RU2713004C1 - Способ получения покрытий из диоксида кремния на силикатном стекле при пониженной температуре отверждения 60-90C, обладающих повышенной твёрдостью - Google Patents

Способ получения покрытий из диоксида кремния на силикатном стекле при пониженной температуре отверждения 60-90C, обладающих повышенной твёрдостью Download PDF

Info

Publication number
RU2713004C1
RU2713004C1 RU2018141951A RU2018141951A RU2713004C1 RU 2713004 C1 RU2713004 C1 RU 2713004C1 RU 2018141951 A RU2018141951 A RU 2018141951A RU 2018141951 A RU2018141951 A RU 2018141951A RU 2713004 C1 RU2713004 C1 RU 2713004C1
Authority
RU
Russia
Prior art keywords
coating
hardness
additives
silicon dioxide
hour
Prior art date
Application number
RU2018141951A
Other languages
English (en)
Inventor
Борис Борисович Троицкий
Алёна Алексеевна Локтева
Мария Александровна Новикова
Игорь Леонидович Федюшкин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук
Priority to RU2018141951A priority Critical patent/RU2713004C1/ru
Application granted granted Critical
Publication of RU2713004C1 publication Critical patent/RU2713004C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

Изобретение относится к тонкопленочным 80-200 нм прозрачным покрытиям из диоксида кремния на изделия из силикатного стекла. Техническая задача - разработка способа получения экономически выгодного покрытия, отверждаемого на силикатном стекле при пониженных температурах 60-90°С в течение 0.5-1.0 часа и обладающего повышенной твердостью по карандашу 8Н-9Н. Решение технической задачи: осуществляют золь-гель процессом тетраалкоксида кремния в присутствии добавок в золь полимеров, сополимеров, методом погружения наносят из золя покрытие на стекло и нагревают образец с покрытием в атмосфере воздуха с целью отверждения покрытия. Способ отличается тем, что в качестве полимеров, сополимеров используются высокомолекулярные соединения на основе диметиламиноэтилакрилата, диэтиламиноэтилакрилата, диметиламиноэтилметакрилата, диэтиламиноэтилметакрилата и полимеры, сополимеры вводятся в золь диоксида кремния в оптимальной концентрации 0.01-0.5 (лучше 0.05-0.3) вес.% к диоксиду кремния. 5 пр., 5 табл., 5 ил.

