RU2707704C1 - Система для синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации - Google Patents

Система для синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации Download PDF

Info

Publication number
RU2707704C1
RU2707704C1 RU2018139241A RU2018139241A RU2707704C1 RU 2707704 C1 RU2707704 C1 RU 2707704C1 RU 2018139241 A RU2018139241 A RU 2018139241A RU 2018139241 A RU2018139241 A RU 2018139241A RU 2707704 C1 RU2707704 C1 RU 2707704C1
Authority
RU
Russia
Prior art keywords
adc
input
frequency
output
signal
Prior art date
Application number
RU2018139241A
Other languages
English (en)
Inventor
Александр Викторович Горлин
Антон Олегович Смирнов
Максим Владимирович Синяев
Original Assignee
Акционерное Общество "Концерн "Океанприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Концерн "Океанприбор" filed Critical Акционерное Общество "Концерн "Океанприбор"
Priority to RU2018139241A priority Critical patent/RU2707704C1/ru
Application granted granted Critical
Publication of RU2707704C1 publication Critical patent/RU2707704C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • H03M1/1255Synchronisation of the sampling frequency or phase to the input frequency or phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

Изобретение относится к области гидроакустики, радиотехники и электротехники и может быть использовано для построения синхронных многоканальных систем аналого-цифрового преобразования при использовании аналого-цифровых преобразователей с избыточной частотой дискретизации (АЦП-ИЧД), применяемых в гидроакустической аппаратуре. Техническим результатом является увеличение надежности и помехозащищенности. Система содержит не менее двух АЦП-ИЧД, опорный генератор и узлы следящей синхронизации по числу АЦП-ИЧД, выполненные в виде фазового детектора, суммирующие операционные усилители, охваченные обратной связью, имеющие передаточную характеристику фильтра нижних частот, источники постоянного регулируемого напряжения, инверторы, управляемые кварцевые генераторы. 1 ил.

