RU2713900C2 - Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы - Google Patents

Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы Download PDF

Info

Publication number
RU2713900C2
RU2713900C2 RU2018120632A RU2018120632A RU2713900C2 RU 2713900 C2 RU2713900 C2 RU 2713900C2 RU 2018120632 A RU2018120632 A RU 2018120632A RU 2018120632 A RU2018120632 A RU 2018120632A RU 2713900 C2 RU2713900 C2 RU 2713900C2
Authority
RU
Russia
Prior art keywords
lead bronze
sintered
electroerosive
electrodes
powder
Prior art date
Application number
RU2018120632A
Other languages
English (en)
Other versions
RU2018120632A (ru
RU2018120632A3 (ru
Inventor
Евгений Викторович Агеев
Екатерина Владимировна Агеева
Антон Сергеевич Переверзев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2018120632A priority Critical patent/RU2713900C2/ru
Publication of RU2018120632A publication Critical patent/RU2018120632A/ru
Publication of RU2018120632A3 publication Critical patent/RU2018120632A3/ru
Application granted granted Critical
Publication of RU2713900C2 publication Critical patent/RU2713900C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/08Alloys based on copper with lead as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Изобретение относится к получению спеченных изделий из порошков свинцовой бронзы. Проводят электроэрозионное диспергирование отходов свинцовой бронзы в дистиллированной воде на установке электроэрозионного диспергирования при частоте следования импульсов 95…105 Гц, напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ. Полученный порошок подвергают изостатическому прессованию в течение двух минут при давлении 250 МПа, а затем спекают скомпактированные образцы в трубчатой раскладной печи в течение 12 часов при температуре 827°С в среде аргона. Обеспечивается повышение эффективности процесса спекания, а также уменьшение пористости. 6 ил., 3 пр.