Description

Изобретение относится к листовому силикатному стеклу, используемому в строительстве, в производстве солнечных батарей, тепличном хозяйстве, в частности, к способу получения прозрачных, тонких (80-200 нм) покрытий, получаемых из золь - композиций диоксида кремния с каталитическими количествами полимеров или сополимеров, полученных радикальной полимеризацией в блоке, в водной эмульсии, в растворе мономеров диметиламиноэтилакрилата (ДМАЭА) или диэтиламиноэтилакрилата (ДЭАЭА), или диметиламиноэтилметакрилата (ДМАЭМА), или диэтиламиноэтилметакрилата (ДЭАЭМА) с целью значительного снижения температуры отверждения пленки «мокрого» геля (wet gel) диоксида кремния, нанесенного на силикатное стекло, с 400-500°С до 60-90°С с одновременным получением повышенной твердости покрытия по карандашу 8Н-9Н. При этом в процессе отверждения нанесеного покрытия на стекло достигается значительная экономия энергии и времени. В практике нанесения прозрачных тонкопленочных покрытий из диоксида кремния на силикатные стекла используются вакуумные технологии (Н.А. Macleod, "Thin Film Optical Filters", Adam Hilger Ltd., Bristol, 1985) и золь-гель метод (H.B. Суйковская, "Химические методы получения тонких прозрачных пленок", Издательство «Химия», 1971, 199 стр.). В вакуумных технологиях применяется дорогостоящее оборудование, цена которого возрастает при увеличении размеров силикатных стекол. Золь-гель процесс проще в экспериментальном исполнении и может быть использован для нанесения покрытий на силикатные стекла больших размеров. Известны способы отверждения прозрачных покрытий из диоксида кремния, полученных из золей диоксида кремния, на силикатном стекле при температурах не ниже 400-500°С и временах нагрева стекла с покрытием (от комнатной температуры до максимальной и охлаждения стекла от максимальной температуры до комнатной) более 90 минут.
В патенте ЕР 0897898 А2 (1999) стекло с покрытием из диоксида кремния нагревают до 500°С в течение 90 минут и держат 5 минут при этой температуре.
В патенте США №6177131 (2001) стекло с покрытием, полученным из золя диоксида кремния, нагревают до 500°С и держат при этой температуре в течение часа.
В патенте ЕР 1342702 А1 (2003) стекло с покрытием, полученным из золя диоксида кремния, нагревают до 500°С.
В патенте США №6998177 В2 (2006) стекло с покрытием из диоксида кремния нагревают до температуры 460-490°С.
В патентах РФ №2368575 (2009), №2368576 (2009), №2371399 (2009) стекло с покрытием, полученным из золя диоксида кремния, нагревают до 500°С и держат при этой температуре в течение 4 часов.
В патенте РФ №2450984 (2012) стекло с покрытием, полученным из золя диоксида кремния, нагревают до 500-700°С и держат при этой температуре в течение часа.
В патенте США №8097341 В2 (2012) стекло с покрытием, полученным из золя диоксида кремния, нагревают до 470-490°С и держат при этой температуре в течение часа.
Недостатком приведенных выше способов получения прозрачных покрытий из диоксида кремния на силикатном стекле является длительное время и высокая температура 460-700°С отверждения покрытий. Задачей настоящего изобретения является разработка нового способа получения тонких 80-200 нм однослойных покрытий на основе диоксида кремния золь-гель методом при низких температурах 60-90°С отверждения покрытия и с твердостью по карандашу 8Н-9Н.
При систематическом исследовании твердости покрытий на силикатном стекле, полученных из золей диоксида кремния, и отвержденных при разных температурах 60-90°С в течение 30 и 60 минут, нами обнаружено, что каталитические добавки полимеров или сополимеров на основе ДМАЭА или ДЭАЭА, или ДМАЭМА, или ДЭАЭМА в количестве 0.01-0.5 вес.% к диоксиду кремния в золь диоксида кремния приводят к значительному повышению твердости покрытий до 8Н-9Н, отвержденных при низких температурах 60-90°С.
Достижение заявленного технического результата подтверждается следующими примерами.
Пример 1.
Получение золя диоксида кремния.
Золь диоксида кремния получали гидролизом тетраэтоксисилана (ТЭОС). В стеклянную колбу на 100 мл помещали 0.2 м ТЭОС (41.6 г), 5.4 мл дистиллированной воды и 9.0 мл 0.1н раствора соляной кислоты. Полученную смесь ставили перемешиваться на магнитную мешалку на 0.5 часа. Далее добавляли 40.8 мл изопропилового спирта. Концентрация полученного золя диоксида кремния равна 2 моль/л. Разбавлением изопропиловым спиртом получали концентрацию золя 0.4-0.5 моль/л.
Получение полимеров, статистических сополимеров.
Мономеры получали от фирмы Sigma-Aldrich и перед полимеризацией очищали от ингибиторов перегонкой в вакууме. Полимеры, статистические сополимеры получали методом безэмульгаторной эмульсионной полимеризации. В трехгорлую колбу на 100 мл, снабженную обратным холодильником, капельной воронкой и специальным капиллярным отводом, при комнатной температуре помещали 45 мл дистиллированной воды, добавляли 5.0 мл мономера или смеси мономеров. Содержимое колбы через специальный отвод продували током аргона в течение 30 минут для освобождения реакционной смеси от растворенного кислорода воздуха - ингибитора радикальной полимеризации. Колбу помещали в термостат при температуре 75-80°С. Через 5 минут в колбу через капельную воронку вводили 5.0 мл воды с растворенным инициатором радикальной полимеризации - 2,2'-азобис(2-метил-пропионамидин)дигидрохлорид. Концентрация инициатора в реакционной смеси 0.1 вес.%. Время полимеризации 6-8 часов. Объемное соотношение мономер или мономеры к воде 1:10. После полимеризации колба вынималась из термостата и охлаждалась до комнатной температуры. Суспензия полимера или сополимера выливалась на специальный поднос, который помещался в вакуумный сушильный шкаф при температуре 40°С. Полимер высушивался до постоянного веса. Превращение мономера или смеси мономеров в полимер или в сополимер 80.0-95.0 вес.%.
