RU2711511C1 - Устройство для электропорации - Google Patents

Устройство для электропорации Download PDF

Info

Publication number
RU2711511C1
RU2711511C1 RU2018145200A RU2018145200A RU2711511C1 RU 2711511 C1 RU2711511 C1 RU 2711511C1 RU 2018145200 A RU2018145200 A RU 2018145200A RU 2018145200 A RU2018145200 A RU 2018145200A RU 2711511 C1 RU2711511 C1 RU 2711511C1
Authority
RU
Russia
Prior art keywords
working
electrodes
opposite polarity
control unit
electric
Prior art date
Application number
RU2018145200A
Other languages
English (en)
Inventor
Дмитрий Николаевич Панченков
Дмитрий Анатольевич Астахов
Юрий Викторович Иванов
Альберт Петрович Притыко
Игорь Борисович Белецкий
Сергей Сергеевич Дыдыкин
Original Assignee
Общество с Ограниченной Ответственностью "Элсим"
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ имени А.И. Евдокимова Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с Ограниченной Ответственностью "Элсим", Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ имени А.И. Евдокимова Минздрава России) filed Critical Общество с Ограниченной Ответственностью "Элсим"
Priority to RU2018145200A priority Critical patent/RU2711511C1/ru
Application granted granted Critical
Publication of RU2711511C1 publication Critical patent/RU2711511C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Изобретение относится к медицинской технике, а именно к устройствам для электропорации. Устройство содержит генератор электрических импульсов, блок управления, рабочий и экранирующие игольчатые электроды. Генератор электрических импульсов включает в себя два блока электрических импульсов противоположной полярности, синхронизируемых блоком управления. Устройство дополнительно снабжено рабочим электродом для обеспечения пары рабочих электродов с возможностью поочередного подключения пары рабочих электродов к выходам блоков противоположной полярности. Экранирующие электроды связаны общей шиной и подключены к нейтральным выводам соединенных между собой блоков противоположной полярности. Достигается уменьшение мышечного сокращения при процедуре электропорации, исключение возможности выноса злокачественных клеток за пределы операционного поля при удалении рабочего игольчатого электрода и обеспечение возможности создания эффективных электрических полей, использующихся в клинической практике. 4 ил.