Description

Изобретение относится к способам получения спеченных изделий из бронзовых сплавов, в которых используются порошки связующей фазы со сферическими неагломерированными частицами, и может быть использовано при изготовлении изделий общего машиностроительного назначения.
Известен способ получения пористых материалов на основе меди (авторское свидетельство СССР № 1639888, МПК B22F 3/12, С22С 1/08, С22С 1/09, опубл. 07.04.1991), включающий приготовление шихты, прессование заготовок и их спекание в восстановительной среде. Шихту приготавливают из смеси порошка и волокна меди при отношении среднего размера частиц порошка к диаметру волокна 1-2 и при содержании волокна в смеси 50-90 об. %. Давление прессования Р определяют по формуле Р 142-91X+27Х2 МПа, где X - содержание волокна в шихте, доли единицы. Способ позволяет получить изделия пористостью более 30% с низкой усадкой при спекании (в пределах 1%).
Известен способ изготовления изделий из порошковых алюминиевых бронз (Патент РФ №2032494, МПК B22F 3/12). Сущность изобретения заключается в смешении с индустриальным маслом шихты, содержащей не менее 87 мас. % порошка меди с добавками не менее 5 мас. % алюминия и других легирующих элементов, с последующим спеканием прессовок в воздушной среде при температуре в камере печи 600-750°C, в режиме самовозгорания с последующей закалкой в масле, служащей также и пропиткой пористых подшипников в масле.
Недостатком известных способов является многооперационность технологического процесса, а также наличие высокой пористости в материале изделия при использовании указанных режимов спекания и невысокие в связи с этим физико-механические свойства.
В основу изобретения положена задача осуществить такое получение порошкового материала для спекания, чтобы было обеспечено снижение затрат и повышение эффективности процесса спекания, а также уменьшение пористости.
Поставленная задача решается тем, что упомянутый порошок получается электроэрозионным диспергированием отходов свинцовой бронзы (ГОСТ 493-79) в дистиллированной воде на установке ЭЭД при следующих параметрах: частота следования импульсов 95…105 Гц; напряжение на электродах 190…200 В и емкость конденсаторов 65,5 мкФ, затем полученный порошок подвергали изостатическому прессованию в течение двух минут при давлении 250 МПа, а затем скомпактированные образцы в трубчатой раскладной печи Nabertherm RS 80/300/13/P470 спекали в течение 12 часов при температуре 827°C (1100 К) в среде аргона.
Получаемые этим способом порошковые материалы имеют в основном сферическую форму частиц. Причем, изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов) можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса.
На фигуре 1 представлена схема процесса ЭЭД, на фигуре 2 показана схема процесса изостатического прессования, на фигуре 3 - микроструктура спеченного изделия, на фигуре 4 - элементный состав спеченного изделия, на фигуре 5 - дифрактограмма спеченного образца, на фигуре 6 - гистограмма распределения пор по размеру.
Порошковый материал получали в следующей последовательности.
На первом этапе производили сортировку отходов, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой - дистиллированной водой, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.
На втором этапе - этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 1. Импульсное напряжение генератора 1 прикладывается к электродам 2 и далее к отходам 3 (в качестве электродов так же служили соответственно отходы свинцовой бронзы) в реакторе 4. При достижении напряжения определенной величины происходит электрический пробой рабочей среды 5, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии, материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырем 6). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил, капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы порошка 7. Регулятор напряжения 8 предназначен для установки необходимых значений напряжения, а встряхиватель 9 передвигает один электрод, что обеспечивает непрерывное протекание процесса ЭЭД.
На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора.
На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка. Затем полученный порошок прессовали и спекали.
Для получения компактированных материалов был использован изостатический пресс EPSI CIP 400-200*1000Y. Схема процесса прессования изображена на фигуре 2. Согласно схеме 10 - затвор, 11 - резиновая форма, 12 - компактируемая заготовка, 13 - рабочая жидкость (вода).
К достоинствам метода холодного изостатического прессования относят: равномерность распределения давления и плотности в заготовке за счет всестороннего (изостатического) сжатия, отсутствие потерь на трение и необходимости в пластификаторах; отсутствие коробления при спекании, произвольные соотношения высоты и поперечного сечения заготовок.
Скомпактированные образцы в трубчатой раскладной печи Nabertherm RS 80/300/13/Р470, температура максимальная 1300°C спекали в течение 12 часов при температуре 827°C (1100 К) в среде аргона.
При этом достигается следующий технический результат: получение спеченных изделий из изостатически спрессованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса. При этом значительно уменьшается пористость и шероховатость, а также увеличивается твердость полученных спеченных изделий.
Пример 1.
Для получения порошков из отходов свинцовой бронзы методом электроэрозионного диспергирования в дистиллированной воде использовали установку ЭЭД (Пат. 2449859 Российская Федерация, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. - №2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. №13). При получении порошка использовали следующие параметры установки: отходы свинцовой бронзы диспергировали при напряжении на электродах 190-200 В, емкости разрядных конденсаторов 65 мкФ, частоте следования импульсов 95-105 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение материала с образованием дисперсных частиц порошка.
Для получения компактированных материалов был использован изостатический пресс EPSI CIP 400-200*1000Y. На первом этапе прессования порошок помещали в гибкую резиновую форму и предварительно вручную уплотняли до плотности 3,1847 г/см3. Далее образцы помещали в рабочую камеру пресса при температуре 18°C, давление нагнетали до необходимой величины, при этом давлении образец выдерживался в течение 2 мин, после чего давление сбрасывали до атмосферного и скомпактированные образцы извлекали из резиновой формы. Были использованы следующие давления изостатического прессования 250 МПа.
Скомпактированные образцы в трубчатой раскладной печи Nabertherm RS 80/300/13/Р470, температура максимальная 1300°C спекали в течение 12 часов при температуре 827°C (1100 К) в среде аргона.
Полученное спеченное изделие исследовали различными методами.
Методом оптической микроскопии было проведено исследование микроструктуры образцов (по поперечному шлифу). Поверхность образца шлифовали и полировали. Шлифование производили металлографической бумагой с крупным (№№60-70) и мелким зерном (№№220-240). В процессе шлифования образец периодически поворачивали на 90°. В процессе шлифования зафиксирована рыхлость краев образцов, которая приводила к откалыванию частиц и разрушению поверхности шлифа. Смывали частицы абразива водой и подвергали полированию на круге суспензиями из оксидов металла (Fe3O4, Cr2O3, Al2O3). После достижения зеркального блеска, поверхность шлифа промывали водой, спиртом и просушивали фильтровальной бумагой.
Для изучения элементного состава и морфологии полученного спеченного изделия с помощью энергодисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D», были получены спектры характеристического рентгеновского излучения в различных точках на поверхности образца и по поперечному шлифу. Микроструктура спеченного образца представлена на фигуре 3. Элементный состав спеченного образца представлен на фигуре 4. Установлено что основными элементами являются Cu (64,09%); Pb (19,99%); Zn (5,98%); Sn (5,55%).
Исследование фазового состава спеченного образца проводили методом рентгеновской дифракции на дифрактометре Rigaku Ultima IV в излучении Cu-Kq (длина волны X=0.154178 нм) с использованием щелей Соллера. На основании фигуры 5 было установлено, что основными фазами в спеченном образце являются Си, Pb(Cu2O2), PbO, Fe3O4.
Пористость определяли с помощью оптического инвертированного микроскопа Olympus GX51 с программным обеспечением для количественного анализа изображения. Подготовленные образцы не имели следов шлифования, полирования или выкрашивания структурных составляющих. Шлиф изготовляли по поперечному сечению (излому) целого изделия или части его площадью <2 см2, по "siams Photolab", которым оснащен микроскоп, разработано с учетом специфики применения методов цифровой микроскопии и анализа изображений для металлографического анализа соединений. Результаты исследования пористости представлены на фигуре 6, пористость составляет 1,44%.
Испытания твердости образцов по поверхности и поперечному шлифу проводили с помощью автоматической системы анализа микротвердости DM-8 по методу микро-Виккерса при нагрузке на индентор 50 г по десяти отпечаткам со свободным выбором места укола в соответствии с ГОСТом 9450-76 (Измерение микротвердости вдавливанием алмазных наконечников). Время нагружения индентора составило 15 с. В результате средняя твердость составила 54,05 HV.
Пример 2.
Для получения порошков из отходов свинцовой бронзы методом электроэрозионного диспергирования в дистиллированной воде использовали установку ЭЭД (Пат. 2449859 Российская Федерация, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. - №2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. №13). При получении порошка использовали следующие параметры установки: отходы свинцовой бронзы диспергировали при напряжении на электродах 190-200 В, емкости разрядных конденсаторов 65 мкФ, частоте следования импульсов 95-105 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение материала с образованием дисперсных частиц порошка.
Для получения компактированных материалов был использован изостатический пресс EPSI CIP 400-200*1000Y. На первом этапе прессования порошок помещали в гибкую резиновую форму и предварительно вручную уплотняли до плотности 3,1847 г/см3. Далее образцы помещали в рабочую камеру пресса при температуре 18°C, давление нагнетали до необходимой величины, при этом давлении образец выдерживался в течение 1 мин, после чего давление сбрасывали до атмосферного и скомпактированные образцы извлекали из резиновой формы. Были использованы следующие давления изостатического прессования 150 МПа.
При данных режимах порошковый материал не спрессовался.
Пример 3.
Для получения порошков из отходов свинцовой бронзы методом электроэрозионного диспергирования в дистиллированной воде использовали установку ЭЭД (Пат. 2449859 Российская Федерация, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. - №2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. №13). При получении порошка использовали следующие параметры установки: отходы свинцовой бронзы диспергировали при напряжении на электродах 190-200 В, емкости разрядных конденсаторов 65 мкФ, частоте следования импульсов 95-105 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение материала с образованием дисперсных частиц порошка.
Для получения компактированных материалов был использован изостатический пресс EPSI CIP 400-200*1000Y. На первом этапе прессования порошок помещали в гибкую резиновую форму и предварительно вручную уплотняли до плотности 3,1847 г/см3. Далее образцы помещали в рабочую камеру пресса при температуре 18°C, давление нагнетали до необходимой величины, при этом давлении образец выдерживался в течение 2 мин, после чего давление сбрасывали до атмосферного и скомпактированные образцы извлекали из резиновой формы. Были использованы следующие давления изостатического прессования 250 МПа.
Скомпактированные образцы в трубчатой раскладной печи Nabertherm RS 80/300/13/Р470, температура максимальная 1300°C спекали в течение 3 часов при температуре 750°C в среде аргона.
При данных режимах порошковый материал не спекся.