Получение покрытий из диоксида кремния на силикатном стекле.
Путем растворения полидиметиламиноэтилакрилата (ПДМАЭА) в золе готовили золи диоксида кремния, содержащие 0.00, 0.05, 0.1, 0.2, 0.3 вес.% полимера по отношению к диоксиду кремния.
В качестве подложки использовали предметные силикатные стекла для микроскопии размером 70 мм на 20 мм и толщиной 1.2 мм. Однослойное двухстороннее покрытие наносили методом окунания (dip coating). Скорость вынимания стекла из золя 8.3 см/мин при комнатной температуре. Затем стекла выдерживали при 20°С - 1 час и выдерживали в термостате (регулирование температуры с точностью ±1°) при 60, 70, 80, и 90°С в течение 30 и 60 минут. Твердость покрытий определяли на приборе «Твердомер карандашного типа», ГОСТ ИСО 15184. Определяли светопропускание стекол с пленочными покрытиями в интервале длин волн 200-1100 нм на спектрометре «Perkin-Elmer Lambda 25». Максимум светопропускания данных образцов стекол без покрытий около 91%.
В таблице 1 представлены данные по твердости покрытий на стекле, полученных из золя диоксида кремния без добавок и с добавками разных количеств ПДМАЭА и отвержденных при разных температурах: 60°С (0.5 и 1.0 час), 70°С (0.5 и 1.0 час), 80°С (0.5 и 1.0 час), 90°С (0.5 и 1.0 час).
Из таблицы 1 следует, что твердость покрытий из диоксида кремния без добавок ПДМАЭА и отвержденных при 60-90°С возрастает от 2В (60°С, 0.5 часа) до НВ (90°С, 1 час). Твердость покрытий из диоксида кремния с каталитическими количествами (концентрации 0.05-0.30 вес.% к SiO2) добавок ПДМАЭА значительно возрастает и зависит как от концентрации добавки, так и температуры отверждения покрытия. Например, при 60°С (1 час) твердость покрытия без добавки равна В, а твердость покрытия с добавкой (0.3 вес.%) равна Н; при 70°С (1 час) твердость покрытия без добавки равна F, а твердость покрытия с добавкой 0.3 вес.% равна 5Н; при 80°С (0.5 часа) твердость покрытия без добавки равна F, а твердость покрытия с добавкой 0.3 вес.% равна 4Н; при 80°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой 0.3 вес.% равна 8Н; при 90°С (0.5 часа) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой 0.3 вес.% равна 8Н; при 90°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой 0.3 вес.% равна 9Н (таблица 1). На фиг. 1 представлены кривые светопропускания стекол без покрытия (кривая 1) и с двусторонними однослойными покрытиями на основе диоксида кремния. В качестве добавки в исходный золь диоксида кремния использовали ПДМАЭА (80°С, 1 час): кривая 2 - 0.0 мас. %, кривая 3 - 0.1 мас. %, кривая 4 - 0.2 мас. %, кривая 5 - 0.3 мас. %. Как видно из фиг. 1, светопропускание стекла с покрытиями выше (максимум при 94.5%), чем светопропускание стекла без покрытия (максимум 91.2%) и не зависит от небольших концентраций ПДМАЭА в пленке диоксида кремния.
Пример 2.
Золь диоксида кремния, полидиэтиламиноэтилакрилат (ПДЭАЭА) получали по методикам, описанным в примере 1. Готовили золи диоксида кремния, содержащие 0.00, 0.05, 0.1, 0.2, 0.3 вес.% полимера по отношению к диоксиду кремния. Способы нанесения покрытий, отверждения покрытий при 60-90°С описаны в примере 1.
В таблице 2 представлены данные по твердости покрытий на стекле, полученных из золя диоксида кремния без добавок и с добавками разных количеств ПДЭАЭА и отвержденных при разных температурах: 60°С (0.5 и 1.0 час), 70°С (0.5 и 1.0 час), 80°С (0.5 и 1.0 час), 90°С (0.5 и 1.0 час).
Из таблицы 2 следует, что твердость покрытий из диоксида кремния без добавок ПДЭАЭА и отвержденных при 60-90°С возрастает от 2В (60°С, 0.5 часа) до НВ (90°С, 1 час). Твердость покрытий из диоксида кремния с каталитическими количествами (концентрации 0.05-0.30 вес.% к SiO2) добавок ПДЭАЭА значительно возрастает и зависит как от концентрации добавки, так и температуры отверждения покрытия. Например, при 60°С (1 час) твердость покрытия без добавки равна В, а твердость покрытия с добавкой (0.3 вес.%) равна Н; при 70°С (1 час) твердость покрытия без добавки равна F, а твердость покрытия с добавкой (0.1-0.3 вес.%) равна Н-3Н; при 80°С (0.5 часа) твердость покрытия без добавки равна F, а твердость покрытия с добавкой (0.1-0.3 вес.%) равна Н-2Н; при 80°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна 2Н-7Н; при 90°С (0.5 часа) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна 2Н-7Н; при 90°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна 2Н-9Н (таблица 2). На фиг. 2 представлены кривые светопропускания стекол без покрытия (кривая 1) и с двусторонними однослойными покрытиями на основе диоксида кремния. В качестве добавки в исходный золь диоксида кремния использовали ПДЭАЭА (70°С, 1 час): кривая 2 - 0.0 вес.%, кривая 3 - 0.1 вес.%, кривая 4 - 0.2 вес.%, кривая 5 - 0.3 вес.%. Как видно из фиг. 2, светопропускание стекла с покрытиями выше (максимум при 94.5%), чем светопропускание стекла без покрытия (максимум 91.2%) и не зависит от небольших концентраций ПДЭАЭА в пленке диоксида кремния.
Пример 3.
Золь диоксида кремния, полидиметиламиноэтилметакрилат (ПДМАЭМА) получали по методикам, описанным в примере 1. Готовили золи диоксида кремния, содержащие 0.00, 0.05, 0.1, 0.2, 0.3 вес.% полимера по отношению к диоксиду кремния. Способы нанесения покрытий, отверждения покрытий при 60-90°С описаны в примере 1. В таблице 3 представлены данные по твердости покрытий на стекле, полученных из золя диоксида кремния без добавок и с добавками разных количеств ПДМАЭМА и отвержденных при разных температурах: 60°С (0.5 и 1.0 час), 70°С (0.5 и 1.0 час), 80°С (0.5 и 1.0 час), 90°С (0.5 и 1.0 час).
