WO2021159696A1 - 缩尺天然气水合物藏物性表征装置及方法 - Google Patents

缩尺天然气水合物藏物性表征装置及方法 Download PDF

Info

Publication number
WO2021159696A1
WO2021159696A1 PCT/CN2020/114087 CN2020114087W WO2021159696A1 WO 2021159696 A1 WO2021159696 A1 WO 2021159696A1 CN 2020114087 W CN2020114087 W CN 2020114087W WO 2021159696 A1 WO2021159696 A1 WO 2021159696A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical well
pressure
temperature
central vertical
reactor
Prior art date
Application number
PCT/CN2020/114087
Other languages
English (en)
French (fr)
Inventor
李小森
陈朝阳
王屹
夏志明
李刚
张郁
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US16/973,784 priority Critical patent/US11566493B2/en
Publication of WO2021159696A1 publication Critical patent/WO2021159696A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the invention relates to the technical field of physical property characterization in an experimental system, in particular to a device and method for characterizing physical properties of a scaled natural gas hydrate reservoir.
  • the current gas hydrate simulation test device can also simulate the sedimentary strata of hydrates, and test various physical and chemical properties of the formations when hydrates are formed. Characteristics of formation parameters of hydrates, etc.
  • the physical property characterization in the large-scale experimental system is only temperature characterization or single parameter characterization, which is not enough to fully study the temperature and pressure in the large-scale gas hydrate reactor and the hydrate field state and real-time in-situ characterization during the hydrate mining process The process of heat and mass transfer and hydrate phase change.
  • the present invention provides a physical property characterization device and method in a large-scale natural gas hydrate experimental system, which can fully study and simulate the temperature and pressure in the large-scale natural gas hydrate reactor and the state of the hydrate field in real time. In-situ characterization of heat and mass transfer and hydrate phase change processes in the hydrate mining process.
  • a physical property characterization device in a large-scale natural gas hydrate experiment system comprising a reaction kettle, a horizontal well pipe and a vertical well pipe.
  • the reaction kettle includes an upper kettle cover, a lower kettle cover and a kettle body, and the upper kettle cover and the lower kettle cover are sealed and closed
  • a closed cavity is formed at both ends of the kettle body, and the cavity is filled with porous medium and liquid.
  • the porous medium and liquid are used to simulate the geological layered structure of the hydrate reservoir, and it also includes side vertical well integration and temperature control. Piezoresistor integration, side vertical well integration and temperature and pressure resistance integration are set through the reactor from the upper kettle cover to the lower kettle cover,
  • the side vertical well integration and the temperature and pressure resistance integration both include a mounting tube, an integrated sealing head, a pressure cap, a resistivity measuring column, a pressure measuring tube, and a temperature measuring tube, and the mounting tube and the upper tank cover Connected, the integrated sealing head is sealed and inserted at the top of the mounting tube and fixed by the pressure cap, the resistivity measuring column, the pressure measuring tube and the temperature measuring tube pass through the integrated
  • the sealing head extends along the axial direction of the installation pipe, the bottom ends of the pressure measuring tube and the temperature measuring tube are respectively sleeved with a pressure probe and a temperature probe, and the side vertical well is integrated with the vertical well
  • the vertical well pipe is arranged in parallel with the resistivity measuring column, the pressure measuring pipe and the temperature measuring pipe, and the bottom of the well pipe is provided with a sand control screen, and the horizontal well pipe is inserted in the vertical direction of the vertical well pipe.
  • the reactor, side vertical well integration and temperature-pressure resistance integration are used to collect temperature, pressure and resistivity to
  • the physical property characterization device in the natural gas hydrate large-scale experimental system as described above is integrated with a resistivity measuring column rack, and the upper end of the resistivity measuring column rack is fixed on the integrated
  • a plurality of resistivity column holder bayonets arranged along the axial direction are arranged on the sealing head and on the resistivity measuring column holder, and the resistivity measuring column holder bayonet fixes the resistivity measuring column.
  • the matrix array integrated by the side vertical well and the temperature and pressure resistance is a 9x9 matrix, and the matrix array is arranged with three rows of the side
  • the side vertical wells are integrated and each row is equidistantly arranged with three side vertical well integrations, and each two side vertical well integrations are equidistantly arranged with two temperature and pressure resistance integrations.
  • the physical property characterization device in the natural gas hydrate large-scale experimental system as described above further, the surface of the pressure measuring tube is sprayed with a heat-insulating and insulating coating and the surface is roughened to prevent the gas and liquid in the reactor from flowing along the wall. Heat loss and interference to the tomography resistivity test field; the temperature measuring tube adopts stainless steel tube and the surface is roughened to prevent the gas and liquid in the reactor from flowing along the wall, heat loss and temperature loss.
  • the vertical well pipe in the center of the reactor in the matrix array is the central vertical well pipe, and the rest are non-central vertical well pipes.
  • the pressure sensor of the pressure measurement tube of the vertical well pipe is the central vertical well pressure sensor
  • the pressure sensor of the pressure measurement pipe of the non-central vertical well pipe is the non-central vertical well pressure sensor.
  • it also includes the non-central vertical well outlet valve and communication Valve, differential pressure sensor, communicating device and central vertical well outlet valve,
  • non-central vertical well pressure sensors non-central vertical well outlet valves, differential pressure sensors, and communicating device valves is the same as that of non-central vertical wells; each non-central vertical well is provided with a non-central vertical well outlet pipeline, each The outlet pipeline of a non-central vertical well is correspondingly connected with a non-central vertical well pressure sensor, a non-central vertical well outlet valve, a differential pressure sensor, and a connecting valve in sequence. All the communicating devices and valves are connected to the communicating devices;
  • the central vertical well is provided with a central vertical well outlet pipeline, the central vertical well outlet pipeline is connected with a central vertical well pressure sensor and a central vertical well outlet valve in sequence, and the central vertical well outlet valve is connected to a communicating device.