Claims (1)

  1. Способ получения спеченных изделий из изостатически спрессованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы, отличающийся тем, что проводят электроэрозионное диспергирование отходов свинцовой бронзы в дистиллированной воде на установке электроэрозионного диспергирования при частоте следования импульсов 95…105 Гц, напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ с получением нанокомпозиционного порошка свинцовой бронзы, который подвергают изостатическому прессованию в течение двух минут при давлении 250 МПа, а затем скомпактированные образцы в трубчатой раскладной печи спекают в течение 12 часов при температуре 827°C в среде аргона.
RU2018120632A 2018-06-05 2018-06-05 Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы RU2713900C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018120632A RU2713900C2 (ru) 2018-06-05 2018-06-05 Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018120632A RU2713900C2 (ru) 2018-06-05 2018-06-05 Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы

Publications (3)

Publication Number Publication Date
RU2018120632A RU2018120632A (ru) 2019-12-05
RU2018120632A3 RU2018120632A3 (ru) 2020-01-15
RU2713900C2 true RU2713900C2 (ru) 2020-02-10

Family

ID=68834239

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018120632A RU2713900C2 (ru) 2018-06-05 2018-06-05 Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы

Country Status (1)

Country Link
RU (1) RU2713900C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782593C1 (ru) * 2022-04-06 2022-10-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU) Способ получения свинцово-сурьмянистого порошка из отходов сплава ССу3 в воде дистиллированной