Из таблицы 3 следует, что твердость покрытий из диоксида кремния без добавок ПДМАЭМА и отвержденных при 60-90°С возрастает от 2В (60°С, 0.5 часа) до НВ (90°С, 1 час). Твердость покрытий из диоксида кремния с каталитическими количествами (концентрации 0.05-0.30 вес.% к SiO2) добавок ПДМАЭМА значительно возрастает и зависит как от концентрации добавки, так и температуры отверждения покрытия. Например, при 60°С (1 час) твердость покрытия без добавки равна В, а твердость покрытия с добавкой (0.3 вес.%) равна Н; при 70°С (1 час) твердость покрытия без добавки равна F, а твердость покрытия с добавкой (0.1-0.3 вес.%) равна НВ - 9Н; при 80°С (0.5 часа) твердость покрытия без добавки равна F, а твердость покрытия с добавкой (0.1-0.3 вес.%) равна 5Н-6Н; при 80°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна 2Н-9Н; при 90°С (0.5 часа) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%)) равна 2Н-9Н; при 90°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна 3Н-9Н (таблица 3). На фиг. 3 представлены кривые светопропускания стекол без покрытия (кривая 1) и с двусторонними однослойными покрытиями на основе диоксида кремния. В качестве добавки в исходный золь диоксида кремния использовали ПДМАЭМА (70°С, 1 час): кривая 2 - 0.0 вес.%, кривая 3 - 0.1 вес.%, кривая 4 - 0.2 вес.%, кривая 5 - 0.3 вес.%. Как видно из фиг. 3, светопропускание стекла с покрытиями выше (максимум при 94.5%), чем светопропускание стекла без покрытия (максимум 91.2%) и не зависит от небольших концентраций ПДМАЭМА в пленке диоксида кремния.
Пример 4.
Золь диоксида кремния, полидиэтиламиноэтилметакрилат (ПДЭАЭМА) получали по методикам, описанным в примере 1. Готовили золи диоксида кремния, содержащие 0.00, 0.05, 0.1, 0.2, 0.3 вес.% полимера по отношению к диоксиду кремния. Способы нанесения покрытий, отверждения покрытий при 60-90°С описаны в примере 1. В таблице 4 представлены данные по твердости покрытий на стекле, полученных из золя диоксида кремния без добавок и с добавками разных количеств ПДЭАЭМА и отвержденных при разных температурах: 60°С (0.5 и 1.0 час), 70°С (0.5 и 1.0 час), 80°С (0.5 и 1.0 час), 90°С (0.5 и 1.0 час).
Из таблицы 4 следует, что твердость покрытий из диоксида кремния без добавок ПДЭАЭМА и отвержденных при 60-90° возрастает от 2В (60°С, 0.5 часа) до НВ (90°С, 1 час). Твердость покрытий из диоксида кремния с каталитическими количествами (концентрации 0.05-0.30 вес.% к SiO2) добавок ПДЭАЭМА значительно возрастает и зависит как от концентрации добавки, так и температуры отверждения покрытия. Например, при 60°С (1 час) твердость покрытия без добавки равна В, а твердость покрытия с добавкой 0.3 вес.% равна 3Н; при 70°С (1 час) твердость покрытия без добавки равна F, а твердость покрытия с добавкой (0.1-0.3 вес.%) равна 4Н; при 80°С (0.5 часа) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.1-0.3 вес.%) равна 4Н-6Н; при 80°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна 2Н-9Н; при 90°С (0.5 часа) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна 2Н-9Н; при 90°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна 2Н-9Н (таблица 4). На фиг. 4 представлены кривые светопропускания стекол без покрытия (кривая 1) и с двусторонними однослойными покрытиями на основе диоксида кремния. В качестве добавки в исходный золь диоксида кремния использовали ПДЭАЭМА (80°С, 1 час): кривая 2 - 0.0 вес.%, кривая 3 - 0.1 вес.%, кривая 4 - 0.2 вес.%, кривая 5 - 0.3 вес.%. Как видно из фиг. 4, светопропускание стекла с покрытиями выше (максимум при 94.5%), чем светопропускание стекла без покрытия (максимум 91.2%) и не зависит от небольших концентраций ПДЭАЭМА в пленке диоксида кремния.
Пример 5.
Золь диоксида кремния, статистический сополимер диэтиламиноэтилакрилата с бутилакрилатом ДЭАЭА (69.8 моль%) - БА (30.2 моль%) получали по методикам, описанным в примере 1. Готовили золи диоксида кремния, содержащие 0.00, 0.05, 0.1, 0.2, 0.3 вес.% сополимера по отношению к диоксиду кремния. Способы нанесения покрытий, отверждения покрытий при 60-90°С описаны в примере 1. В таблице 5 представлены данные по твердости покрытий на стекле, полученных из золя диоксида кремния без добавок и с добавками разных количеств сополимера и отвержденных при температурах: 60°С (0.5 и 1.0 час), 70°С (0.5 и 1.0 час), 80°С (0.5 и 1.0 час), 90°С (0.5 и 1.0 час).
Из таблицы 5 следует, что твердость покрытий из диоксида кремния без добавок сополимера и отвержденных при 60-90°С возрастает от 2В (60°С, 0.5 часа) до НВ (90°С, 1 час). Твердость покрытий из диоксида кремния с каталитическими количествами (концентрации 0.05-0.30 вес.% к SiO2) добавок сополимера значительно возрастает и зависит как от концентрации добавки, так и температуры отверждения покрытия. Например, при 60°С (1 час) твердость покрытия без добавки равна В, а твердость покрытия с добавкой (0.3 вес.%) равна 2Н; при 70°С (1 час) твердость покрытия без добавки равна F, а твердость покрытия с добавкой (0.1-0.3 вес.%) равна 3Н-4Н; при 80°С (0.5 часа) твердость покрытия без добавки равна F, а твердость покрытия с добавкой (0.1-0.3 вес.%) равна 2Н-4Н; при 80°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна Н-8Н; при 90°С (0.5 часа) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна Н-5Н; при 90°С (1 час) твердость покрытия без добавки равна НВ, а твердость покрытия с добавкой (0.05-0.3 вес.%) равна 2Н-9Н (таблица 5). На фиг. 5 представлены кривые светопропускания стекол без покрытия (кривая 1) и с двусторонними однослойными покрытиями на основе диоксида кремния. В качестве добавки в исходный золь диоксида кремния использовали статистический сополимер ДЭАЭА - БА (80°С, 1 час): кривая 2 - 0.0 вес.%, кривая 3 - 0.1 вес.%, кривая 4 - 0.2 вес.%, кривая 5 - 0.3 вес.%. Как видно из фиг. 5, светопропускание стекла с покрытиями выше (максимум при 94.5%), чем светопропускание стекла без покрытия (максимум 91.2%) и не зависит от небольших концентраций сополимера в пленке диоксида кремния.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005

