RU2748659C2 - Способ получения спеченных изделий из одноосно спрессованных электроэрозионных нанодисперсных порошков свинцовой бронзы - Google Patents

Способ получения спеченных изделий из одноосно спрессованных электроэрозионных нанодисперсных порошков свинцовой бронзы Download PDF

Info

Publication number
RU2748659C2
RU2748659C2 RU2019131552A RU2019131552A RU2748659C2 RU 2748659 C2 RU2748659 C2 RU 2748659C2 RU 2019131552 A RU2019131552 A RU 2019131552A RU 2019131552 A RU2019131552 A RU 2019131552A RU 2748659 C2 RU2748659 C2 RU 2748659C2
Authority
RU
Russia
Prior art keywords
lead bronze
sintered
pressing
powder
production
Prior art date
Application number
RU2019131552A
Other languages
English (en)
Other versions
RU2019131552A3 (ru
RU2019131552A (ru
Inventor
Екатерина Владимировна Агеева
Евгений Викторович Агеев
Антон Сергеевич Переверзев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2019131552A priority Critical patent/RU2748659C2/ru
Publication of RU2019131552A3 publication Critical patent/RU2019131552A3/ru
Publication of RU2019131552A publication Critical patent/RU2019131552A/ru
Application granted granted Critical
Publication of RU2748659C2 publication Critical patent/RU2748659C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к способам получения спеченных изделий из порошков свинцовой бронзы и может быть использовано при изготовлении изделий общего машиностроительного назначения. Способ получения спеченных изделий из порошков свинцовой бронзы включает прессование порошка бронзы и спекание спрессованного материала с получением спеченного изделия. Прессованию подвергают наноразмерный сферический порошок свинцовой бронзы, полученный электроэрозионным диспергированием отходов свинцовой бронзы в дистиллированной воде при частоте следования импульсов 95-105 Гц, напряжении на электродах 190-200 В и емкости конденсаторов 65,5 мкФ, прессование порошка проводят путем одноосного прессования при давлении 1500 МПа с выдержкой в течение 2 минут, а спекание спрессованного материала осуществляют при температуре 827°С в среде аргона в течение 12 часов. Обеспечивается уменьшение пористости и увеличение твердости спеченных изделий. 6 ил., 3 пр.