Description

Изобретение относится к медицине, а более конкретно к хирургии для нетепловой абляции биологических тканей при лечении преимущественно онкологических заболеваний людей и животных.
Абляция - направленное разрушение ткани (опухоли, эктопического водителя ритма сердца) без физического удаления. На сегодняшний день используется тепловая абляция (например, лазерная), при которой нагревается выбранная область; клетки этой области гибнут с образованием некротической ткани. Некротическая ткань является чужеродной для организма, при этом наблюдаются, в частности, воспалительные процессы.
Электропорация, пожалуй, является единственным способом, позволяющим производить нетепловую абляцию - клетки гибнут при наложении электрического поля определенной напряженности из-за проникновения в них через внешнюю мембрану ионов, нарушающих обменные процессы между клеткой и окружающей средой. При этом клетки разрушаются, распадаются на отдельные фрагменты, которые обычно быстро (в среднем за 90 минут) поглощаются другими клетками, без воспалительной реакции.
Способ электропорации известен с 80-х годов прошлого столетия. Анализ способа показал, что в медицинской практике используются два направления - электрохимиотерапия и абляция. При наложении на биологическую ткань электрического поля напряженностью до 400 В/см / Workbook of the electroporation-based Technologies and Treatments. Edited by Peter Kramar and Damijan Miklavcic. P.57. Nov.2018, Ljubljana, Slovenia / в виде кратковременных импульсов во внешней мембране возникают поры, через которые могут проходить различные вещества, которые в обычных условиях клетками ткани практически не поглощаются. Это явление используется в электрохимиотерапии.
При увеличении напряженности электрического поля клетки разрушаются, распадаясь на отдельные фрагменты, поглощаемые другими клетками без воспалительных реакций. Это явление известно в медицинской практике как нетепловая абляция.
При дальнейшем повышении напряженности электрического поля, более 900 В/см, ткань нагревается, возникает некроз ткани с сопутствующими последствиями, например, воспалительными реакциями.
При этом в электрохимиотерапии используются, в основном, однополярные импульсы электрического тока, а при абляции как одно-, так и биполярные.
Так как способ сопровождается воздействием на биологическую ткань электрического поля, при использовании этого способа на практике возникают сопутствующие нежелательные эффекты. Наиболее значимым является эффект сокращения мышц. Мышцы млекопитающих начинают сокращаться при напряженности электрического поля 5 В/см, что намного меньше значения напряженности электрического поля от 400 до 900 В/см в операционном поле, необходимого для абляции. Определение влияния на конкретные мышцы весьма затруднительно по причине неоднородности проводимости ткани, большому количеству мышц, различным образом ориентированных, индивидуальным различиям ткани, поэтому оценка сокращения мышц производится экспериментальным путем.
Известно устройство для электропорации (SYSTEMS FORTREATING TISSUESITES USING ELECTROPORATION Pub. No.: US 20080132884 A1), в котором импульсы электрического тока используются для воздействия на биологическую ткань с целью ее разрушения.
Устройство включает в себя 6 электродов в виде игл, генератор импульсов электрического тока и блок управления. Генератор выдает однополярные импульсы электрического тока, напряженность электрического поля при этом может достигать 900 В/см и более в зависимости от выбранного органа) при длительности импульса 70-100 мкс и периоде повторения импульсов, равном 1 секунде.
Недостатком данного устройства является значительное сокращение мышц, приводящее к боли, смещению электродов относительно первоначального положения, риску нарушения работы сердечной мышцы и диафрагмы. Сокращение мышц начинает проявляться при напряженности электрического поля порядка 5 В/см.
Известен также электропоратор (Bipolar Microsecond Pulses and InsulatedNeedle Electrodes for Reducing Muscle Contractions during Irreversible ElectroporationChenguo Yao*, Member, IEEE, Shoulong Dong, Student Member, IEEE, Yajun Zhao, YanpengLv, Hongmei Liu, Lingyu Gong, Jianhao Ma, Haifeng Wang, Yinghao Sun), в котором используются биполярные импульсы электрического тока. Показано, что при прочих равных условиях замена однополярного импульса на несколько биполярных с сохранением общей длительности позволяет снизить сокращение мышц в 11,4 раза, что недостаточно для хирургической практики, так как при электрической напряженности около 400 В/см-900 В/см напряженность поля вблизи операционного поля будет равна примерно 35-80 В/см, а мышцы начинают сокращаться при 5 В/см. Уменьшение сокращения мышц вызвано при этом именно формой импульсов.
Наиболее близкой к заявленному устройству для электропорации и принятой за прототип является система электропорации (Current cage for reduction of a non-target tissue exposure to electric fields in electroporation based treatment US 20130197425 A1), включающая в себя блок управления, генератор однополярных электрических импульсов, рабочий игольчатый электрод, соединенный с выходом генератора и расположенный в операционном поле, и нескольких экранирующих игольчатых электродов, соединенных между собой и с нейтральным выходом генератора, и расположенных вокруг рабочего игольчатого электрода.
Указанная система имеет следующие недостатки.
Как отмечается в работе (Current cage for reduction of a non-target tissue exposure to electric fields in electroporation based treatment US 20130197425 A1), мышечные сокращения уменьшаются на порядок, т.е. в 10 раз по сравнению с электродом без экранных игл, что недостаточно для клинической практики, так как при электрической напряженности 400 В/см-900 В/см напряженность поля вокруг экранирующих электродов будет равна 40-90 В/см, а мышцы начинают сокращаться при 5 В/см. Значительного уменьшения сокращения мышц можно достичь только при большом количестве экранирующих электродов, что нереально в клинической практике. Например, указанное количество экранных игл -25, может быть использовано ограниченно, возможно, для накожных процедур. Рабочий электрод находится в операционном поле. При его удалении после окончания процедуры электропорации возможен вынос злокачественных клеток за пределы операционного поля. Использование одного рабочего игольчатого электрода позволяет получать электрическое поле только одной конфигурации, что не всегда достаточно для клинической практики.