Claims (1)

  1. Способ получения тонких 80-200 нм однослойных прозрачных покрытий из диоксида кремния на изделия из силикатного стекла, отверждающихся при пониженной температуре 60-90°С в течение 0.5-1.0 часа и обладающих повышенной твердостью по карандашу 8Н-9Н, включающий в себя золь-гель процесс тетраалкоксида кремния в присутствии добавок полимеров, статистических и блочных сополимеров, нанесение из золя диоксида кремния покрытия на силикатное стекло, нагревание образца с покрытиями в атмосфере воздуха с целью отверждения покрытия, отличающийся тем, что в качестве полимеров, сополимеров используются высокомолекулярные соединения на основе диметиламиноэтилакрилата, диэтиламиноэтилакрилата, диметиламиноэтилметакрилата, диэтиламиноэтилметакрилата и полимеры, сополимеры вводятся в золь диоксида кремния в оптимальной концентрации 0.01-0.5, лучше 0.05-0.3 вес.% к диоксиду кремния.
RU2018141951A 2018-11-27 2018-11-27 Способ получения покрытий из диоксида кремния на силикатном стекле при пониженной температуре отверждения 60-90C, обладающих повышенной твёрдостью RU2713004C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018141951A RU2713004C1 (ru) 2018-11-27 2018-11-27 Способ получения покрытий из диоксида кремния на силикатном стекле при пониженной температуре отверждения 60-90C, обладающих повышенной твёрдостью