Description

Изобретение относится к способам получения спеченных изделий из бронзовых сплавов, в которых используются порошки связующей фазы со сферическими неагломерированными частицами, и может быть использовано при изготовлении изделий общего машиностроительного назначения.
Известен способ получения самосмазывающегося материала на медно-графитовой основе, содержащего медь с не менее 0,5% фосфора, 4-25% твердой смазки (графит), и около 20% свинца, включающий холодное прессование исходных порошковых компонентов материала, термическую обработку при 750-850°C и последующее горячее или холодное прессование (патент Великобритании №1148011, С 22 С 1/05, 1969).
Известен также способ изготовления композиционного материала на основе меди, включающий смешение исходных порошков меди, окислов металлов и графита в заданном соотношении, формование из подготовленной смеси контактов путем прессования под давлением 1-5 Т/см, последующее спекание в защитной атмосфере азота, водорода или вакууме при температуре 800-1000°C в течение 1-2 ч. Затем полученные контакты допрессовывают или калибруют, после чего проводят окончательный отжиг в защитной или нейтральной атмосфере при 450-500°C (авт. св. СССР №139379, С 22 С 1/05, 1960).
Недостатками этих способов являются многооперационность, низкое качество материала порошковых изделий вследствие относительно высокой конечной пористости и невысокие физико-механические свойства.
В основу изобретения положена задача осуществить такое получение порошкового материала для спекания, чтобы было обеспечено снижение затрат и повышение эффективности процесса спекания, а также уменьшение пористости.
Поставленная задача решается тем, что упомянутый порошок получается электроэрозионным диспергированием отходов свинцовой бронзы (ГОСТ 493-79) в дистиллированной воде на установке ЭЭД при следующих параметрах: частота следования импульсов 95…105 Гц; напряжение на электродах 190…200 В и емкость конденсаторов 65,5 мкФ, затем полученный порошок подвергали одноосному прессованию в стальной пресс-форме диаметром 10 мм при давлении 1500 МПа, выдерживали под давлением 2 мин, а затем скомпактированные образцы в трубчатой раскладной печи Nabertherm RS 80/300/13/P470 спекали в течение 12 часов при температуре 827ºС (1100 К) в среде аргона.
Получаемые этим способом порошковые материалы имеют в основном сферическую форму частиц. Причем, изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов) можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса.
На фигуре 1 представлена схема процесса ЭЭД, на фигуре 2 показана схема процесса одноосного прессования, на фигуре 3 – микроструктура спеченного изделия, на фигуре 4 – элементный состав спеченного изделия, на фигуре 5 – дифрактограмма спеченного образца, на фигуре 6 – гистограмма распределения пор по размеру.
Порошковый материал получали в следующей последовательности.
На первом этапе производили сортировку отходов, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой – дистиллированной водой, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.
На втором этапе – этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 1. Импульсное напряжение генератора 1 прикладывается к электродам 2 и далее к отходам 3 (в качестве электродов так же служили соответственно отходы свинцовой бронзы) в реакторе 4. При достижении напряжения определённой величины происходит электрический пробой рабочей среды 5, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии, материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырём 6). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил, капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы порошка 7. Регулятор напряжения 8 предназначен для установки необходимых значений напряжения, а встряхиватель 9 передвигает один электрод, что обеспечивает непрерывное протекание процесса ЭЭД.
На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора.
На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка. Затем полученный порошок прессовали и спекали.
Для получения компактированных материалов был использован метод одноосного прессования. Схема процесса изображена на Фигуре 2. Порошок помещали в гидравлический настольный пресс для ручного прессования таблеток HERZOG TP20. Прессование проводили в стальной пресс-форме диаметром 10 мм, при давлении 1500 МПа, выдержка под давлением 2 мин.
Скомпактированные образцы в трубчатой раскладной печи Nabertherm RS 80/300/13/P470, температура максимальная 1300°C спекали в течение 12 часов при температуре 827ºС (1100 К) в среде аргона.
При этом достигается следующий технический результат: получение спеченных изделий из одноосно спрессованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса. При этом значительно уменьшается пористость и шероховатость, а также увеличивается твердость полученных спеченных изделий.
Пример 1.
Для получения порошков из отходов свинцовой бронзы методом электроэрозионного диспергирования в дистиллированной воде использовали установку ЭЭД (Пат. 2449859 Российская Федерация, МПК С22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и па-тентообладатель Юго-Зап. гос. ун-т. – № 2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. № 13). При получении порошка использовали следующие параметры установки: отходы свинцовой бронзы диспергировали при напряжении на электродах 190-200В, емкости разрядных конденсаторов 65 мкФ, частоте следования импульсов 95-105 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение материала с образованием дисперсных частиц порошка.
Для получения компактированных материалов был использован гидравлический настольный пресс для ручного прессования таблеток HERZOG TP20. Прессование проводили в стальной пресс-форме диаметром 10 мм, при давлении 1500 МПа, выдержка под давлением 2 мин.
Скомпактированные образцы в трубчатой раскладной печи Nabertherm RS 80/300/13/P470, температура максимальная 1300°C спекали в течение 12 часов при температуре 827ºС (1100 К) в среде аргона.
Полученное спеченное изделие исследовали различными методами.
Методом оптической микроскопии было проведено исследование микроструктуры образцов (по поперечному шлифу). Поверхность образца шлифовали и полировали. Шлифование производили металлографической бумагой с крупным (№№ 60-70) и мелким зерном (№№ 220-240). В процессе шлифования образец периодически поворачивали на 90°. В процессе шлифования зафиксирована рыхлость краев образцов, которая приводила к откалыванию частиц и разрушению поверхности шлифа. Смывали частицы абразива водой и подвергали полированию на круге суспензиями из оксидов металла (Fе3O4, Сr2O3, Аl2О3). После достижения зеркального блеска, поверхность шлифа промывали водой, спиртом и просушивали фильтровальной бумагой.
Для изучения элементного состава и морфологии полученного спеченного изделия с помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D», были получены спектры характеристического рентгеновского излучения в различных точках на поверхности образца и по поперечному шлифу. Микроструктура спеченного образца представлена на фигуре 3. Элементный состав спеченного образца представлен на фигуре 4. Установлено что основными элементами являются Cu (69,45 %); Pb (16,28 %); Zn (5,40 %); Sn (4,39 %).
Исследование фазового состава спеченного образца проводили методом рентгеновской дифракции на дифрактометре Rigaku Ultima IV в излучении Cu-Kα (длина волны λ = 0.154178 нм) с использованием щелей Соллера. На основании фигуры 5 было установлено, что основными фазами в спеченном образце являются Cu, Pb(Cu2O2), PbO, Fe3O4.
Пористость определяли с помощью оптического инвертированного микроскопа Olympus GX51 с программным обеспечением для количественного анализа изображения. Подготовленные образцы не имели следов шлифования, полирования или выкрашивания структурных составляющих. Шлиф изготовляли по поперечному сечению (излому) целого изделия или части его площадью < 2 см2. ПО “SIAMS Photolab”, которым оснащен микроскоп, разработано с учётом специфики применения методов цифровой микроскопии и анализа изображений для металлографического анализа соединений. Результаты исследования пористости представлены на фигуре 6, пористость составляет 0,61%.
Испытания твердости образцов по поверхности и поперечному шлифу проводили с помощью автоматической системы анализа микротвердости DM-8 по методу микро-Виккерса при нагрузке на индентор 50 г по десяти отпечаткам со свободным выбором места укола в соответствии с ГОСТом 9450-76 (Измерение микротвердости вдавливанием алмазных наконечников). Время нагружения индентора составило 15 с. В результате средняя твердость составила 66,73 HV.
Пример 2.
Для получения порошков из отходов свинцовой бронзы методом электроэрозионного диспергирования в дистиллированной воде использовали установку ЭЭД (Пат. 2449859 Российская Федерация, МПК С22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. – № 2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. № 13). При получении порошка использовали следующие параметры установки: отходы свинцовой бронзы диспергировали при напряжении на электродах 190-200В, емкости разрядных конденсаторов 65 мкФ, частоте следования импульсов 95-105 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение материала с образованием дисперсных частиц порошка.
Для получения компактированных материалов был использован гидравлический настольный пресс для ручного прессования таблеток HERZOG TP20. Прессование проводили в стальной пресс-форме диаметром 10 мм, при давлении 750 МПа, выдержка под давлением 3 мин.
При данных режимах порошковый материал не спрессовался.
Пример 3.
Для получения порошков из отходов свинцовой бронзы методом электроэрозионного диспергирования в дистиллированной воде использовали установку ЭЭД (Пат. 2449859 Российская Федерация, МПК С22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. – № 2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. № 13). При получении порошка использовали следующие параметры установки: отходы свинцовой бронзы диспергировали при напряжении на электродах 190-200В, емкости разрядных конденсаторов 65 мкФ, частоте следования импульсов 95-105 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение материала с образованием дисперсных частиц порошка.
Для получения компактированных материалов был использован гидравлический настольный пресс для ручного прессования таблеток HERZOG TP20. Прессование проводили в стальной пресс-форме диаметром 10 мм, при давлении 1500 МПа, выдержка под давлением 2 мин.
Скомпактированные образцы в трубчатой раскладной печи Nabertherm RS 80/300/13/P470, температура максимальная 1300°C спекали в течение 3 часов при температуре 750ºС в среде аргона.
При данных режимах порошковый материал не спекся.

