 (ru) | Устройство для управления асинхронным двигателем с фазным ротором |