  • a method for characterizing physical properties in a large-scale natural gas hydrate experimental system, using any one of the above-mentioned physical property characterizing devices in a large-scale natural gas hydrate experimental system which includes the following steps:
  • the side vertical well integration and the temperature and pressure resistance integration are arranged in a matrix array and inserted into the reactor longitudinally;
  • the data processing software is used to generate the change cloud diagram, and the temperature field, pressure field and resistivity field in the reactor are observed in real time, and then the reactor is simulated Hydrate distribution field, pressure field and temperature field.
  • the inner cavity of the reactor is a cylinder with a height of 1680mm and a diameter of 1400mm.
  • the sediment layers in the inner cavity are divided into 5 layers, which are separated from the storage
  • the top of the layer is 160mm, 500mm, 840mm, 1180mm, 1520mm.
  • the matrix array is a 900mm ⁇ 900mm rectangular plane centered on the axis of the reactor, and two adjacent integrations are separated by 150mm.
  • the present invention has the beneficial effects that: the side vertical well is integrated, the temperature, pressure, and resistivity sensors are arranged in the integrated temperature and pressure resistance, and the temperature, pressure, and resistivity sensors are measured by spatial lattice distribution.
  • the temperature field and pressure field are obtained by the spatial lattice distribution temperature sensor and the pressure sensor respectively, and the hydrate saturation change is measured and monitored by the electrical resistivity tomography system (ERT) to obtain the hydrate distribution field, thereby real-time in-situ Characterize the heat and mass transfer, multiphase seepage and hydrate phase change process in the hydrate mining process, and realize the characterization and measurement of the core key parameters of the hydrate mining process with multiple methods, multiple scales, in-situ, and accurate.
  • ERT electrical resistivity tomography system
  • Figure 1 is a schematic diagram of the structure of the physical property characterization device of the present invention.
  • Figure 2 is a schematic structural diagram of the side vertical well integration of the present invention.
  • Figure 3 is a cross-sectional view of the integration of side vertical wells and the integration of temperature and pressure resistance
  • Figure 4 is a schematic diagram of the internal structure of the reactor
  • Fig. 5 is a schematic diagram of the arrangement of sensors and well pipes according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the structure of an embodiment of the present invention in measuring a flow field.
  • Electrode wire connector 1. Pressure cap; 3. Integrated sealing head; 4. Rubber O-ring; 5. Resistivity measuring column; 6. Pressure measuring tube; 7. Temperature measuring tube; 8. Vertical Well pipe; 9. Elastic retaining ring; 10. Resistivity measuring column holder fixed end; 11. Installation pipe; 12. Reactor cover part; 13. Resistivity measuring column holder; 14. Resistivity measuring column holder bayonet; 15 ⁇ Temperature and pressure test tube; 17. Well pipe sand control screen; 18. Temperature and pressure probe; 19. Side vertical well integration; 20. Temperature and pressure resistance integration; 21. Central simulated mining well; 24. Horizontal well pipe;
  • Reaction kettle body 201. Upper kettle cover; 202, Lower kettle cover; 203, Upper circulation coil; 204, Lower circulation coil; 205, Temperature control tube; 206, Bolt;
  • central vertical well outlet pipeline 301, central vertical well outlet pipeline; 302, central vertical well pressure sensor; 303, central vertical well outlet valve; 304, communicating device, 305, non-central vertical well outlet pipeline; 306, non-central vertical well pressure sensor; 307, non-central vertical well Center vertical well outlet valve; 308, differential pressure sensor; 309, communicating device valve; 310, communicating device pressure sensor; 311, gas injection valve.
  • a physical property characterization device in a large-scale natural gas hydrate experimental system including a reactor, a horizontal well tube 24 and a vertical well tube 8.
  • the reactor includes an upper kettle cover, a lower kettle cover and a kettle body.
  • An overlying pressure layer, an upper cap layer, a hydrate layer, and a lower cap layer can be formed in the kettle cover and the cavity from the upper kettle cover to the lower kettle cover.
  • the overlying pressure layer is used to simulate the pressure of the deep sea, and each layer is filled differently.
  • Porous media and liquids are used to simulate the geological layered structure of hydrate reservoirs.
  • the mining method can be selected according to the needs of reduced pressure mining or heat injection mining.
  • reduced pressure mining is currently one of the main natural gas hydrate mining methods, which is to reduce the pressure of the hydrate layer to make it lower than the temperature of the hydrate in the area.
  • the lower phase balances the pressure, so that the hydrate is decomposed from the solid phase to produce methane gas.
  • the design of the depressurization method is similar to that of conventional oil and gas production.
  • the pressure in the well-permeable hydrate reservoir spreads quickly. Therefore, the depressurization method is the most potential economical and effective mining method.
  • Heat injection mining also known as thermal excitation mining method, is a mining method that directly injects heat or heats the natural gas hydrate layer to make the temperature of the natural gas hydrate layer exceed its equilibrium temperature, thereby promoting the decomposition of natural gas hydrate into water and natural gas.
  • the lower kettle cover is sealed and closed at both ends of the kettle body by the reaction kettle cover fixing studs 22 to form a sealed inner cavity.
  • the upper kettle cover has the axis of the reaction kettle (the rectangular center is the central simulated mining well 21) as the center 900mm ⁇ 900mm rectangular plane, the side vertical well integrated 19 and the temperature and pressure resistance integrated 20 are arranged in a 900mm ⁇ 900mm rectangular plane centered on the axis of the reactor, and the two adjacent integrations are separated by 150mm from the upper kettle cover To the bottom of the kettle cover runs through the reactor set.
  • the inner cavity of the reactor is a cylinder with a height of 1680mm and a diameter of 1400mm.
