RU2705707C1 - Реактор для контроля гидратообразования - Google Patents

Реактор для контроля гидратообразования Download PDF

Info

Publication number
RU2705707C1
RU2705707C1 RU2019113725A RU2019113725A RU2705707C1 RU 2705707 C1 RU2705707 C1 RU 2705707C1 RU 2019113725 A RU2019113725 A RU 2019113725A RU 2019113725 A RU2019113725 A RU 2019113725A RU 2705707 C1 RU2705707 C1 RU 2705707C1
Authority
RU
Russia
Prior art keywords
cell
hydrate formation
plug
conditions
formation
Prior art date
Application number
RU2019113725A
Other languages
English (en)
Inventor
Александр Нефедович Гульков
Юрий Михайлович Ем
Алексей Андреевич Морозов
Владислав Николаевич Барышев
Павел Игоревич Осмоловский
Антон Алексеевич Пичугов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ)
Priority to RU2019113725A priority Critical patent/RU2705707C1/ru
Application granted granted Critical
Publication of RU2705707C1 publication Critical patent/RU2705707C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Изобретение относится к области автоматического контроля условий гидратообразования природного газа и может быть использовано для изучения условий гидратообразования на различных материалах в условиях залежей углеводородов и магистральных трубопроводов. Заявлен реактор для контроля гидратообразования, содержащий металлическую ячейку, снабженную пробкой, выполненной с возможностью герметичного запирания ячейки и снабженной каналами для термопары и подвода воды и газа под давлением. Пробка выполнена в виде цилиндра, снабженного кольцевым пояском, снабжена герметизирующими кольцевыми уплотнениями в зазоре между поверхностью пробки и внутренней поверхностью ячейки, в полости которой находятся образцы испытуемых материалов. При этом вертикальные стенки ячейки снабжены диаметрально расположенными сквозными отверстиями, в которых размещены герметизированные смотровые стекла из материала, прозрачного для лазерного пучка спектрометра. При этом ячейка снабжена узлом охлаждения, содержащим теплообменник, выполненный с возможностью отвода тепла от корпуса ячейки. Технический результат – возможность моделирования условий (среды) для образования углеводородных газогидратов с возможностью моментальной регистрации гидратообразования углеводородов на нано и гибридных функциональных материалах, сплавах и покрытиях со специальными свойствами с помощью спектроскопии комбинационного рассеяния. 2 ил.