Задачей предлагаемого изобретения является устранение указанных недостатков, уменьшение мышечного сокращения при процедуре электропорации, исключение возможности выноса злокачественных клеток за пределы операционного поля при удалении рабочего игольчатого электрода, и обеспечение возможности создания эффективных электрических полей, использующихся в клинической практике.
Поставленная задача достигается тем, что устройство, содержащее генератор электрических импульсов, соединенный с блоком управления, рабочий игольчатый электрод и экранирующие игольчатые электроды, расположенные вокруг рабочего электрода и соединенные между собой общей шиной и с нейтральным выходом генератора электрических импульсов, дополнительно снабжено генератором биполярных электрических импульсов противоположной полярности, синхронизируемых блоком управления, и, по меньшей мере, еще одним рабочим электродом, образующим, по меньшей мере, пару рабочих электродов с возможностью поочередного подключения каждой пары рабочих электродов к выходам генератора противоположной полярности.
Такая схема устройства позволяет существенно расширить функциональные возможности электропоратора: практически полностью исключить сокращение мышц при процедуре электропорации, избежать возможности разноса злокачественных клеток за пределы операционного поля благодаря расположению рабочих электродов вне операционного поля и оптимизации построения рабочими электродами электрических полей, использующихся в клинической практике.
Сущность предполагаемого изобретения поясняется фиг. 1-3.
На фиг. 1 представлена функциональная схема устройства. Электропоратор содержит блок 1 управления, блоки 2 и 3 генератора биполярных электрических импульсов противоположной полярности с общей нейтральной точкой, соединенных с блоком 1 управления для синхронной работы, пару или более рабочих 4 игольчатых и экранирующих 5 игольчатых электродов, при этом один из рабочих электродов 4 пары соединен с выходом одного блока генератора, а другой с выходом второго блока генератора, а экранирующие электроды 5 соединены между собой и с общей нейтральной точкой блоков генераторов.
Работа устройства осуществляется следующим образом.
С блоков 2 и 3 генератора электрических импульсов после команд с блока 1 управления на рабочие электроды 4 подаются электрические импульсы, вид и параметры которых приведены на фиг.2. Использование генератора биполярных электрических импульсов противоположной полярности позволяет применять две или более пар рабочих электродов, располагаемых вокруг операционного поля 6, как показано на фиг. 3, например а-б, в-е и т.д.
Все манипуляции с животными проводили в соответствии с санитарными правилами по устройству, оборудованию и содержанию экспериментально-биологических клиник (вивариев) №1045-73 от 06.04.1973, Конвенцией по защите животных, используемых в эксперименте и других научных целях (г. Страсбург, Франция, 1986), и Директивой Совета 86/609/ЕЕС от 24.11.86 по согласованию законов, правил и административных распоряжений стран-участниц в отношении защиты животных, используемых в экспериментальных и других научных целях.
Всего проведено 13 экспериментов. Исследования выполняли на 26 белых беспородных крысах, приблизительно одного возраста (2-3 месяца), массой 240-330 грамм, мужского пола. Все животные находились в одинаковых условиях стандартного вивария при постоянной температуре окружающей среды 23-26°С, получали одинаковое питание, были прооперированы в одинаковых временных рамках. За 20 минут до процедуры электропорации производилась анестезия по стандартной методике с использованием ксилазина 2% и золетила (тилетомин). Мониторинг за вхождением животного в наркоз осуществлялся путем наблюдения за исчезновением ряда рефлексов.
Во время наркоза следили за рисунком дыхания (ритм, частота, глубина), тонусом животного. В состоянии наркоза животное фиксировали к операционному столу и помещали в положение на спине на стерильной хирургической подложке. Передняя брюшная стенка рассекалась линейным разрезом по средней линии. Печень мобилизовывалась в рану стерильной салфеткой подведенной между задней диафрагмальной поверхностью печени и брюшной стенкой.
В открытый сегмент печени вводились 2 рабочих игольчатых электрода на расстоянии 1 см и 8 экранирующих игольчатых электродов, расположенных по окружности диаметром 2 см вокруг рабочих игольчатых электродов, все на глубину 5 мм. Диаметр всех игл составлял 0,7 мм.
Параметры сигнала контролировались постоянно в течение эксперимента стандартным осциллографом PSCU1000. Для понижения напряжения использовался резистивный делитель 100:1.
При испытаниях, проведенных в виварии Московского государственного медико-стоматологического университета в период с 20.02. 2018 г. по 30.05.2018 на лабораторных животных - крысах установлено, что заявленный электропоратор (номер регистрации протокола исследования №15112610026 Московского государственного медико-стоматологического университета) позволил практически полностью исключить сокращение мышц при подаче импульсов. Визуально наблюдались незначительные движения крысы одновременно с поступающими пачками импульсов электрического тока с интервалом в 1 секунду, при этом в эксперименте устанавливалась напряженность электрического поля 1000 В/см, превышающая допустимую 900 В/см. Использовалось 8 экранирующих электродов. Исходя из общих физических закономерностей, при увеличении количества электродов экранирующая способность будет возрастать. В рассматриваемом случае количество использованных экранирующих электродов было определено, исходя из реальных размеров сегмента печени крысы.
Внешний вид электропоратора, используемого в эксперименте, представлен на фиг.4.
Результаты расчетов практически полностью совпали с полученными экспериментальными результатами. При использовании генераторов, синхронно выдающих биполярные электрические импульсы противоположной полярности, пары рабочих электродов и экранирующих электродов по предлагаемой нами схеме, сокращения мышц уменьшаются в 10×11,4=114 раз. При напряженности операционного поля от 400 В/см до 900 В/см напряженность поля в непосредственной близости за пределами экранирующих электродов составляет от 3,5 В/см до 7,9 В/см.
Особенно следует отметить значимость применения предложенного электропоратора в онкологической практике - при процедурах практически исключается возможность разноса злокачественных клеток за пределы операционного поля из-за расположения рабочих электродов вне операционного поля.