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1639888A1 (ru) * 1988-12-30 1991-04-07 Белорусское республиканское научно-производственное объединение порошковой металлургии Способ получени пористых материалов на основе меди
RU2032494C1 (ru) * 1992-03-12 1995-04-10 Акционерное общество "Электроконтакт" Способ изготовления изделий из порошковых алюминиевых бронз
RU2285582C1 (ru) * 2005-03-22 2006-10-20 Владивостокский государственный университет экономики и сервиса (ВГУЭС) Способ получения антифрикционных порошковых материалов на основе меди
UA81670U (ru) * 2013-01-02 2013-07-10 Восточноукраинский Национальный Университет Имени Владимира Даля Способ получения порошка меди
RU2597445C2 (ru) * 2014-09-02 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения нанопорошка меди из отходов
RU2599476C2 (ru) * 2014-09-02 2016-10-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения медного порошка из отходов

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1639888A1 (ru) * 1988-12-30 1991-04-07 Белорусское республиканское научно-производственное объединение порошковой металлургии Способ получени пористых материалов на основе меди
RU2032494C1 (ru) * 1992-03-12 1995-04-10 Акционерное общество "Электроконтакт" Способ изготовления изделий из порошковых алюминиевых бронз
RU2285582C1 (ru) * 2005-03-22 2006-10-20 Владивостокский государственный университет экономики и сервиса (ВГУЭС) Способ получения антифрикционных порошковых материалов на основе меди
UA81670U (ru) * 2013-01-02 2013-07-10 Восточноукраинский Национальный Университет Имени Владимира Даля Способ получения порошка меди
RU2597445C2 (ru) * 2014-09-02 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения нанопорошка меди из отходов
RU2599476C2 (ru) * 2014-09-02 2016-10-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения медного порошка из отходов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782593C1 (ru) * 2022-04-06 2022-10-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU) Способ получения свинцово-сурьмянистого порошка из отходов сплава ССу3 в воде дистиллированной
RU2802616C1 (ru) * 2022-11-25 2023-08-30 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Способ получения бронзовых электродов для процессов электроискрового легирования
RU2812059C1 (ru) * 2023-11-08 2024-01-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" Способ получения спеченных изделий из электроэрозионных порошков на основе алюминиевого сплава АД0Е

Also Published As

Publication number Publication date
RU2018120632A (ru) 2019-12-05
RU2018120632A3 (ru) 2020-01-15

Similar Documents

Publication Publication Date Title
Ageev et al. Fabrication and investigation of carbide billets from powders prepared by electroerosive dispersion of tungsten-containing wastes
RU2680536C1 (ru) Способ получения спеченного изделия из порошка кобальтохромового сплава
Cameron et al. Better Sintering through Green‐State Deformation Processing
Khan et al. Investigation of mechanical properties based on grain growth and microstructure evolution of alumina ceramics during two step sintering process
RU2713900C2 (ru) Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы
RU2681238C1 (ru) Способ получения спеченных изделий из электроэрозионных вольфрамосодержащих нанокомпозиционных порошков
Jain et al. Study of microstructure and mechanical properties of Al-Cu metal matrix reinforced with B4C particles Composite
RU2748659C2 (ru) Способ получения спеченных изделий из одноосно спрессованных электроэрозионных нанодисперсных порошков свинцовой бронзы
Laptiev et al. Microstructure and mechanical properties of WC-40Co composite obtained by impact sintering in solid state
RU2756465C1 (ru) Способ получения безвольфрамового твердого сплава КНТ из порошковых материалов, полученных в воде дистиллированной
RU2613240C2 (ru) Способ получения заготовок вольфрамо-титанового твердого сплава
Grashkov et al. X-ray spectral microanalysis of W-Ni-Fe heavy tungsten alloy particles used for the restoration of agricultural machinery parts
RU2756407C1 (ru) Способ получения безвольфрамового твердого сплава КНТ из порошковых материалов, полученных в спирте
Grashkov et al. Investigation of the sinterability of cobalt-chromium powders used for the restoration of agricultural machinery parts
Mironovs et al. Combined static-dynamic compaction of metal powder and ceramic materials
RU2812059C1 (ru) Способ получения спеченных изделий из электроэрозионных порошков на основе алюминиевого сплава АД0Е
Ageev et al. A study of porosity of products sintered from BrS30 alloy electro-erosion powders
Hwang et al. Deformation behaviour of nanocrystalline magnesium
RU2228238C1 (ru) Способ получения композита на основе боридов, карбидов металлов iv-vi и viii групп
RU2816973C1 (ru) Способ изготовления жаропрочного никелевого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ЖС6У в осветительном керосине
RU2802693C1 (ru) Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине
RU2747197C1 (ru) Способ получения безвольфрамовых твердосплавных порошков из отходов сплава марки КНТ-16 в спирте этиловом
RU2802692C1 (ru) Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в воде
RU2034928C1 (ru) Способ получения спеченного композиционного материала на основе диборида титана
Sampath et al. Fast consolidation of WC–Co

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200606