Description

Изобретение относится к области радиотехники и электротехники и может быть использовано для построения синхронных многоканальных систем аналого-цифрового преобразования при использовании аналого-цифровых преобразователей с избыточной частотой дискретизации (АЦП-ИЧД), применяемых в гидроакустической аппаратуре.
Использование АЦП-ИЧД по сравнению с АЦП других типов позволяет увеличить динамический диапазон, уменьшить нелинейные искажения, увеличить количество разрядов, уменьшить шаг квантования, снижает требования к фильтрам преддискретизации. А синхронная работа АЦП в многоканальной системе аналого-цифрового преобразования обеспечивает когерентность преобразования принимаемых сигналов, что важно при разработке многоканальных гидроакустических систем.
Сбои синхронизации приводят к потере информации о фазе сигнала и, как следствие, потере информации о местоположении и идентификации искомого объекта.
Известен способ синхронизации АЦП-ИЧД, основанный на подаче сигнала тактовой частоты на несколько АЦП-ИЧД, находящихся на одном кристалле, например, AD7768. [8-/4-Channel, 24-Bit, Simultaneous Sampling ADCs with Power Scaling, 110.8 kHz BW Data Sheet AD7768/AD7768-4].
Данный способ заключается в размещении на одном кристалле в одном корпусе восьми АЦП-ИЧД, объединенных общим сигналом тактовой частоты и общим сигналом начальной установки, что позволяет синхронно опрашивать восемь каналов. Когда количество каналов измеряется десятками и сотнями этот способ реализовать невозможно.
Наиболее близким аналогом предлагаемого технического решения является система синхронизации АЦП-ИЧД, описанная в патенте РФ №2 535 481 на «Способ синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации».
Эта следящая система для синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации (АЦП-ИЧД), содержит опорный генератор и узлы следящей синхронизации по числу АЦП-ИЧД, у которых один вход соединен с выходом готовности данных соответствующего АЦП-ИЧД а второй вход - с выходом опорного генератора, узел следящей синхронизации вырабатывает сигнал, восстанавливающий синхронную работу соответствующего АЦП-ИЧД, если она нарушилась.
Кроме того в эту систему входят генератор импульсов начальной установки и генератор тактовых импульсов, сигналы от которых поступают на все АЦП-ИЧД
Недостатком устройства - прототипа является то, что при большом удалении АЦП-ИЧД от генератора тактовых импульсов, от генератора импульсов начальной установки, от опорного генератора, как это имеет место, например, в системах сейсморазведки, в гибких протяженных многоэлементных буксируемых гидроакустических антеннах, необходимо передавать на большие расстояния импульсы малой длительности с короткими фронтами для чего необходимы три высокочастотные электрические линии передачи с малыми потерями и малыми искажениями. Недостатками высокочастотных линий передачи является то, что они имеют большие габариты и подвержены влиянию электромагнитных помех, что приводит к увеличению габаритов системы сбора и передачи информации, увеличению джиттера (дрожания фронтов) тактовых импульсов и снижению параметров АЦП.
Кроме того, недостатком устройства прототипа является то, что он не позволяет вводить контролируемую задержку срабатывания какого-либо АЦП-ИЧД относительно сигнала синхронизации.
Задачей изобретения является увеличение надежности системы синхронизации, увеличение ее помехозащищенности за счет исключения высокочастотных логических элементов, упрощение алгоритма работы, компенсация ошибок синхронизации, вызываемых задержкой распространения сигнала синхронизации на большое расстояние.
Технический результат изобретения заключается в ликвидации длинных линий для передачи высокочастотных тактовых сигналов, а также для передачи импульсов начальной установки, снижении требований по скорости нарастания и спада фронтов сигнала синхронизации, уменьшении джиттера тактовых сигналов АЦП-ИЧД, обеспечении возможности введения контролируемой задержки срабатывания любого АЦП-ИЧД относительно сигнала синхронизации.