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018141951A RU2713004C1 (ru) 2018-11-27 2018-11-27 Способ получения покрытий из диоксида кремния на силикатном стекле при пониженной температуре отверждения 60-90C, обладающих повышенной твёрдостью

Publications (1)

Publication Number Publication Date
RU2713004C1 true RU2713004C1 (ru) 2020-02-03

Family

ID=69625214

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018141951A RU2713004C1 (ru) 2018-11-27 2018-11-27 Способ получения покрытий из диоксида кремния на силикатном стекле при пониженной температуре отверждения 60-90C, обладающих повышенной твёрдостью

Country Status (1)

Country Link
RU (1) RU2713004C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674624A (en) * 1990-10-16 1997-10-07 Mitsui Petrochemical Industries, Ltd. Highly light-transmitting dust protective film, and dust protective member
US6998177B2 (en) * 2002-03-06 2006-02-14 Schott Ag Method of making a glass body with a phosphorous- and porous SiO2-containing coating, glass body made thereby and solution for making same
RU2368575C2 (ru) * 2007-11-07 2009-09-27 Институт металлоорганической химии им. Г.А. Разуваева РАН Способ получения тонких просветляющих покрытий на основе мезопористого диоксида кремния золь-гель методом в присутствии органических кислот, функциональных производных органических кислот, сложных эфиров органических кислот
RU2371399C2 (ru) * 2007-12-11 2009-10-27 Институт металлоорганической химии им. Г.А. Разуваева РАН Способ получения тонких просветляющих покрытий на основе мезопористого диоксида кремния золь-гель методом в присутствии некоторых полимеров, статических сополимеров
RU2450984C1 (ru) * 2010-11-25 2012-05-20 Государственное образовательное учреждение высшего профессионального образования "Томский государственный университет" (ТГУ) Способ получения тонких наноструктурированных однослойных покрытий на основе диоксида кремния золь-гель методом в присутствии неорганических кислот и их солей
WO2015016777A1 (en) * 2013-07-29 2015-02-05 Agency For Science, Technology And Research Superhydrophilic coatings
RU2547754C2 (ru) * 2013-08-16 2015-04-10 Игорь Леонидович Радченко Полимерная порошковая композиция для супергидрофобного покрытия и способ получения супергидрофобного покрытия
RU2606009C2 (ru) * 2015-04-29 2017-01-10 Федеральное Государственное бюджетное учреждение науки Институт металлорганической химии им. Г.А. Разуваева Российской академии наук Способ получения покрытий из диоксида кремния на силикатном стекле