Claims (1)

  1. Способ получения спеченных изделий из порошков свинцовой бронзы, включающий прессование порошка бронзы и спекание спрессованного материала с получением спеченного изделия, отличающийся тем, что прессованию подвергают наноразмерный сферический порошок свинцовой бронзы, полученный электроэрозионным диспергированием отходов свинцовой бронзы в дистиллированной воде при частоте следования импульсов 95-105 Гц, напряжении на электродах 190-200 В и емкости конденсаторов 65,5 мкФ, прессование порошка проводят путем одноосного прессования при давлении 1500 МПа с выдержкой в течение 2 минут, а спекание спрессованного материала осуществляют при температуре 827°С в среде аргона в течение 12 часов.
RU2019131552A 2019-10-07 2019-10-07 Способ получения спеченных изделий из одноосно спрессованных электроэрозионных нанодисперсных порошков свинцовой бронзы RU2748659C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019131552A RU2748659C2 (ru) 2019-10-07 2019-10-07 Способ получения спеченных изделий из одноосно спрессованных электроэрозионных нанодисперсных порошков свинцовой бронзы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019131552A RU2748659C2 (ru) 2019-10-07 2019-10-07 Способ получения спеченных изделий из одноосно спрессованных электроэрозионных нанодисперсных порошков свинцовой бронзы

Publications (3)

Publication Number Publication Date
RU2019131552A3 RU2019131552A3 (ru) 2021-04-07
RU2019131552A RU2019131552A (ru) 2021-04-07
RU2748659C2 true RU2748659C2 (ru) 2021-05-28

Family

ID=75345921

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019131552A RU2748659C2 (ru) 2019-10-07 2019-10-07 Способ получения спеченных изделий из одноосно спрессованных электроэрозионных нанодисперсных порошков свинцовой бронзы

Country Status (1)

Country Link
RU (1) RU2748659C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782593C1 (ru) * 2022-04-06 2022-10-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU) Способ получения свинцово-сурьмянистого порошка из отходов сплава ССу3 в воде дистиллированной

