RU2711568C1 - Способ переработки тяжелого углеводородного сырья с использованием серопонижающих добавок к катализаторам крекинга - Google Patents

Способ переработки тяжелого углеводородного сырья с использованием серопонижающих добавок к катализаторам крекинга Download PDF

Info

Publication number
RU2711568C1
RU2711568C1 RU2019124299A RU2019124299A RU2711568C1 RU 2711568 C1 RU2711568 C1 RU 2711568C1 RU 2019124299 A RU2019124299 A RU 2019124299A RU 2019124299 A RU2019124299 A RU 2019124299A RU 2711568 C1 RU2711568 C1 RU 2711568C1
Authority
RU
Russia
Prior art keywords
reactor
cracking
catalyst
sulfur
gas oil
Prior art date
Application number
RU2019124299A
Other languages
English (en)
Inventor
Николай Сергеевич Левшаков
Аргам Виликович Акопян
Александр Владимирович Анисимов
Борис Владимирович Андреев
Андрей Станиславович Устинов
Эдуард Аветисович Караханов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2019124299A priority Critical patent/RU2711568C1/ru
Application granted granted Critical
Publication of RU2711568C1 publication Critical patent/RU2711568C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к области каталитического крекинга негидроочищенного вакуумного газойля. Описан способ каталитического крекинга негидроочищенного вакуумного газойля, характеризующийся тем, что приемник для сбора жидких продуктов крекинга охлаждают до 0±5°С, и реактор продувают аргоном со скоростью 30 см/мин ±5 см/мин в течение 10 минут, после чего проверяют герметичность реактора, в который подают подогретый до 70±5°С негидроочищенный вакуумный газойль, затем в реактор добавляют предварительно перемешанную каталитическую композицию, состоящую из катализатора крекинга и 10±1 масс. % добавки от массы катализатора, затем доводят температуру реактора с каталитической композицией до температуры 500±10°С, при этом в качестве добавки используют носитель на основе мезопористого алюмосиликата Al-МСМ-41 и оксида алюминия, взятых в соотношении 40/60-60/40 масс %, с нанесенным на него Zn или Mg в количестве 5±0,5 масс. % от массы носителя. Технический результат метода - снижение количества серы в жидких продуктах крекинга негидроочищенного вакуумного газойля. 1 з.п. ф-лы, 3 табл.