Для достижения заявленного технического результата в систему для синхронизации не менее двух аналого-цифровых преобразователей с избыточной частотой дискретизации (АЦП-ИЧД), содержащую опорный генератор и узлы следящей синхронизации по числу АЦП-ИЧД, у которых один вход соединен с выходом готовности данных соответствующего АЦП-ИЧД а второй вход - с выходом опорного генератора, введены новые признаки, а именно: опорный генератор выполнен в виде генератора синусоидального напряжения, каждый узел следящей синхронизации выполнен в виде фазового детектора, выход которого соединен с первым входом суммирующего операционного усилителя, охваченного обратной связью, имеющего передаточную характеристику фильтра нижних частот, второй вход которого соединен с источником постоянного регулируемого напряжения, выход суммирующего операционного усилителя через инвертор соединен со входом управляемого кварцевого генератора, выход которого соединен со входом тактовой частоты соответствующего АЦП-ИЧД.
Высокочастотные сигналы тактовой частоты, необходимые для работы АЦП-ИЧД, вырабатываются управляемым кварцевым генератором, расположенным в непосредственной близости от соответствующего АЦП-ИЧД. Поэтому минимизируется джиттер тактового сигнала и отпадает необходимость передачи на значительное расстояние высокочастотного сигнала тактовой частоты от общего для всех АЦП-ИЧД генератора тактовой частоты.
Кроме того, использование низкочастотного синусоидального сигнала для синхронизации АЦП-ИЧД вместо короткого импульсного сигнала той же частоты, позволяет использовать более тонкую линию передачи с существенно более низкой полосой пропускания. В предлагаемой системе синхронизации в отличие от прототипа нет сигнала начальной установки всех АЦП-ИЧД и нет линии для его передачи, так как синхронизация каждого АЦП-ИЧД по сигналу готовности данных происходит за счет изменения частоты соответствующего управляемого кварцевого генератора.
Сущность изобретения поясняется фиг. 1, на которой приведена блок-схема заявленной системы устройства.
Система (фиг. 1) содержит опорный генератор 1, аналого-цифровые преобразователи с избыточной частотой дискретизации АЦП-ИЧД 2.1, 2.2…2.N, узлы следящей синхронизации (фазовые детекторы) 3.1, 3.2, … 3.N, источники постоянного регулируемого напряжения 4.1, 4.2…4.N, суммирующие операционные усилители 5.1, 5.2…5.N, инвертирующие усилители 6.1, 6.2….N, генераторы управляемые напряжением 7.1.7.2…7.N.
Выход (Синхр) опорного генератора 1 соединен со входом (Синхр) сигнала синхронизации каждого узла следящей синхронизации 3.1, 3.2…3.N. Второй вход сигнала готовности данных
Figure 00000001
узла следящей синхронизации 3.1, 3.2…3.N соединен с выходом готовности данных
Figure 00000002
соответствующего АЦП-ИЧД 2.1, 2.2…2.N. Выход Vвых каждого узла следящей синхронизации 3.1, 3.2…3.N соединен с первым входом соответствующего суммирующего усилителя 5.1, 5.2…5.N, охваченного обратной связью ОС. Второй вход суммирующего усилителя соединен с источником постоянного регулируемого напряжения 4.1, 4.2…4.N. Выход каждого суммирующего усилителя соединен со входом соответствующего инвертора 6.1, 6.2…6.N. Выход каждого инвертора соединен со входом соответствующего генератора управляемого напряжением 7.1, 7.2…7.N. Выход каждого генератора управляемого напряжением соединен со входом тактовой частоты Clk соответствующего АЦП 2.1, 2.2…2.N.
Система синхронизации работает следующим образом. После подачи питания начинают работать все генераторы тактовых сигналов: опорный генератор 1,-управляемые генераторы 7.1, 7.2, 7.N, вырабатывающие тактовые импульсы Clk для соответствующих АЦП-ИЧД. Центральные частоты всех этих генераторов близки между собой, а выходные частоты всех управляемых генераторов на время переходного процесса не равны друг другу. На узлы следящей синхронизации (Фазовые детекторы) 3.1, 3.2, 3.N сразу после подачи питания поступает только синусоидальный сигнал Синхр от опорного генератора 1. После окончания времени установления цифровых фильтров, входящих в АЦП-ИЧД 2.1, 2.2…2.N, на узлы следящей синхронизации 3.1, 3.2…3.N от соответствующих АЦП-ИЧД начинают поступать импульсы готовности данных
Figure 00000003
,
Figure 00000004
сигнализирующие о готовности выходных данных АЦП-ИЧД.