  • the sediment layer of the inner cavity is divided into 5 layers. The five layers are respectively 160mm, 500mm, 840mm, and 1180mm (hydrate layer) from the top of the reservoir. , 1520mm (lower cover).
  • the side vertical well integration 19 and the temperature and pressure resistance integration 20 both include a mounting pipe 11, an integrated sealing head 3, a pressure cap 2, a resistivity measuring column 5, a pressure measuring tube 6 and a temperature measuring tube 7 ,
  • the mounting tube 11 is connected with the reaction kettle cover part 12, the integrated sealing head 3 is sealed and inserted on the top of the mounting tube 11 and is fixed by the pressure cap 2, the integrated sealing head 3 and the inner wall of the mounting tube 11 are provided with a rubber O-ring 4 ,
  • the integrated sealing head 3 on the pressure cap 2 is provided with an elastic retaining ring 9.
  • the resistivity measuring column 5, the pressure measuring tube 6 and the temperature measuring tube 7 pass through the integrated sealing head 3 in parallel with each other and extend along the axial direction of the mounting tube 11.
  • each side vertical well integration 19 is also equipped with three vertical well pipes 8.
  • the vertical well pipes 8 are of different lengths and are inserted into the geological layered structure of different layers of hydrate reservoirs.
  • the well tube 8 is arranged in parallel with the resistivity measuring column 5, the pressure measuring tube 6 and the temperature measuring tube 7, and the bottom of the well tube is provided with a sand control screen 17, and the upper end of the resistivity measuring column 5 leads out the electrode wire connector 1.
  • a resistivity measuring column stand 13 is provided in the side vertical well integration 19, the upper end of the resistivity measuring column stand 13 is fixed on the integrated sealing head through the resistivity measuring column stand fixed end 10, and the resistivity measuring column stand 13 is provided with A plurality of resistivity measuring column bracket bayonet 14 arranged along its axial direction, the resistivity measuring column bracket bayonet 14 fixes the vertical well pipe 8.
  • the measuring tube in FIG. 2 can be the pressure measuring tube 6 and the temperature measuring tube 7, so only the temperature and pressure measuring tube 15 is schematically shown, and the pressure and temperature probes are only schematically showing the temperature and pressure probe 18).
  • Both the side vertical well integration 19 and the temperature and pressure resistance integration 20 are provided with a five resistivity measuring column 5, a five pressure measuring tube 6 and a five temperature measuring tube 7.
  • the pressure measuring tube 6 is arranged longitudinally (vertically) extending into the sediment layer.
  • the structure is a measuring tube component, which is inserted into 5 layers of the model.
  • the five layers are respectively 160mm, 500mm, 840mm, 1180mm, 1520mm from the top of the reservoir;
  • the cover is installed with 49 integrated, five-layer spatial matrix distribution, a total of 245 (49 ⁇ 5) pressure sensors, the pressure measuring tube 6 contains five pressure sub-tubes, and the five pressure sub-tubes are integrated and inserted into the hole.
  • the sealing sleeve and the pressure sub-measuring tube are welded by silver welding to form the pressure-measuring tube 6.
  • each sub-tube of the pressure measuring tube 6 is sprayed with a heat-insulating and insulating coating, and the surface is roughened to prevent gas and liquid from flowing along the wall, heat loss, and interference with the tomographic resistivity test field.
  • the diameter of each pressure measuring tube is 3mm, and the head is evenly distributed with 4 long grooves of 3 ⁇ 1 (mm), and then the screen is wrapped and welded with silver or tin welding to prevent sand particles from entering and blocking the pressure measuring tube 6.
  • the temperature measuring tube 7 is longitudinally inserted into the sediment layer layout, the structure is integrated, and the model is inserted into 5 layers respectively, and the five layers are respectively 160mm, 500mm, 840mm, 1180mm, 1520mm from the top of the reservoir; 49 are installed on the cover of the kettle Integrated, five-layer spatial matrix distribution, a total of 245 (49 ⁇ 5) pressure sensors, the temperature measuring tube 7 contains five temperature sub-tubes, the temperature sensor is in the form of an integrated package, and 5 PT100A-class platinum resistors are installed in 1 14mm In the pressure-resistant closed stainless steel pipe, the insertion depth of each pipe is adjusted by the positioning clip, and the temperature value of each point of the medium can be measured. The surface of the pressure-resistant closed stainless steel tube (temperature sensor intubation) is roughened to prevent gas and liquid from flowing along the wall, heat loss and temperature loss, which affects the accuracy of temperature measurement.
  • the resistivity measuring column 5 is inserted longitudinally into the sediment layer layout, and the structure is in the form of peek armor. It is inserted into 5 layers of the model respectively, and the five layers are respectively 160mm, 500mm, 840mm, 1180mm, 1520mm from the top of the reservoir.
  • the side vertical well integration 19 and the temperature and pressure resistance integration 20 both include the installation tube 11, the integrated sealing head 3, the pressure cap 2, the resistivity measuring column 5, the pressure measuring tube 6 and the temperature measuring tube 7, the installation tube 11 and the upper kettle
  • the cover is connected, the integrated sealing head 3 is sealed and inserted on the top of the mounting tube 11 and fixed by the pressure cap 2.
  • the resistivity measuring column 5, the pressure measuring tube 6 and the temperature measuring tube 7 pass through the integrated sealing head 3 parallel to each other and along the mounting tube
  • the bottom ends of the pressure measuring tube 6 and the temperature measuring tube 7 are respectively sleeved with a pressure probe and a temperature probe.
  • the side vertical well integration 19 is also provided with a vertical well pipe 8 and a vertical well pipe 8.
  • the resistivity measuring column 5, the pressure measuring tube 6 and the temperature measuring tube 7 are arranged in parallel with the well pipe sand control screen 17 at the bottom, and the horizontal well pipe 24 and the vertical well pipe 8 are inserted into the reactor in the vertical direction.