Description

Изобретение относится к области автоматического контроля условий гидратообразования природного газа и может быть использовано для изучения условий гидратообразования на различных материалах в условиях залежей углеводородов и магистральных трубопроводов.
Известно устройство для автоматического контроля температуры гидратообразования природного газа, содержащее входную и выходную линии анализируемого природного газа; гидратную ячейку, расположенную между этими линиями, и датчик расхода газа, установленный на линии анализируемого природного газа, фильтр механических примесей и жидкой фазы, установленный на входной линии анализируемого природного газа; запорные устройства, вихревую трубку, завихритель которой подключен к источнику сжатого (силового) газа; датчик температуры, датчик давления и устройство отображения информации. Устройство работает в две стадии: на первой стадии происходит наработка гидрата в ячейке, на второй стадии осуществляется разложение гидрата в замкнутом (ограниченном) объеме гидратной ячейки (см. RU № 2313081, МПК G01N 25/00, 2007).
Недостаток устройства в том, что процесс протекает в несколько этапов с обязательной наработкой кристаллов гидратов, оно не приспособлено моментально фиксировать образование гидрата и фиксация идет только по температуре.
Известен также реактор для контроля гидратообразования, содержащий металлическую ячейку, снабженную пробкой, выполненной с возможностью герметичного запирания ячейки снабженной каналами для термопары и подвода воды и газа под давлением. Начало процесса гидратообразования определяют путем контроля температуры газа, поступающего на вход установки комплексной подготовки газа из шлейфа, подачи ингибитора на кусты скважин с дальнейшим сравнением фактической температуры газа на выходе из шлейфа с расчетными значениями температуры выхода газа из устья скважины и окружающей среды и сравнивают динамику её изменения. По результату сравнения судят о начале процесса гидратообразования и необходимости подачи в шлейф ингибитора гидратообразования (см. RU № 2329371, МПК E21B 43/00, F17D 3/00, 2008).
Недостатком является то, что невозможно определить образование гидратов на различных материалах.
Задача предлагаемого технического решения – обеспечение возможности моделирования условий (среды) для образования углеводородных газогидратов на различных материалах с последующей регистрацией начала процесса.
Технический результат – возможность моделирования условий (среды) для образования углеводородных газогидратов с возможностью моментальной регистрации гидратообразования углеводородов на нано и гибридных функциональных материалах, сплавах и покрытиях со специальными свойствами с помощью спектроскопии комбинационного рассеяния.
Для решения поставленной задачи реактор для контроля гидратообразования, содержащий металлическую ячейку, снабженную пробкой, выполненной с возможностью герметичного запирания ячейки и снабженной каналами для термопары и подвода воды и газа под давлением, отличается тем, что пробка выполнена в виде цилиндра, снабженного кольцевым пояском, снабжена герметизирующими кольцевыми уплотнениями в зазоре между поверхностью пробки и внутренней поверхностью ячейки, в полости которой находятся образцы испытуемых материалов, при этом вертикальные стенки ячейки снабжены диаметрально расположенными сквозными отверстиями, в которых размещены герметизированные смотровые стекла из материала, прозрачного для лазерного пучка спектрометра, при этом ячейка снабжена узлом охлаждения, содержащим теплообменник, выполненный с возможностью отвода тепла от корпуса ячейки.
Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».
Признаки отличительной части формулы изобретения обеспечивают решение комплекса функциональных задач.
Признаки «…пробка выполнена в виде цилиндра, снабженного кольцевым пояском…» обеспечивают ее соосное сочленение с блоком реактора.
Признаки, указывающие, что пробка «снабжена герметизирующими кольцевыми уплотнениями в зазоре между поверхностью пробки и внутренней поверхностью стенки ячейки» обеспечивают герметичность внутреннего пространства ячейки относительно внешней среды.
Признак, указывающий, что «в полости (ячейки) находятся образцы испытуемых материалов» обеспечивает размещение образцов испытуемых материалов в моделируемой среде гидратообразования.
Признаки «…вертикальные стенки ячейки снабжены диаметрально расположенными сквозными отверстиями, в которых размещены герметизированные смотровые стекла…» обеспечивают изоляцию внутреннего пространства ячейки от внешней среды и возможность проникновения во внутреннее пространство спектра видимого излучения.
Признак, указывающий, что смотровые стекла выполнены «из материала, прозрачного для лазерного пучка спектрометра» обеспечивает возможность использования метода рамановской спектроскопии внутри ячейки реактора.
Признак «…ячейка снабжена узлом охлаждения…» обеспечивает контроль охлаждения реактора до заданной температуры.
Признак, указывающий, что узел охлаждения содержит «теплообменник, выполненный с возможностью отвода тепла от корпуса ячейки» обеспечивает возможность отвода тепла от стенок реактора.
Изобретение иллюстрируется чертежами, где на фиг.1 показан поперечный разрез реактора; на фиг.2 показан продольный разрез реактора.
На чертежах показаны: металлическая ячейка 1, пробка 2, кольцевой поясок 3, герметизирующие кольцевые уплотнения 4, канал 5 для термопары и каналы 6 и 7 для подвода соответственно воды и газа, сквозные отверстия 8, герметизированные смотровые стекла 9, теплообменник 10, образец 11, накидная гайка 12, лазерный пучок 13 спектрометра.
Реактор для контроля гидратообразования содержит металлическую ячейку 1 цилиндрической формы с закрытым дном, снабженную пробкой 2, выполненной с возможностью герметичного запирания ячейки.
Пробка 2 выполнена в виде цилиндра с кольцевым пояском 3 и снабжена герметизирующими кольцевыми уплотнениями 4 в зазоре между поверхностью пробки 2 и внутренней поверхностью ячейки 1. Пробка 2 также снабжена каналами 5 для термопары и каналами 6 и 7 для подвода соответственно воды и газа под давлением.
При этом вертикальные стенки ячейки 1 снабжены диаметрально расположенными сквозными отверстиями 8, в которых размещены герметизированные смотровые стекла 9 из материала, прозрачного для лазерного пучка 13 спектрометра. Кроме того, ячейка 1 снабжена узлом охлаждения, содержащим теплообменник 10, который выполнен с возможностью отвода тепла от корпуса ячейки 1.
Все детали реактора изготавливают из материала, слабо подверженного коррозионному воздействию, например из нержавеющей стали.
Перед запуском реактора в полость ячейки 1 вводят образец 11 испытуемого материала. В качестве испытуемого материала могут быть использованы нано и гибридные функциональные материалы, сплавы и покрытия со специальными свойствами. Далее сверху вставляют пробку 2, которую с помощью кольцевого пояска 3 фиксируют, например накидной гайкой 12, закручивая с определенным моментом, обеспечивая прижимную силу пробки 2 для сопротивления силе давления в ячейке 1 с помощью резьбового соединения на самой накидной гайке 12, соответствующего резьбе на части корпуса металлической ячейки 1. Через канал 7 в пробку 2 подают газ до создания в ячейке заданного значения давления (до 350 атмосфер) и воду по каналу 6. Далее в работу вступает узел охлаждения для отвода тепла от стенок металлической ячейки 1 через теплообменник 10. Ввод веществ и доведение их до заданных значений давления и температуры имитируют условия (например, трубопровода или подземных/подводных залежей), в которых испытывается образец 11.
После охлаждения камеры ячейки 1 до заданной температуры (от 0 до +20ºС) следует запуск лазерного пучка 13 спектрометра (например, i-Raman BWS415-532S) через диаметрально расположенные сквозные отверстия 8, в которых размещены герметизированные смотровые стекла 9. Лазерный пучок 13 спектрометра направляют на выбранные экспериментаторами участки образца 11 испытуемого материала, которые могут находиться как в жидкой или воздушной средах, так и на их разделе. Далее следует выявление процесса гидратообразования (на участке, подсвеченном лазером) в реальном времени, для чего используют метод регистрации комбинационного рассеяния, реализуемый с помощью высокоразрешающей волоконно-оптической системы рамановской спектроскопии через лазерный пучок 13 спектрометра.
Суть явления состоит в том, что связь ОН молекулы воды в жидком фазовом состоянии вибрирует с частотой около 3900 см-1. При переходе в твердое фазовое состояние, создание водородной связи составляет 2800 см-1. Регистрация пиков на спектральной диаграмме регистратора комбинационного рассеяния позволит зарегистрировать момент образования докритических гидратных зерен и сопутствующих термобарических условий.