Частота и фаза импульсов
Figure 00000005
связаны с моментами дискретизации входных данных АЦП-ИЧД.
Узлы следящей синхронизации 3.1, 3.2…3.N (ФД) вырабатывают выходные сигналы Vвых соответствующие отклонению сигналов
Figure 00000006
по частоте и по фазе от опорного сигнала Синхр. Сигналы Vвых узлов следящей синхронизации 3.1, 3.2…3.N через операционные усилители 5.1, 5.2…5.N и инверторы 6.1, 6.2…6.N поступают на вход соответствующего ГУН 7.1, 7.2…7.N, выходной сигнал которого поступает на вход тактовой частоты Clk (третье написание) соответствующего АЦП-ИЧД 2.1, 2.2…2.N. Таким образом замыкается контур обратной связи по частоте и фазе сигнала готовности данных
Figure 00000007
.В результате частота сигналов готовности данных
Figure 00000008
всех АЦП-ИЧД после окончания переходного процесса становится равной частоте опорного сигнала Синхр.
Операционные усилители ОУ 5.1, 5.2…5.N имеют передаточную характеристику фильтра нижних частот за счет местной обратной связи ОС. Параметры фильтра нижних частот должны обеспечивать сглаживание пульсаций напряжения на входе каждого ГУН 7.1, 7.2…7.N и устойчивость контура обратной связи по частоте и по фазе сигналов
Figure 00000009
Для управления сдвигом фазы между опорным сигналом Синхр и сигналами
Figure 00000010
на вход каждого ОУ 5.1, 5.2…5.N через резистор R2.1, R2.2… R2.N от источников постоянного регулируемого напряжения 4.1, 4.2…4.N поступает соответствующее напряжение Уф, в результате чего сдвиг фазы принимает заданное для каждого канала значение.
Рассмотрим работу одного канала синхронизации АЦП-ИЧД. Узел следящей синхронизации 3.1 сравнивает частоту и фазу опорного сигнала Синхр с частотой и фазой сигнала готовности данных
Figure 00000011
на выходе АЦП-ИЧД 2.1.
В зависимости от величины рассогласования частоты и фазы указанных сигналов Синхр и
Figure 00000012
узел следящей синхронизации 3.1 вырабатывает напряжение Vвых, которое через операционный усилитель ОУ 5.1 и инвертор 6.1 поступает на вход ГУН 7.1., вырабатывающий сигнал Clk, поступающий на вход Clk АЦП-ИЧД 2.1. В результате частота тактового сигнала Clk меняется в зависимости от соотношения частоты и фазы опорного сигнала Синхр и сигнала
Figure 00000013
Частота сигнала готовности данных
Figure 00000014
на выходе
Figure 00000015
АЦП-ИЧД 2.1 в заданное целое число раз меньше частоты тактовых сигналов Clk на входе Clk АЦП-ИЧД 2.1. Поэтому изменение частоты сигнала Clk на входе АЦП-ИЧД 2.1 приводит к изменению частоты сигнала
Figure 00000016
на его выходе.
Узел следящей синхронизации 3.1 (фазовый детектор ФД), операционный усилитель ОУ 5.1, инвертор 6.1, генератор управляемый напряжением ГУН 7.1, АЦП-ИЧД 2.1 образуют контур фазовой автоподстройки частоты (ФАПЧ), в результате работы которого частота сигнала
Figure 00000017
становится равной частоте опорного сигнала Синхр.
Так как синхронизация сигналов Синхр и
Figure 00000018
осуществляется с помощью контура ФАПЧ из схемы синхронизации исключается генератор импульсов начальной установки АЦП-ИЧД.
Опорный сигнал Синхр представляет собой не последовательность импульсов, а синусоиду, поэтому удается заменить длинную высокочастотную линию связи для передачи опорного сигнала на тонкую низкочастотную.
Генератор сигнала Clk (ГУН 7.1) расположен близко от соответствующего ему АЦП-ИЧД 2.1, поэтому удается исключить длинную высокочастотную линию связи для передачи общего тактового сигнала Clk от одного генератора на все АЦП-ИЧД. При этом минимизируется дрожание фронтов (джиттер) сигнала Clk, что необходимо для нормальной работы АЦП-ИЧД.
В устройстве прототипе отсутствует возможность регулировать сдвиг фазы между опорным сигналом и сигналом готовности данных.
В предлагаемой системе синхронизации для управления сдвигом фазы между опорным сигналом Синхр и сигналом
Figure 00000019
служит источник постоянного регулируемого напряжения Уф 4.1, напряжение от которого через резистор R2.1 поступает на вход ОУ 5.1 и складывается с выходным напряжением Vвых узла следящей синхронизации 3.1 в результате чего регулируется сдвиг фазы между сигналом синхронизации Синхр и сигналом готовности данных
Figure 00000020
поступающим от АЦП-ИЧД 2.1.