  • resistivity measuring columns there are 5 resistivity measuring columns in the side vertical well integration 19, the upper end of the resistivity measuring column 5 is fixed on the integrated sealing head 3, and the resistivity measuring column 5 is provided with a number of resistances arranged along its axis. 5 bayonet mounts for rate measuring column, 5 bayonet mounts for resistivity measuring column to fix vertical well pipe 8.
  • the side vertical well integration 19 and the temperature and pressure resistance integration 20 are arranged in a matrix array.
  • Each side of the matrix array is equidistantly arranged with three side vertical well integrations 19, and each side vertical well integration 19 is equidistantly arranged with three temperature Piezoresistor integration 20, the inside of the matrix is provided with temperature and pressure resistance integration 20 corresponding to the side vertical well integration 19 and temperature and pressure resistance integration 20 on each side.
  • the resistivity measuring column 5 adopts an armored form. 5 silver-plated copper wires are looped around the rod to form 5 ring-shaped measuring electrodes.
  • the distance between adjacent ring-shaped electrodes is 340mm; connect two adjacent ring-shaped electrodes to the circuit, namely
  • the resistance of the medium sandwiched between the ring electrodes can be measured, and the resistivity of the sandwiched medium can be calculated.
  • the resistance measuring column and the sealing sleeve are sealed with a peek ferrule, and the measuring tube pressure cap 2 is pressed tightly. Peek is a good sealing material with reliable sealing.
  • the sealing sleeve is sealed with the O-ring of the installation pipe 11 and is pressed tightly with the threaded pressure cap 2.
  • the surface of the resistivity measuring pipe column is roughened to prevent gas and liquid from flowing along the wall.
  • the working principle of the physical property characterization device in this embodiment Arrange and install the resistivity measuring column 5, the pressure measuring tube 6 and the temperature measuring tube 7 to realize the simulation of the hydrate distribution field, the pressure field and the temperature field in the reactor; through the spatial lattice
  • the temperature field and the pressure field are obtained by the distributed temperature sensor and the pressure sensor respectively, and the electrical resistance tomography (ERT) is used to measure ERT to monitor the hydrate saturation change to obtain the hydrate distribution field, which is in-situ in real time. Characterize the heat and mass transfer, multiphase seepage and hydrate phase change process in the hydrate mining process, and realize the characterization and measurement of the core key parameters of the hydrate mining process with multiple methods, multiple scales, in-situ, and accurate.
  • the physical property characterization device of the present invention can also be used to characterize the flow field in the reactor. See Figure 5.
  • the gas hydrate experimental system provided in this embodiment has 27 vertical wells in the reactor (equivalent to that in the previous embodiment). , The same below), the gas hydrate reservoir is divided into three layers, each layer is symmetrically distributed with nine vertical wells, numbered 1-A, 2-A,..., 9-B, 9-C, Among them, the vertical well 9-B located in the center is the central vertical well, and the other vertical wells are all non-central vertical wells.
  • the flow field measurement device mainly includes a non-central vertical well pressure sensor 306, a non-central vertical well outlet valve 307, a communicating device valve 309, a differential pressure sensor 308, a communicating device 304, and a central vertical well outlet valve 303 and central vertical well pressure sensor 302.
  • non-central vertical well pressure sensor 306, non-central vertical well outlet valve 307, differential pressure sensor 308, communicating device valve 309 is the same as that of non-central vertical wells; all non-central wells except 9-B vertical well
  • the vertical well outlet pipeline 305 is connected to the non-central vertical well pressure sensor 306, the non-central vertical well outlet valve 307, one end of the differential pressure sensor 308, and the other end of the differential pressure sensor 308 is connected to the connector valve 309, and the connector valve 309 converges to The other end of the communicating device 305 is connected to the central vertical well outlet valve 303, the central vertical well pressure sensor 302, and the central vertical well outlet pipeline 301 in sequence.
  • the numbers of the 26 differential pressure sensors are A1, B1, C1, A2,..., A9, C9, which respectively represent the differential pressure sensors connecting wells 1-A and 9-B, and connecting wells 1-B and 9-B.
  • Differential pressure sensor ..., connect the differential pressure sensor of well 9-A and well 9-B, connect the differential pressure sensor of well 9-C and well 9-B.
  • the accuracy of the differential pressure sensor 308 is higher than the accuracy of the central vertical well pressure sensor 302 and the non-central vertical well pressure sensor 306, and the range is smaller than the range of the central vertical well pressure sensor 302 and the non-central vertical well pressure sensor 306. The accuracy of the sensor cannot measure a small pressure difference.
  • the differential pressure sensor 308 has higher accuracy.
  • the pressure displayed by the pressure sensor may be the same, but the differential pressure sensor can measure the pressure difference, and the pressure difference is relatively large.
  • the differential pressure sensor's range is exceeded, the differential pressure sensor will be damaged. That is to say, the differential pressure sensor has high accuracy but a small range.
  • the pressure sensor has a large range, but the accuracy is not enough, so the two must be used in conjunction with each other.
  • the characterization device quantifies the flow field in the reactor through the pressure difference at each point in the reactor, which is accurate and efficient; the measurement point of the central vertical well is connected to the measurement point of each vertical well.
  • the pressure sensor measures the pressure difference.
  • the three-dimensional space distribution in the entire reactor is reasonable, and the simulated flow field is easier to analyze the gas-liquid flow trend in the reactor; the information fed back by the pressure sensor is used to make an initial judgment, and then decide whether to turn on the differential pressure sensor , It can measure the flow field in the reactor under the working conditions of large pressure difference and small pressure difference, and the differential pressure sensor can also be effectively protected.
  • the entire measuring device is connected through the outlet pipeline of the vertical well, that is to say, the entire measuring device can be connected to the reactor, that is, the differential pressure sensor and the communicating device are both installed outside the reactor, and there is no need to hydrate the entire natural gas.