Claims (1)

1Реактор для контроля гидратообразования, содержащий металлическую ячейку, снабженную пробкой, выполненной с возможностью герметичного запирания ячейки и снабженной каналами для термопары и подвода воды и газа под давлением, отличающийся тем, что пробка выполнена в виде цилиндра, снабженного кольцевым пояском, снабжена герметизирующими кольцевыми уплотнениями в зазоре между поверхностью пробки и внутренней поверхностью ячейки, в полости которой находятся образцы испытуемых материалов, при этом вертикальные стенки ячейки снабжены диаметрально расположенными сквозными отверстиями, в которых размещены герметизированные смотровые стекла из материала, прозрачного для лазерного пучка спектрометра, при этом ячейка снабжена узлом охлаждения, содержащим теплообменник, выполненный с возможностью отвода тепла от корпуса ячейки.
RU2019113725A 2019-05-07 2019-05-07 Реактор для контроля гидратообразования RU2705707C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019113725A RU2705707C1 (ru) 2019-05-07 2019-05-07 Реактор для контроля гидратообразования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019113725A RU2705707C1 (ru) 2019-05-07 2019-05-07 Реактор для контроля гидратообразования

Publications (1)

Publication Number Publication Date
RU2705707C1 true RU2705707C1 (ru) 2019-11-11

Family

ID=68579663

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019113725A RU2705707C1 (ru) 2019-05-07 2019-05-07 Реактор для контроля гидратообразования

Country Status (1)