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032494C1 (ru) * 1992-03-12 1995-04-10 Акционерное общество "Электроконтакт" Способ изготовления изделий из порошковых алюминиевых бронз
RU2285582C1 (ru) * 2005-03-22 2006-10-20 Владивостокский государственный университет экономики и сервиса (ВГУЭС) Способ получения антифрикционных порошковых материалов на основе меди
RU2449859C2 (ru) * 2010-02-08 2012-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Установка для получения нанодисперсных порошков из токопроводящих материалов
CN104399967A (zh) * 2014-10-30 2015-03-11 苏州莱特复合材料有限公司 一种铜基粉末冶金减摩材料及其制备方法
RU2597445C2 (ru) * 2014-09-02 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения нанопорошка меди из отходов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032494C1 (ru) * 1992-03-12 1995-04-10 Акционерное общество "Электроконтакт" Способ изготовления изделий из порошковых алюминиевых бронз
RU2285582C1 (ru) * 2005-03-22 2006-10-20 Владивостокский государственный университет экономики и сервиса (ВГУЭС) Способ получения антифрикционных порошковых материалов на основе меди
RU2449859C2 (ru) * 2010-02-08 2012-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Установка для получения нанодисперсных порошков из токопроводящих материалов
RU2597445C2 (ru) * 2014-09-02 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения нанопорошка меди из отходов
CN104399967A (zh) * 2014-10-30 2015-03-11 苏州莱特复合材料有限公司 一种铜基粉末冶金减摩材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782593C1 (ru) * 2022-04-06 2022-10-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU) Способ получения свинцово-сурьмянистого порошка из отходов сплава ССу3 в воде дистиллированной
RU2802616C1 (ru) * 2022-11-25 2023-08-30 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Способ получения бронзовых электродов для процессов электроискрового легирования

Also Published As

Publication number Publication date
RU2019131552A3 (ru) 2021-04-07
RU2019131552A (ru) 2021-04-07

Similar Documents

Publication Publication Date Title
Ageev et al. Fabrication and investigation of carbide billets from powders prepared by electroerosive dispersion of tungsten-containing wastes
Falodun et al. Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN
Ageev et al. Investigation of the elemental composition of the WNF-95 sintered powder alloy obtained by the electroerosive dispersion of waste in a carbon-containing liquid
Rudinsky et al. Spark plasma sintering of an Al-based powder blend
Pydi et al. Microstructure exploration of the aluminum-tungsten carbide composite with different manufacturing circumstances
RU2680536C1 (ru) Способ получения спеченного изделия из порошка кобальтохромового сплава
Wanjara et al. Titanium-based composites produced by powder metallurgy
Khan et al. Investigation of mechanical properties based on grain growth and microstructure evolution of alumina ceramics during two step sintering process
RU2748659C2 (ru) Способ получения спеченных изделий из одноосно спрессованных электроэрозионных нанодисперсных порошков свинцовой бронзы
Jain et al. Study of microstructure and mechanical properties of Al-Cu metal matrix reinforced with B4C particles Composite
Laptiev et al. Microstructure and mechanical properties of WC-40Co composite obtained by impact sintering in solid state
RU2756465C1 (ru) Способ получения безвольфрамового твердого сплава КНТ из порошковых материалов, полученных в воде дистиллированной
RU2681238C1 (ru) Способ получения спеченных изделий из электроэрозионных вольфрамосодержащих нанокомпозиционных порошков
RU2756407C1 (ru) Способ получения безвольфрамового твердого сплава КНТ из порошковых материалов, полученных в спирте
RU2713900C2 (ru) Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы
Oglezneva et al. Investigation into the Structure Formation and Properties of Materials in the Copper–Titanium Disilicide System
RU2613240C2 (ru) Способ получения заготовок вольфрамо-титанового твердого сплава
Akinwamide et al. Microstructural and corrosion resistance study of sintered Al-tin in sodium chloride solution
Grashkov et al. X-ray spectral microanalysis of W-Ni-Fe heavy tungsten alloy particles used for the restoration of agricultural machinery parts
Mandal et al. Porous copper template from partially spark plasma-sintered Cu-Zn aggregate via dezincification
Grashkov et al. Investigation of the sinterability of cobalt-chromium powders used for the restoration of agricultural machinery parts
Ageev et al. A study of porosity of products sintered from BrS30 alloy electro-erosion powders
RU2812059C1 (ru) Способ получения спеченных изделий из электроэрозионных порошков на основе алюминиевого сплава АД0Е
Hwang et al. Deformation behaviour of nanocrystalline magnesium
Sampath et al. Fast consolidation of WC–Co