  • the reactor that is, the differential pressure sensor and the communicating device are both installed outside the reactor, and there is no need to hydrate the entire natural gas.
  • Large-scale transformation of the physical system will not cause damage to the existing experimental device.
  • this device can be added at any time.
  • the reaction kettle includes a reaction kettle body 200, an upper kettle cover 201 mounted on the upper end of the reaction kettle body, and a lower kettle cover 202 mounted on the lower end of the reaction kettle body.
  • the reaction kettle body 200 is connected to the upper ,
  • the connection between the lower kettle cover is through the bolt 206, the connection is stable, firm, safe and reliable.
  • An upper circulation coil 203 and a lower circulation coil 204 are respectively arranged at the upper and lower ends of the reactor body 200, and the upper circulation coil 203 and the lower circulation coil 204 both adopt independent heat exchange devices (not shown)
  • the heat exchange device has the functions of cooling, heating and constant temperature.
  • both the upper and lower parts of the reactor body 200 can form isothermal surfaces, but if only the upper and lower parts of the reactor both form isothermal surfaces, due to the It is impossible to achieve thermal insulation.
  • N temperature control tubes 205 are arranged in the reactor body 200, between the upper circulation coil 203 and the lower circulation coil 204, so that a vertical temperature is generated in the reactor body 200.
  • N is a positive integer.
  • the number of temperature control tubes 205 can be determined according to actual needs. In this embodiment, N is 3, that is, three temperature control tubes 205 are arranged, and each temperature control tube 205 is also independent The heat exchange device to realize the circulation of the heat transfer medium in the temperature control tube.
  • each temperature control tube surrounds the reactor body, and each temperature control tube also has an independent heat exchange device to realize the circulation of the heat transfer medium in the temperature control tube, that is, it can also realize refrigeration,
  • the function of heating and constant temperature so that the temperature of each temperature control tube can be adjusted individually, so that the formation temperature gradient can be simulated in the reactor body.
  • the N temperature control tubes are equally spaced from bottom to top and the temperature difference between the temperature control tubes is constant. In this way, it is possible to realize the equidistant top-down arrangement with the isothermal difference from low temperature to high temperature.
  • the lower circulating coil 204 is set to high temperature T1
  • the upper circulating coil 74 is set to low temperature T2
  • the reactor body 200 is also provided with a temperature sensor for detecting the upper circulation coil 203 and the lower circulation coil. 204 and N temperature control tubes 205, and transmit the monitored temperature data to the temperature controller.
  • the temperature controller adjusts the work of each heat exchange device in real time according to the monitored temperature data to ensure that the reactor body
  • the vertical temperature gradient maintains a steady state in real time. Specifically in this embodiment, the vertical temperature gradient temperature difference is controlled at 5°C, and the temperature control accuracy is ⁇ 0.5°C.
  • a method for characterizing physical properties in a large-scale natural gas hydrate experimental system, using any one of the above-mentioned physical property characterizing devices in a large-scale natural gas hydrate experimental system which includes the following steps:
  • the side vertical well integration 19 and the temperature and pressure resistance integration 20 are arranged in a matrix array and inserted into the reactor longitudinally;
  • the data processing software is used to generate a cloud map of changes, and the temperature field, pressure field and resistivity field in the reactor are observed in real time, and then simulated The hydrate distribution field, pressure field and temperature field in the reactor.
  • the inner cavity of the reactor is a cylinder with a height of 1680mm and a diameter of 1400mm.
  • the sediment layer of the inner cavity is divided into 5 layers, which are respectively 160mm, 500mm, 840mm, 1180mm, 1520mm from the top of the reservoir.
  • the matrix array is a 900mm ⁇ 900mm rectangular plane centered on the axis of the reactor, and the distance between two adjacent integrations is 150mm.
  • the generation, analysis and application of temperature and pressure field and hydrate distribution field According to the three-dimensional lattice data of temperature and pressure and resistivity sensors, the data processing software is used to generate the change cloud diagram, which can observe the temperature field and pressure in the reactor of the large-scale experimental system in real time. Field and resistivity field. Because resistivity is related to the formation and decomposition of hydrate, the resistivity field can represent the hydrate field, and then intuitively realize the simulation of the hydrate distribution field, pressure field and temperature field in the large-scale experimental system.