Country Link
RU (1) RU2705707C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781011A (zh) * 2020-08-04 2020-10-16 中国船舶科学研究中心 用于可燃冰成藏试验舱保压保真取样设备
WO2021159696A1 (zh) * 2020-08-06 2021-08-19 中国科学院广州能源研究所 缩尺天然气水合物藏物性表征装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU263943A1 (ru) *
SU687380A1 (ru) * 1974-03-21 1979-09-25 Специальное Конструкторское Бюро Всесоюзного Научно-Производственного Объединения "Союзгазавтоматика" Устройство дл измерени точек росы и гидратобразовани газов
JP2000235011A (ja) * 1999-02-15 2000-08-29 Nkk Corp 水和物スラリーの計測方法および装置
RU2231046C1 (ru) * 2003-05-30 2004-06-20 Деревягин Александр Михайлович Способ измерения точки росы и устройство для его осуществления
CN103278374A (zh) * 2013-06-14 2013-09-04 中国科学院广州能源研究所 一种原位拉曼分析的水合物表征装置及水合物样品原位拉曼的分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU263943A1 (ru) *
SU219261A1 (ru) * Украинский наз чно исследсватсльский родных газов УСТРОЙСТВО дл ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ
SU687380A1 (ru) * 1974-03-21 1979-09-25 Специальное Конструкторское Бюро Всесоюзного Научно-Производственного Объединения "Союзгазавтоматика" Устройство дл измерени точек росы и гидратобразовани газов
JP2000235011A (ja) * 1999-02-15 2000-08-29 Nkk Corp 水和物スラリーの計測方法および装置
RU2231046C1 (ru) * 2003-05-30 2004-06-20 Деревягин Александр Михайлович Способ измерения точки росы и устройство для его осуществления
CN103278374A (zh) * 2013-06-14 2013-09-04 中国科学院广州能源研究所 一种原位拉曼分析的水合物表征装置及水合物样品原位拉曼的分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Шабаров А.Б., Ширшова А.В., Данько М.Ю. и др., "Экспериментальное исследование газогидратообразования пропанбутановой смеси", Вестник ТюмГУ, номер 6, 2009, с.73-82. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781011A (zh) * 2020-08-04 2020-10-16 中国船舶科学研究中心 用于可燃冰成藏试验舱保压保真取样设备
CN111781011B (zh) * 2020-08-04 2023-03-28 中国船舶科学研究中心 用于可燃冰成藏试验舱保压保真取样设备
WO2021159696A1 (zh) * 2020-08-06 2021-08-19 中国科学院广州能源研究所 缩尺天然气水合物藏物性表征装置及方法
US11566493B2 (en) 2020-08-06 2023-01-31 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Physical characterization device and method for scale model of natural gas hydrate reservoir

Similar Documents

Publication Publication Date Title
RU2705707C1 (ru) Реактор для контроля гидратообразования
CN102435716A (zh) 一种成岩作用模拟实验装置
CN202305523U (zh) 一种成岩作用模拟实验装置
RU2403393C2 (ru) Устройство для испытания приборов и элементов систем аэрогазового и пылевого контроля шахтной атмосферы
US3853474A (en) Method of burning combustible fluids for further analysis
CN103033442A (zh) 一种瓦斯吸附解吸试验装置
US10928261B2 (en) System and method for analysing vapour pressure
CN201884942U (zh) 埋地管道动态模拟泄漏检测试验系统
US11795785B2 (en) Device for measuring stratum deformation during natural gas hydrate exploitation
CN111650354A (zh) 一种水合物评价实验系统及方法
WO2020124661A1 (zh) 一种含水合物储层损害的评价装置及评价方法
Phelps et al. A new experimental facility for investigating the formation and properties of gas hydrates under simulated seafloor conditions
CN108469390A (zh) 可拆卸环道式单相流冲蚀试验装置
CN109387336A (zh) 一种用于非金属密封件密封性能鉴定的试验装置及方法
RU2705935C1 (ru) Реактор для контроля гидратообразования
US2119288A (en) Apparatus for testing gas
CN108254480A (zh) 一种用于碳酸盐岩的碳氧同位素检测系统及检测方法
RU2705709C1 (ru) Реактор для контроля гидратообразования
Saeed et al. A current viscosity of different Egyptian crude oils: Measurements and modeling over A certain range of temperature and pressure
CN110441286B (zh) 用于原位拉曼分析的气体水合物保压置换装置及方法
RU2483292C2 (ru) Установка для испытаний металлического урана
CN212622573U (zh) 一种水合物评价实验系统
RU172664U1 (ru) Установка для исследования коррозионной стойкости цементного камня и бетона
CN209296242U (zh) 一种用于非金属密封件密封性能鉴定的试验装置
RU89708U1 (ru) Установка для сравнительных испытаний газоаналитических датчиков с имитацией натурных условий