Claims (1)

  1. Устройство для электропорации, содержащее генератор электрических импульсов, блок управления, рабочий и экранирующие игольчатые электроды, отличающееся тем, что генератор электрических импульсов включает в себя два блока электрических импульсов противоположной полярности, синхронизируемых блоком управления, при этом устройство дополнительно снабжено по меньшей мере еще одним рабочим электродом, образующим по меньшей мере пару рабочих электродов с возможностью поочередного подключения пары рабочих электродов к выходам блоков противоположной полярности, а экранирующие электроды связаны общей шиной и подключены к нейтральным выводам соединенных между собой блоков противоположной полярности.
RU2018145200A 2018-12-19 2018-12-19 Устройство для электропорации RU2711511C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018145200A RU2711511C1 (ru) 2018-12-19 2018-12-19 Устройство для электропорации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018145200A RU2711511C1 (ru) 2018-12-19 2018-12-19 Устройство для электропорации

Publications (1)

Publication Number Publication Date
RU2711511C1 true RU2711511C1 (ru) 2020-01-17

Family

ID=69171356

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018145200A RU2711511C1 (ru) 2018-12-19 2018-12-19 Устройство для электропорации

Country Status (1)

Country Link
RU (1) RU2711511C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738572C1 (ru) * 2020-03-27 2020-12-14 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России) Устройство для электропорации
CN114886545A (zh) * 2022-05-07 2022-08-12 宇寿医疗科技(无锡)有限公司 一种同步双极性短脉冲肿瘤消融方法与装置
CN114886546A (zh) * 2022-05-09 2022-08-12 宇寿医疗科技(无锡)有限公司 一种同步双极性短脉冲肿瘤消融方法与系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2059294A2 (en) * 2006-08-07 2009-05-20 Alpha Omega Engineering Ltd. Cerebral electrodes and methods of operating same
WO2011113943A1 (en) * 2010-03-19 2011-09-22 Vesalius Medical Technologies Bvba Device and method for radio frequency ablation (rfa)
US20130197425A1 (en) * 2011-12-16 2013-08-01 The Regents Of The University Of California Current cage for reduction of a non-target tissue exposure to electric fields in electroporation based treatment
WO2013173481A2 (en) * 2012-05-18 2013-11-21 Holaira, Inc. Compact delivery pulmonary treatment systems and methods for improving pulmonary function
WO2016090175A1 (en) * 2014-12-03 2016-06-09 Metavention, Inc. Systems and methods for modulating nerves or other tissue
RU173034U1 (ru) * 2016-07-12 2017-08-07 Александр Борисович Лифшиц Многочастотный электростимулятор