Abstract

公开了一种缩尺天然气水合物藏物性表征装置及方法。该装置包括反应釜、水平井管(24)和竖直井管(8),反应釜包括上釜盖(201)、下釜盖(202)和釜体(200),上釜盖(201)、下釜盖(202)密封闭合在釜体(200)的两端以形成密闭内腔,还包括旁侧竖直井集成和温压电阻集成,旁侧竖直井集成和温压电阻集成从上釜盖(201)到下釜盖(202)贯穿反应釜设置。该方法根据压力测管和温度测管和电阻率测柱的传感器的立体点阵数据,利用数据处理软件生成变化云图,实时观测反应釜内的温度场、压力场和电阻率场,进而模拟反应釜中的水合物分布场、压力场及温度场。该表征装置及方法可实时原位的表征水合物开采过程中的传热传质及水合物相变等过程。

Description

缩尺天然气水合物藏物性表征装置及方法 技术领域
本发明涉及实验系统中物性表征技术领域,具体涉及一种缩尺天然气水合物藏物性表征装置及方法。
背景技术
随着科学研究的不断深入,科学研究已经由单一化向跨学科化和集成化发展。天然气水合物模拟试验装置的设计要求也由原来的单一功能需求演变成了集成化系统化的设计要求。根据调研发现,现在的天然气水合物模拟试验装置,除了模拟水合物的物相态关系以外,还可以模拟水合物的沉积地层,测试在有无水合物生成时地层的各项物理化学属性,研究水合物的地层参数特性等。
目前大尺度实验系统中的物性表征仅有温度表征或者单一参数表征,不足以充分研究模拟天然气水合物大尺度反应釜内的温度压力和水合物场状态和实时原位的表征水合物开采过程中的传热传质及水合物相变等过程。
发明内容
针对现有技术中的不足,本发明提供一种天然气水合物大尺度实验系统中物性表征装置及方法,其能充分研究模拟天然气水合物大尺度反应釜内的温度压力和水合物场状态和实时原位的表征水合物开采过程中的传热传质及水合物相变等过程。
为实现上述目的,本发明的技术方案如下:
一种天然气水合物大尺度实验系统中物性表征装置,包括反应釜、水平井管和竖直井管,所述反应釜包括上釜盖、下釜盖和釜体,上釜盖、下釜盖密封闭合在釜体的两端以形成密闭内腔,所述内腔填充有多孔介质和液体,多孔介质和液体用于模拟水合物储层的地质分层结构,还包括旁侧竖直井集成和温压电阻集成,旁侧竖直井集成和温压电阻集成从上釜盖到下釜盖贯穿所述反应釜设置,
所述旁侧竖直井集成和所述温压电阻集成均包括安装管、集成密封头、压帽、电阻率测柱、压力测管和温度测管,所述安装管与所述上釜盖相连,所述集成密封头密封插接在所述安装管的顶端并被所述压帽固定,所述电阻率测柱、所述压力测管和所述温度测管相互平行穿过所述集成密封头并沿所述安装管的轴向延伸,压力测管和温度测管的底端分别对应套设 有压力探头和温度探头,所述旁侧竖直井集成还设有所述竖直井管,所述竖直井管与电阻率测柱、压力测管和温度测管平行设置且底部设有井管防砂筛网,所述水平井管以与所述竖直井管垂直方向插入所述反应釜,旁侧竖直井集成和温压电阻集成用于采集温度、压强和电阻率以表征反应釜内的水合物储层的地质分层结构。
如上所述的天然气水合物大尺度实验系统中物性表征装置,进一步地,所述旁侧竖直井集成内设有电阻率测柱架,所述电阻率测柱架的上端固定在所述集成密封头上且所述电阻率测柱架上设有若干沿其轴向布置的电阻率测柱架卡口,所述电阻率测柱架卡口固定所述电阻率测柱。
如上所述的天然气水合物大尺度实验系统中物性表征装置,进一步地,所述旁侧竖直井集成和所述温压电阻集成的矩阵阵列为9x9矩阵,矩阵阵列中布置有三排所述旁侧竖直井集成且每排等距布置有三所述旁侧竖直井集成,每两所述旁侧竖直井集成之间等距布置有两所述温压电阻集成。
如上所述的天然气水合物大尺度实验系统中物性表征装置,进一步地,所述旁侧竖直井集成和所述温压电阻集成内均设有五所述电阻率测柱、五所述压力测管和五所述温度测管;矩阵阵列为以反应釜的轴线为中心的900mm×900mm矩形平面,两相邻的集成相距150mm。
如上所述的天然气水合物大尺度实验系统中物性表征装置,进一步地,所述压力测管的表面喷涂绝热绝缘涂层并作表面粗糙化处理,以防止反应釜内气液沿壁串流、热量流失以及对层析成像电阻率测试场的干扰;所述温度测管采用不锈钢管且表面作粗糙化处理,以防止反应釜内气液沿壁串流、热量流失以及温度损失。
如上所述的天然气水合物大尺度实验系统中物性表征装置,进一步地,矩阵阵列中位于反应釜中心的竖直井管为中心竖直井管,其余的为非中心竖直井管,中心竖直井管的压力测管的压力传感器为中心垂直井压力传感器,非中心竖直井管的压力测管的压力传感器为非中心垂直井压力传感器,此外,还包括非中心垂直井出口阀门、连通器阀门、差压传感器、连通器和中心垂直井出口阀门,
所述非中心垂直井压力传感器、非中心垂直井出口阀门、差压传感器、连通器阀门的个数和非中心垂直井相同;每一非中心垂直井均设置有非中心垂直井出口管线,每一非中心垂直井出口管线均对应地依次连通安装有非中心垂直井压力传感器、非中心垂直井出口阀门、差压传感器、连通阀门,所有的连通器阀门均汇集连通至连通器;
所述中心垂直井设置有中心垂直井出口管线,中心垂直井出口管线依次连通安装有中心垂直井压力传感器和中心垂直井出口阀门,中心垂直井出口阀门连通至连通器。
如上所述的天然气水合物大尺度实验系统中物性表征装置,进一步地,所述差压传感器和连通器均设置于反应釜之外;所述压差传感器的精度高于中心垂直井压力传感器和非中心垂直井压力传感器的精度,量程小于中心垂直井压力传感器和非中心垂直井压力传感器的量程。
一种天然气水合物大尺度实验系统中物性表征方法,使用如上任一所述的天然气水合物大尺度实验系统中物性表征装置,其包括以下步骤:
将反应釜内腔的沉积物层分成若干层;
将旁侧竖直井集成和温压电阻集成以矩阵阵列布置并纵向插入反应釜;