Description

Область техники
Изобретение относится к области нефтепереработки, а именно к процессу каталитического крекинга тяжелого углеводородного сырья. Изобретение позволяет снизить количество серы в жидких продуктах крекинга при неизменном выходе бензиновой фракции по сравнению с крекингом без применения добавок. Способ может найти свое применение для улучшения способа переработки тяжелого углеводородного сырья без капитальных затрат.
Уровень техники
Загрязнение окружающей среды из-за выбросов выхлопных газов транспортных средств приводит к ужесточению требований к ним, в том числе по содержанию серы. Каталитический крекинг - один из основных процессов получения высокооктановых компонентов бензиновых товарных топлив. Поэтому необходимым является поиск способов снижения количества серы в бензине. Серопонижающие добавки позволяют снизить количество серы в жидких продуктах крекинга без использования дополнительного процесса. Использование данного метода приводит к дальнейшей гидроочистке в более мягких условиях. Что приводит к меньшим расходам дорогостоящего водородсодержащего газа и сохранению октанового числа, вследствие уменьшения доли реакций гидрирования.
Из уровня техники известен катализатор крекинга на основе цеолита Y и кислоты Льюиса, который получают кристаллизацией силиката или алюмината натрия с дальнейшим ионным обменом ионов натрия на ионы редкоземельных металлов. Использование известного катализатора с содержанием оксида натрия менее 0,1 масс. % позволяет снизить количество серы в жидких продуктах крекинга на 15 масс. % (патент RU 2396304, 10.08.2010).
Из уровня техники известен микросферический катализатор крекинга, содержащий магний-алюминиевый или цинк-магний-алюминиевую шпинель, изготовленный путем смешения цеолита типа Y и компонентов матрицы, в качестве которых используют бентонитовую глину, гидроксид алюминия, аморфный алюмосиликат и магний-алюминиевую шпинель (патент RU 2472586, 20.01.2013). Использование данного катализатора приводит к снижению количества серы в бензиновой фракции каталитического крекинга на 38 масс. % по сравнению с промышленным катализатором. Применение такого катализатора требует полной замены предыдущей его партии и оптимизации процесса под новую партию катализатора. Также авторы не указывают полный фракционный состав продуктов и выход кокса, что не позволяет провести полную оценку действия катализатора.
Наиболее близким к заявляемому изобретению является серопонижающая добавка на основе мезопористого оксида кремния типа МСМ-41 и гамма-оксида алюминия, полученная смешением МСМ-41 и псевдобемита в ходе синтеза мезопористого оксида кремния МСМ-41 или после синтеза (патент RU 2592548, 27.07.2016). Использование серопонижающей добавки при крекинге предварительно активированного электромагнитным излучением сырья позволяет снизить количество серы в жидких продуктах крекинга на 29,8 масс. %. Однако, недостатком данного метода является необходимость предварительной активации сырья, что требует дополнительных затрат.
Технической проблемой является высокое содержание серы в жидких продуктах после проведения каталитического крекинга негидроочищенного вакуумного газойля. Техническая проблема решается заявляемым изобретением путем получения добавок к катализатору крекинга с целью снижения количества серы в жидких продуктах крекинга.
Раскрытие изобретения
Техническим результатом является получение жидких продуктов с содержанием серы на 20 масс. % меньше по сравнению с тем же показателем для крекинга без использования серопонижающих добавок и выходом тяжелого остатка (фракция 350°С+) не более 11 масс. %.
Данный результат достигается способом каталитического крекинга негидроочищенного вакуумного газойля, заключающегося в том, что охлажденный до 0°С ± 5°С приемник для сбора жидких продуктов крекинга и реактор продувают аргоном со скоростью 30 см3/мин ±5 см3/мин в течение 10 минут, после чего проверяют герметичность системы и подают подогретое до 70°С±5°С сырье, затем в реактор помещают предварительно перемешанную каталитическую композицию, состоящую из катализатора крекинга и 10% масс. ± 1% масс. добавки от массы катализатора, затем доводят температуру реактора с каталитической композицией до температуры 500°С±10°С, на выходе реактора устанавливают колбу-приемник для жидких продуктах крекинга, затем полученные продукты взвешивают, определяют фракционный состав и содержание серы. При этом сырье в реактор подают шестеренчатым насосом со скоростью 1,3 г ± 0,1 г сырья за 75 секунд ± 1 секунда, после подачи сырья реактор повторно продувают потоком аргона со скоростью 30 см /мин ± 5 см /мин в течение 15 минут. В качестве добавки к катализаторам крекинга используют носитель на основе мезопористого алюмосиликата Аl-МСМ-41 и оксида алюминия с соотношением компонентов 40/60 - 60/40% масс. с нанесенным на него Zn или Mg в количестве 5% масс. ± 0,5% масс. от массы носителя.
Осуществление изобретения
Ниже представлено более детальное описание заявляемого способа, которое не ограничивает объем притязаний заявляемого изобретения, а демонстрирует возможность осуществления изобретения с достижением заявляемого технического результата
Серопонижающие добавки к катализаторам крекинга тяжелого углеводородного сырья, состоящие из носителя на основе мезопористого алюмосиликата А1-МСМ-41 и оксида алюминия (Al-MCM-41/Al2O3) и нанесенного на носитель металла (Zn или Mg), получали методом темплатного синтеза. На первом этапе получили мезопористый оксид кремния МСМ-41, согласно следующей методике (Glotov A. et al // Catalysis Today. - 2019. - Т. 329. - C. 135-141):
1. При интенсивном перемешивании растворяли структурообразующий агент (цетилтриметиламмоний бромид или хлорид) в воде.