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2059294A2 (en) * 2006-08-07 2009-05-20 Alpha Omega Engineering Ltd. Cerebral electrodes and methods of operating same
WO2011113943A1 (en) * 2010-03-19 2011-09-22 Vesalius Medical Technologies Bvba Device and method for radio frequency ablation (rfa)
US20130197425A1 (en) * 2011-12-16 2013-08-01 The Regents Of The University Of California Current cage for reduction of a non-target tissue exposure to electric fields in electroporation based treatment
WO2013173481A2 (en) * 2012-05-18 2013-11-21 Holaira, Inc. Compact delivery pulmonary treatment systems and methods for improving pulmonary function
WO2016090175A1 (en) * 2014-12-03 2016-06-09 Metavention, Inc. Systems and methods for modulating nerves or other tissue
RU173034U1 (ru) * 2016-07-12 2017-08-07 Александр Борисович Лифшиц Многочастотный электростимулятор

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738572C1 (ru) * 2020-03-27 2020-12-14 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России) Устройство для электропорации
CN114886545A (zh) * 2022-05-07 2022-08-12 宇寿医疗科技(无锡)有限公司 一种同步双极性短脉冲肿瘤消融方法与装置
CN114886545B (zh) * 2022-05-07 2023-11-28 宇寿医疗科技(无锡)有限公司 一种同步双极性短脉冲肿瘤消融方法与装置
CN114886546A (zh) * 2022-05-09 2022-08-12 宇寿医疗科技(无锡)有限公司 一种同步双极性短脉冲肿瘤消融方法与系统
CN114886546B (zh) * 2022-05-09 2023-11-28 宇寿医疗科技(无锡)有限公司 一种同步双极性短脉冲肿瘤消融方法与系统

Similar Documents

Publication Publication Date Title
CN109124760B (zh) 协同脉冲不可逆电穿孔装置
RU2711511C1 (ru) Устройство для электропорации
CN110382040B (zh) 堆叠电位电穿孔
EP4218641A1 (en) Optimization of energy delivery for various applications
JP2024069277A (ja) 外科用クランプを使用する、アブレーションのためのシステム、デバイス、および方法
KR102626993B1 (ko) 비-열 에너지의 적용에 의한 피부 샘의 치료
CN109394334A (zh) 一种高压双极陡脉冲组肿瘤治疗装置及系统
CN111167008A (zh) 利用射频电学膜击穿(rf-emb)的癌症免疫疗法
US20190184163A1 (en) Systems and methods for delivering pulsed electric fields to skin tissue
KR20070119024A (ko) 상처 회복을 증진하기 위한 전자기 치료 장치 및 상기장치를 이용하기 위한 방법
Livneh et al. Extracorporeal acute cardiac pacing by high intensity focused ultrasound
Arena et al. Advances in therapeutic electroporation to mitigate muscle contractions
JP2020531094A (ja) 双極性ナノ秒パルスの干渉による標的化遠隔電気刺激
CN112292090A (zh) 用于治疗疾病或不需要的组织的电热疗法
KR102556144B1 (ko) 나노초 펄스 버스트의 메가헤르츠 압축
CN114886545B (zh) 一种同步双极性短脉冲肿瘤消融方法与装置
US20240032983A1 (en) Electronic apparatus for delivering coherent sine burst irreversible electroporation energy to a biological tissue
RU161128U1 (ru) Аппарат физиотерапевтический глубокого теплового воздействия
RU2738572C1 (ru) Устройство для электропорации
RU2008125044A (ru) Способ радиочастотного двухэтапного ремоделирования атрофической кожи лица и тела
Eickhoff et al. Pulse shaping strategies for electroceuticals: a comprehensive survey of the use of interphase gaps in miniature stimulation systems
US20220287764A1 (en) Initiating ire generation with a ramp
RU145929U1 (ru) Установка для комбинированного разрушения биоткани
RU2684178C1 (ru) Способ реабилитации после тотального эндопротезирования коленного сустава у пациентов с саркопенией
de Caro et al. Therapeutic perspectives of high pulse repetition rate electroporation

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201220