根据压力测管和温度测管和电阻率测柱的传感器的立体点阵数据,利用数据处理软件生成变化云图,实时观测反应釜内的温度场,压力场和电阻率场,进而模拟反应釜中的水合物分布场、压力场及温度场。
如上所述的天然气水合物大尺度实验系统中物性表征方法,进一步地,反应釜内腔为高度1680mm,直径1400mm的圆柱体,内腔的沉积物层划分为5层面,五个层面分别距储层顶端160mm,500mm,840mm,1180mm,1520mm。
如上所述的天然气水合物大尺度实验系统中物性表征方法,进一步地,矩阵阵列为以反应釜的轴线为中心的900mm×900mm矩形平面,两相邻的集成相距150mm。
本发明与现有技术相比,其有益效果在于:旁侧竖直井集成、温压电阻集成内设置有温度、压力、电阻率传感器,温度、压力、电阻率传感器采用空间点阵分布测量,通过空间点阵式分布温度传感器和压力传感器分别获得温度场和压力场,通过电阻率层析成像系统(简称ERT)测量监测水合物饱和度变化从而得出水合物分布场,从而实时原位的表征水合物开采过程中的传热传质、多相渗流及水合物相变过程,实现多手段、多尺度、原位、精确的水合物开采过程的核心关键参数表征及测量。
附图说明
图1为本发明的物性表征装置的结构示意图;
图2为本发明的旁侧竖直井集成的结构示意图;
图3为旁侧竖直井集成和温压电阻集成的截面图;
图4为反应釜的内部结构示意图;
图5为本发明的实施例的传感器及井管布置示意图;
图6为本发明的实施例在测量流场中的结构示意图。
其中:1、电极线连接器;2、压帽;3、集成密封头;4、橡胶O形圈;5、电阻率测柱;6、压力测管;7、温度测管;8、竖直井管;9、弹性挡圈;10、电阻率测柱架固定端;11、安装管;12、反应釜盖部分;13、电阻率测柱架;14、电阻率测柱架卡口;15、温压测管;17、井管防砂筛网;18、温压探头;19、旁侧竖直井集成;20、温压电阻集成;21、中央模拟开采井;24、水平井管;
200、反应釜体;201、上釜盖;202、下釜盖;203、上循环盘管;204、下循环盘管;205、控温管;206、螺栓;
301、中心垂直井出口管线;302、中心垂直井压力传感器;303、中心垂直井出口阀门;304、连通器、305、非中心垂直井出口管线;306、非中心垂直井压力传感器;307、非中心垂直井出口阀门;308、差压传感器;309、连通器阀门;310、连通器压力传感器;311、注气阀。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
参见图1至图4,一种天然气水合物大尺度实验系统中物性表征装置,包括反应釜、水平井管24和竖直井管8,反应釜包括上釜盖、下釜盖和釜体,上釜盖、腔体内从上釜盖到下釜盖可以依次形成有上覆压力层、上盖层、水合物层和下盖层,其中,上覆压力层用于模拟深海压力,每一层填充不同多孔介质和液体以模拟水合物储层的地质分层结构,当然,某些实施例中只有上盖层、水合物层和下盖层。开采方法可根据需要选择降压开采或注热开采,其中,降压开采是目前主要的天然气水合物开采方法之一,是通过降低水合物层压力,使其低于水合物在该区域温度条件下相平衡压力,从而使水合物从固体分解相变产生甲烷气体的过程。降压法开采井的设计与常规油气开采相近,渗透性较好的水合物藏内压力传播很快,因此,降压法是最有潜力的经济、有效的开采方式。注热开采,又称热激发开采法,是直接对天然气水合物层进行注热或加热,使天然气水合物层的温度超过其平衡温度,从而促使天然气水合物分解为水与天然气的开采方法。
参见图2,下釜盖通过反应釜盖固定螺柱22密封闭合在釜体的两端以形成密闭内腔,上釜盖上具有以反应釜的轴线(矩形中央为中央模拟开采井21)为中心的900mm×900mm矩形平面,旁侧竖直井集成19和温压电阻集成20布置在以反应釜的轴线为中心的900mm×900mm 矩形平面内,两相邻的集成相距150mm,并从上釜盖到下釜盖贯穿反应釜设置。反应釜内腔为高度1680mm,直径1400mm的圆柱体,内腔的沉积物层划分为5层面,五个层面分别距储层顶端160mm(上盖层),500mm,840mm,1180mm(水合物层),1520mm(下盖层)。
参见图2、图3,旁侧竖直井集成19和温压电阻集成20均包括安装管11、集成密封头3、压帽2、电阻率测柱5、压力测管6和温度测管7,安装管11与反应釜盖部分12相连,集成密封头3密封插接在安装管11的顶端并被压帽2固定,集成密封头3与安装管11的内壁面设有橡胶O形圈4,压帽2上的集成密封头3设有弹性挡圈9。电阻率测柱5、压力测管6和温度测管7相互平行穿过集成密封头3并沿安装管11的轴向延伸,压力测管6和温度测管7的底端分别对应套设有压力探头和温度探头,每一旁侧竖直井集成19还设有三竖直井管8,竖直井管8的长度不同,分别插入不同层的水合物储层的地质分层结构中,竖直井管8与电阻率测柱5、压力测管6和温度测管7平行设置且底部设有井管防砂筛网17,电阻率测柱5的上端引出电极线连接器1。旁侧竖直井集成19内设有电阻率测柱架13,电阻率测柱架13的上端通过电阻率测柱架固定端10固定在集成密封头上且电阻率测柱架13上设有若干沿其轴向布置的电阻率测柱架卡口14,电阻率测柱架卡口14固定竖直井管8。(附图2中的该测管可为压力测管6和温度测管7,因此只示意性给出温压测管15,压力探头和温度探头只示意性给出温压探头18)。
旁侧竖直井集成19和温压电阻集成20内均设有五电阻率测柱5、五压力测管6和五温度测管7。