2. В течение 30 мин ± 1 мин добавляли по каплям кремниевую компоненту, в качестве которой может быть использован тетраэтоксисилан или силикат натрия.
3. Доводят рН раствора до 11±0,5 с помощью водного раствора аммиака.
4. Получали гель мольного состава 5SiO2:(структурообразующий агент):462Н2O, который перемешивали в течение 4 часов, затем сушили при комнатной температуре в течение 24 часов.
5. Белый осадок отфильтровывали, промывали 3 раза дистиллированной водой. Выдерживали в сушильном шкафу при 110°С в течение 3 часов и при 350°С в течение 3 часов. Прокаливали в токе воздуха при 550°С в течение 4 часов, для удаления темплата (структурообразующего агента).
На втором этапе модифицировали полученный мезопористый оксид кремния МСМ-41 (Tompkins J.T., Mokaya R. // ACS applied materials & interfaces. - 2014. - T. 6. - №3. - C. 1902-1908):
1. Растворяли в дистиллированной воде источник алюминия (изопропоксид алюминия, алюминат натрия или хлорид натрия). Рассчитанные количества источника кремния и алюминия использовали с целью получения алюмосиликата с мольным соотношением Si/Al=400.
2. Порциями добавляли полученный на предыдущем этапе мезопористый оксид кремния.
3. Доводили рН раствора до 11±0,5 с помощью водного раствора аммиака.
4. Белый осадок отфильтровывали, промывали 3 раза дистиллированной водой. Выдерживали в сушильном шкафу при 110°С±5°С в течение 3 часов и при 350°С±5°С в течение 3 часов. Прокаливали в токе воздуха при 550°С±5°С в течение 4 часов.
5. Получали мезопористый алюмосиликат Аl-МСМ-41 с соотношением Si/Al=400/1.
Полученный мезопористый алюмосиликат Аl-МСМ-41 использовали для получения носителя состава Al-MCM-41/Al2O3 с использованием бемита с различным соотношением компонентов 40/60, 50/50 и 60/40% масс. Для этого к смеси Аl-МСМ-41 и бемита добавляли 1 М водный раствор азотной кислоты до образования пастообразной массы. Тщательно перемешивали получившуюся смесь и сушили при комнатной температуре 24 часа. Выдерживали в сушильном шкафу по 2 часа при температурах 60, 80, 100 и 110°С±5°С. Затем прокаливали 2 часа при 350°С±5°С и 3 часа при 550°С±5°С.
На следующем этапе носитель пропитывали насыщенными водными растворами нитратов цинка или магния с целью получения 5% масс. ± 0,5% масс. металла на носителе. Растворяли нитрат металла в дистиллированной воде. Затем добавляли носитель, тщательно перемешивали получившуюся смесь и сушили при комнатной температуре 24 часа. Выдерживали в сушильном шкафу по 2 часа при температурах 60, 80, 100 и 110°С±5°С. Затем прокаливали 2 часа при 350°С±5°С и 3 часа при 550°С±5°С.
Полученные добавки используются в количестве 10% масс. ± 1% масс. от массы катализатора в условиях каталитического крекинга с целью уменьшения содержания серы в жидких продуктах и уменьшения содержания тяжелого остатка. В качестве катализатора могут быть использованы любые цеолитсодержащие катализаторы крекинга.
Каталитический крекинг проводили при температуре 500°С±10°С. Массовая скорость подачи сырья составляла 14,5 ч-1, загрузка катализатора и добавки в реактор - 4,4 г. В качестве катализатора использовался промышленный цеолитсодержащий катализатор крекинга. Для уменьшения вязкости вакуумного газойля его подогревали перед подачей до 70°С±5°С. Перед началом опыта приемник для сбора жидких продуктов крекинга, охлажденный до 0°С±5°С, а также реактор, продували аргоном со скоростью 30 см3/мин ± 5 см3/мин в течение 10 минут, после чего проверяли герметичность системы и осуществляли подачу сырья. Шестеренчатым насосом в реактор подавали 1,3 г ± 0,1 г сырья за 75 секунд ± 1 секунда.
После пропускания сырья приемник, охлажденный до 0°С±5°С, продували аргоном в течение 15 мин ± 1 мин со скоростью 30 см3/мин ± 5 см3/мин.
Перед проведением следующего опыта катализатор регенерировали в токе воздуха (15 см3/мин ± 5 см3/мин) в течение 40 минут ± 5 минут при температуре 650°С±10°С, после чего проводили следующий опыт.
Фракционный состав жидких продуктов крекинга определяли методом имитированной дистилляции на хроматографе «Хромос ГХ-1000». Концентрацию серы в жидких продуктах крекинга определяли с помощью энергодисперсионного рентгенофлуоресцентного анализатора «АСЭ-2». Содержание кокса на катализаторе определяли гравиметрическим методом.
Для того чтобы определить выход кокса после проведения каталитического опыта, закоксованный катализатор не регенерировали, а охлаждали до комнатной температуры в токе аргона. Характеристики промышленного равновесного цеолитсодержащего катализатора крекинга представлены в таблице 1, свойства негидроочищенного вакуумного газойля описаны в таблице 2.
Figure 00000001
Figure 00000002
Каталитический крекинг проводили с использованием негидроочищенного вакуумного газойля при температуре 500°С массовой скоростью подачи сырья 14,5 ч-1. В качестве добавки использовали: 5%Zn-Al-MCM-41/Al2O3 (60/40% масс.), 5%Mg-Al-MCM-41/Аl2O3 (60/40% масс.), 5%Zn-Al-MCM-41/Al2O3 (50/50% масс.), 5%Mg-Al-MCM-41/Аl2O3 (40/60% масс.), 5%Zn-Al-MCM-41/Al2O3 (40/60% масс.). Результаты представлены в таблице 3.
Figure 00000003
Согласно данным в таблице 3 использование цинк-содержащих добавок позволяет получить жидкие продукты с меньшим содержанием серы и большим выходом бензиновой фракции по сравнению с теми же показателями для магний-содержащих добавок. При проведении крекинга с использованием добавки содержание серы в жидких продуктах снижается на 21-33% масс., увеличивается выход фракции 200-350°С на 2-8% масс. и выход кокса на 1-4% масс. по сравнению с теми же показателями в случае крекинга с катализатором без добавки. Наблюдается снижение выхода фракции 350°С+ в жидких продуктах крекинга при использовании всех добавок по сравнению с тем же показателем для катализатора без добавки.