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674624A (en) * 1990-10-16 1997-10-07 Mitsui Petrochemical Industries, Ltd. Highly light-transmitting dust protective film, and dust protective member
US6998177B2 (en) * 2002-03-06 2006-02-14 Schott Ag Method of making a glass body with a phosphorous- and porous SiO2-containing coating, glass body made thereby and solution for making same
RU2368575C2 (ru) * 2007-11-07 2009-09-27 Институт металлоорганической химии им. Г.А. Разуваева РАН Способ получения тонких просветляющих покрытий на основе мезопористого диоксида кремния золь-гель методом в присутствии органических кислот, функциональных производных органических кислот, сложных эфиров органических кислот
RU2371399C2 (ru) * 2007-12-11 2009-10-27 Институт металлоорганической химии им. Г.А. Разуваева РАН Способ получения тонких просветляющих покрытий на основе мезопористого диоксида кремния золь-гель методом в присутствии некоторых полимеров, статических сополимеров
RU2450984C1 (ru) * 2010-11-25 2012-05-20 Государственное образовательное учреждение высшего профессионального образования "Томский государственный университет" (ТГУ) Способ получения тонких наноструктурированных однослойных покрытий на основе диоксида кремния золь-гель методом в присутствии неорганических кислот и их солей
WO2015016777A1 (en) * 2013-07-29 2015-02-05 Agency For Science, Technology And Research Superhydrophilic coatings
RU2547754C2 (ru) * 2013-08-16 2015-04-10 Игорь Леонидович Радченко Полимерная порошковая композиция для супергидрофобного покрытия и способ получения супергидрофобного покрытия
RU2606009C2 (ru) * 2015-04-29 2017-01-10 Федеральное Государственное бюджетное учреждение науки Институт металлорганической химии им. Г.А. Разуваева Российской академии наук Способ получения покрытий из диоксида кремния на силикатном стекле

Similar Documents

Publication Publication Date Title
JP5583214B2 (ja) ハイブリッドコポリマーを用いたポリシロキサンコーティング
JP2902525B2 (ja) 透明性に優れた複合体組成物およびその製法
GB2034721A (en) Highly refractive copolymer for lens and a lens prepared therefrom
CN109666111B (zh) 一种纳米SiO2/有机硅改性丙烯酸酯乳液
JP2002228851A (ja) クラッド光ファイバの調製方法
WO2002081485A1 (fr) Monomere, polymere et lentille oculaire et lentille de contact obtenues a partir de ceux-ci
CN102433054B (zh) 一种有机-无机杂化梯度润湿涂层及其制备方法
Liang et al. Temperature-sensitive surfaces prepared by UV photografting reaction of photosensitizer and N-isopropylacrylamide
WO2008038721A1 (fr) Lentille oculaire
WO2008023872A1 (en) Anti-fouling copolymers resin
Xing et al. Synthesis and characterization of poly (methyl methacrylate)/polysiloxane composites and their coating properties
WO2002081532A1 (fr) Monomeres, polymeres, lentilles ophtalmiques et lentilles de contact fabriquees a l'aide de ces derniers
RU2713004C1 (ru) Способ получения покрытий из диоксида кремния на силикатном стекле при пониженной температуре отверждения 60-90C, обладающих повышенной твёрдостью
JP2000191667A (ja) 眼用レンズ用モノマー、眼用レンズ用ポリマーおよびそれを用いたコンタクトレンズ
CN112321632B (zh) 一种用于水性体系的硅烷共聚物及其制备方法
JPH0160162B2 (ru)
KR100297952B1 (ko) 김 서림 방지용 코팅용액
CN115448614B (zh) 基于乳液聚合法制备凹坑结构光学增透膜的方法
US5342658A (en) Abrasion resistant silicone coating composition
JP5448388B2 (ja) 上塗り塗料用硬化性樹脂組成物
CN103788302B (zh) 一种具有低表面能及光控润湿特性的梯度分子刷聚合物及其制备方法
JP5893398B2 (ja) ケイ素含有処理剤及び撥水膜
JPH0330492B2 (ru)
RU2606009C2 (ru) Способ получения покрытий из диоксида кремния на силикатном стекле
忠永清治 et al. Micropatterning of inorganic-organic hybrid thick films from vinyltriethoxysilane

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201128