Claims (1)

  1. Система для синхронизации не менее двух аналого-цифровых преобразователей с избыточной частотой дискретизации (АЦП-ИЧД), содержащая опорный генератор и узлы следящей синхронизации по числу АЦП-ИЧД, у которых один вход соединен с выходом готовности данных соответствующего АЦП-ИЧД, а второй вход - с выходом опорного генератора, отличающаяся тем, что опорный генератор выполнен в виде генератора синусоидального напряжения, каждый узел следящей синхронизации выполнен в виде фазового детектора, выход которого соединен с первым входом суммирующего операционного усилителя, охваченного обратной связью, имеющего передаточную характеристику фильтра нижних частот, второй вход которого соединен с источником постоянного регулируемого напряжения, выход операционного усилителя через инвертор соединен со входом управляемого кварцевого генератора, выход которого соединен со входом тактовой частоты соответствующего АЦП-ИЧД.
RU2018139241A 2018-11-06 2018-11-06 Система для синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации RU2707704C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018139241A RU2707704C1 (ru) 2018-11-06 2018-11-06 Система для синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018139241A RU2707704C1 (ru) 2018-11-06 2018-11-06 Система для синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации

Publications (1)

Publication Number Publication Date
RU2707704C1 true RU2707704C1 (ru) 2019-11-28

Family

ID=68836255

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018139241A RU2707704C1 (ru) 2018-11-06 2018-11-06 Система для синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации

Country Status (1)

Country Link
RU (1) RU2707704C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080253277A1 (en) * 2006-10-30 2008-10-16 Seung Wook Lee OFDM receiving circuit having multiple demodulation paths using oversampling analog-to-digital converter
CN102891681A (zh) * 2012-09-24 2013-01-23 北京华力创通科技股份有限公司 一种多片高速adc芯片的同步方法及装置
US20130141262A1 (en) * 2010-08-27 2013-06-06 Micro Motion, Inc. Analog-to-digital conversion stage and phase synchronization method for digitizing two or more analog signals
RU2535481C1 (ru) * 2013-06-06 2014-12-10 Открытое акционерное общество "Концерн "Океанприбор" Способ синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации
US9564913B1 (en) * 2016-03-09 2017-02-07 Analog Devices, Inc. Synchronization of outputs from multiple digital-to-analog converters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080253277A1 (en) * 2006-10-30 2008-10-16 Seung Wook Lee OFDM receiving circuit having multiple demodulation paths using oversampling analog-to-digital converter
US20130141262A1 (en) * 2010-08-27 2013-06-06 Micro Motion, Inc. Analog-to-digital conversion stage and phase synchronization method for digitizing two or more analog signals
CN102891681A (zh) * 2012-09-24 2013-01-23 北京华力创通科技股份有限公司 一种多片高速adc芯片的同步方法及装置
RU2535481C1 (ru) * 2013-06-06 2014-12-10 Открытое акционерное общество "Концерн "Океанприбор" Способ синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации
US9564913B1 (en) * 2016-03-09 2017-02-07 Analog Devices, Inc. Synchronization of outputs from multiple digital-to-analog converters

Similar Documents

Publication Publication Date Title
US10509104B1 (en) Apparatus and methods for synchronization of radar chips
KR100884170B1 (ko) 위상동기루프용 디지털 위상 검출기
US5910753A (en) Direct digital phase synthesis
US9720380B2 (en) Time-to-digital converter, frequency tracking apparatus and method
US20190149258A1 (en) Transmission and reception apparatus, optical transmission apparatus and optimization method for pluggable interface
KR102161744B1 (ko) 위상 오차를 줄이기 위한 시스템, 방법, 및 디스플레이
KR20010079987A (ko) 클럭 동기화 시스템 및 방법
JP5002528B2 (ja) ディジタル位相検出器およびpll
US20160006559A1 (en) Transmission apparatus, reception apparatus, and transmission and reception system
TW201409987A (zh) 時脈與資料回復電路以及時脈與資料回復方法
US20160061972A1 (en) Data acquisition apparatus using one single local clock
US7139347B2 (en) Parallel signal automatic phase adjusting circuit
CN110784276B (zh) 零偏移时钟分配
RU2707704C1 (ru) Система для синхронизации аналого-цифровых преобразователей с избыточной частотой дискретизации
US10593361B2 (en) Method for transmitting and/or receiving audio signals
JP3072509B2 (ja) Pam方式通信装置のタイミング制御回路
KR100967197B1 (ko) 시스템간 망동기를 위한 클록 전송장치
CN114710210B (zh) 一种基于单信号参考源的光梳频率传递被动补偿方法
KR102101797B1 (ko) 다수의 직접 디지털 합성기 모듈을 이용한 주파수 합성기
CN114265021A (zh) 一种数字阵列雷达噪声非相干时钟源
KR100738345B1 (ko) 클럭 발생 장치 및 방법
CA2396121A1 (en) Method for synchronizing the phase of optical return-to-zero (rz) data signals
KR100192525B1 (ko) 광통신 수신기용 클럭 및 데이타 복구회로
KR910005529B1 (ko) 이중루프에 의한 발진주파수 추적 발생장치
CN114499511B (zh) 适用于码型发生器的抖动信号注入装置、系统及方法