Claims (2)

1. Способ каталитического крекинга негидроочищенного вакуумного газойля, характеризующийся тем, что приемник для сбора жидких продуктов крекинга охлаждают до 0±5°С и реактор продувают аргоном со скоростью 30 см3/мин ±5 см3/мин в течение 10 минут, после чего проверяют герметичность реактора, в который подают подогретый до 70±5°С негидроочищенный вакуумный газойль, затем в реактор добавляют предварительно перемешанную каталитическую композицию, состоящую из катализатора крекинга и 10±1 масс. % добавки от массы катализатора, затем доводят температуру реактора с каталитической композицией до температуры 500±10°С, при этом в качестве добавки используют носитель на основе мезопористого алюмосиликата Al-МСМ-41 и оксида алюминия, взятых в соотношении 40/60-60/40 масс %, с нанесенным на него Zn или Mg в количестве 5±0,5 мас.% от массы носителя.
2. Способ по п. 1, характеризующийся тем, что сырье в реактор подают шестеренчатым насосом со скоростью 1,3±0,1 г сырья за 75±1 секунд, после подачи сырья реактор повторно продувают потоком аргона со скоростью 30±5 см3/мин в течение 15 минут.
RU2019124299A 2019-07-31 2019-07-31 Способ переработки тяжелого углеводородного сырья с использованием серопонижающих добавок к катализаторам крекинга RU2711568C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019124299A RU2711568C1 (ru) 2019-07-31 2019-07-31 Способ переработки тяжелого углеводородного сырья с использованием серопонижающих добавок к катализаторам крекинга

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019124299A RU2711568C1 (ru) 2019-07-31 2019-07-31 Способ переработки тяжелого углеводородного сырья с использованием серопонижающих добавок к катализаторам крекинга

Publications (1)

Publication Number Publication Date
RU2711568C1 true RU2711568C1 (ru) 2020-01-17

Family

ID=69171358

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019124299A RU2711568C1 (ru) 2019-07-31 2019-07-31 Способ переработки тяжелого углеводородного сырья с использованием серопонижающих добавок к катализаторам крекинга

Country Status (1)

Country Link
RU (1) RU2711568C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053849A1 (en) * 2001-12-19 2003-07-03 Michigan State University Ultrastable porous aluminosilicates strucures and compositions derived therefrom
WO2005090523A1 (en) * 2004-03-16 2005-09-29 W.R. Grace & Co.-Conn. Gasoline sulfur reduction catalyst for fluid catalytic cracking process
RU2306979C2 (ru) * 2005-10-26 2007-09-27 ГОУ ВПО Иркутский государственный университет Катализатор изомеризации парафиновых углеводородов (варианты)
RU2592548C1 (ru) * 2015-06-24 2016-07-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" Способ переработки тяжелого углеводородного сырья
EP2231563B1 (en) * 2007-12-27 2016-11-02 ExxonMobil Research and Engineering Company Aromatics hydrogenation process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053849A1 (en) * 2001-12-19 2003-07-03 Michigan State University Ultrastable porous aluminosilicates strucures and compositions derived therefrom
WO2005090523A1 (en) * 2004-03-16 2005-09-29 W.R. Grace & Co.-Conn. Gasoline sulfur reduction catalyst for fluid catalytic cracking process
RU2306979C2 (ru) * 2005-10-26 2007-09-27 ГОУ ВПО Иркутский государственный университет Катализатор изомеризации парафиновых углеводородов (варианты)
EP2231563B1 (en) * 2007-12-27 2016-11-02 ExxonMobil Research and Engineering Company Aromatics hydrogenation process
RU2592548C1 (ru) * 2015-06-24 2016-07-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" Способ переработки тяжелого углеводородного сырья

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Глотов Александр Павлович. Диссертация на соискание ученой степени кандидата химических наук "Обессеривающие добавки к катализаторам крекинга нкфтяного сырья". Москва, 2016. *

Similar Documents

Publication Publication Date Title
RU2569682C2 (ru) Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья
WO2017033512A1 (ja) 潤滑油基油の製造方法
CN102361959B (zh) 芳香族烃的制造方法
EP0968764A1 (en) Hydrotreating catalyst and processes for hydrotreating hydrocarbon oil with the same
CN102596807A (zh) 制备硼硅酸盐zsm-48分子筛的方法
US9782760B2 (en) Method of preparing an activated EU-2 zeolite
RU2311959C1 (ru) Катализатор, способ получения носителя, способ получения катализатора и процесс гидрообессеривания дизельных фракций
CN111097480B (zh) 具有介孔的分子筛及其制备方法和其应用
US8435912B2 (en) Catalyst based on an organic-inorganic hybrid support and its use in hydrorefining and hydroconversion
CN102822126B (zh) 使用硼硅酸盐zsm-48分子筛的正链烷烃选择性加氢转化方法
RU2711568C1 (ru) Способ переработки тяжелого углеводородного сырья с использованием серопонижающих добавок к катализаторам крекинга
SG189377A1 (en) Catalyst for selective paraffin isomerization and preparation method and use thereof
WO2014054439A1 (ja) 潤滑油用基油の製造方法及び潤滑油用基油
RU2633965C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
CN105148980A (zh) 一种复合孔沸石分子筛负载贵金属加氢脱硫催化剂
CN103964466A (zh) 一种zsm-5分子筛及其制备方法
RU2227066C2 (ru) Каталитическая композиция для облагораживания углеводородов с температурами кипения в пределах лигроиновой фракции
RU2518468C2 (ru) Цеолитсодержащий катализатор депарафинизации масляных фракций
CN1205316C (zh) 一种金属型芳烃加氢饱和催化剂
CN110152723B (zh) 一种加氢精制催化剂及其制备方法和应用
CN112725023B (zh) 一种两段加氢裂化工艺
CN110721738B (zh) 一种加氢精制催化剂及其制备方法和应用
CN103058209B (zh) 一种两步水热法合成小晶粒pzsm-5分子筛催化剂的方法
JP7080693B2 (ja) 炭化水素油の水素化処理触媒、その製造方法、および水素化処理方法
RU2458103C1 (ru) Носитель катализатора для риформинга бензиновых фракций и способ его приготовления

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200907

Effective date: 20200907