其中,压力测管6纵向(垂直)伸入沉积物层面布置,结构为测管式组件,分别插入模型5个层面,五个层面分别距储层顶端160mm,500mm,840mm,1180mm,1520mm;釜盖上安装布置49个集成,五层空间矩阵分布,共245(49×5)个压力传感器,压力测管6包含五个压力子测管,五个压力子测管集成在一起插入孔内布置,密封套与压力子测管用银焊焊接组成压力测管6。压力测管6的各子测管表面喷涂绝热绝缘涂层,并作表面粗糙化处理,防止气液沿壁串流、热量流失以及对层析成像电阻率测试场的干扰等。各压力子测管直径3mm,头部均布4个3×1(mm)长槽,再包裹筛网用银焊或锡焊焊接,防止砂粒进入堵塞压力测管6。
温度测管7纵向插入沉积物层面布置方式,结构为集成套装式,分别插入模型5个层面,五个层面分别距储层顶端160mm,500mm,840mm,1180mm,1520mm;釜盖上安装布置49个集成,五层空间矩阵分布,共245(49×5)个压力传感器,温度测管7包含五个温度子测管,温度传感器采用集成套装形式,5个PT100A级铂电阻个装入1根14mm耐压封闭式 不锈钢管中,每根插入深度由定位卡子调节,进而可测量出介质各点的温度值。耐压封闭式不锈钢管(温度传感器插管)表面作粗糙化处理,防止气液沿壁串流、热量流失以及温度损失,影响温度测量精度。
电阻率测柱5纵向插入沉积物层面布置方式,结构为peek铠装形式,分别插入模型5个层面,五个层面分别距储层顶端160mm,500mm,840mm,1180mm,1520mm。
旁侧竖直井集成19和温压电阻集成20均包括安装管11、集成密封头3、压帽2、电阻率测柱5、压力测管6和温度测管7,安装管11与上釜盖相连,集成密封头3密封插接在安装管11的顶端并被压帽2固定,电阻率测柱5、压力测管6和温度测管7相互平行穿过集成密封头3并沿安装管11的轴向延伸,压力测管6和温度测管7的底端分别对应套设有压力探头和温度探头,旁侧竖直井集成19还设有竖直井管8,竖直井管8与电阻率测柱5、压力测管6和温度测管7平行设置且底部设有井管防砂筛网17,水平井管24与竖直井管8垂直方向插入反应釜。
旁侧竖直井集成19内设有电阻率测柱5架,电阻率测柱5架的上端固定在集成密封头3上且电阻率测柱5架上设有若干沿其轴向布置的电阻率测柱5架卡口,电阻率测柱5架卡口固定竖直井管8。
旁侧竖直井集成19和温压电阻集成20呈矩阵阵列布置,矩阵阵列的各边等距布置有三旁侧竖直井集成19,每两旁侧竖直井集成19之间等距布置有三温压电阻集成20,矩阵的内部设置有与各边的旁侧竖直井集成19、温压电阻集成20对应的温压电阻集成20。电阻率测柱5采用铠装形式,5根镀银铜导线在杆体上环绕一周形成5个环状测量电极,相邻环状电极间距340mm;将相邻2个环状电极接入电路,即可测量环状电极间所夹介质的电阻,进而可换算出所夹介质的电阻率。电阻测柱与密封套用peek卡套密封,测管压帽2压紧,peek是良好的密封材料,密封可靠。密封套与安装管11O形圈密封,用螺纹压帽2压紧。电阻率测管柱表面作粗糙化处理,防止气液沿壁串流。
本实施例中的物性表征装置的工作原理:布置安装电阻率测柱5、压力测管6和温度测管7实现反应釜内水合物分布场,压力场及温度场的模拟;通过空间点阵式分布温度传感器和压力传感器分别获得温度场和压力场,通过电阻率层析成像系统(Electrical Resistance Tomography,简称ERT)测量ERT监测水合物饱和度变化从而得出水合物分布场,从而实时原位的表征水合物开采过程中的传热传质、多相渗流及水合物相变过程,实现多手段、多尺度、原位、精确的水合物开采过程的核心关键参数表征及测量。
此外,本发明的物性表征装置还可以用以表征反应釜内流场情况,参见图5,本实施例 提供的天然气水合物实验系统的反应釜内有27口垂直井(相当于上实施例中的竖直井管,下同),天然气水合物储层分为三层,每层对称分布九口垂直井,分别编号为1-A,2-A,…,9-B,9-C,其中位于中心的垂直井9-B为中心垂直井,其余的垂直井均为非中心垂直井。参见图6,本实施提供的流场测量装置则主要包括非中心垂直井压力传感器306、非中心垂直井出口阀门307、连通器阀门309、差压传感器308、连通器304、中心垂直井出口阀门303以及中心垂直井压力传感器302。
其中,该非中心垂直井压力传感器306、非中心垂直井出口阀门307、差压传感器308、连通器阀门309的个数和非中心垂直井相同;将除9-B垂直井外的所有非中心垂直井出口管线305依次连接非中心垂直井压力传感器306,非中心垂直井出口阀门307,差压传感器308的一端,差压传感器308的另一端接到连通器阀门309,连通器阀门309汇集至连通器305,连通器305的另一端依次连接中心垂直井出口阀门303、中心垂直井压力传感器302、中心垂直井出口管线301。
26个差压传感器的编号分别为A1,B1,C1,A2,…,A9,C9,分别代表连接1-A井与9-B井的差压传感器,连接1-B井与9-B井的差压传感器,…,连接9-A井与9-B井的差压传感器,连接9-C井与9-B井的差压传感器。具体地,该压差传感器308的精度高于中心垂直井压力传感器302和非中心垂直井压力传感器306的精度,量程小于中心垂直井压力传感器302和非中心垂直井压力传感器306的量程,由于压力传感器精度测不了小压差,差压传感器308的精度更高,在压力差比较小的时候,压力传感器显示的的压力可能是一样的,但是差压传感器能测出来压力差,压力差比较大的时候,超出差压传感器的量程就会损害差压传感器,也就是说,压差传感器精度高,但是量程小。压力传感器量程大,但是精度不够,所以二者要相互配合使用。
如此,当需要观察天然气水合物反应釜内流场的时候,先通过观察27个压力传感器的数值,比较反应釜的每一口垂直井与中心的垂直井的压力差,看是否超过差压传感器的量程;若超过差压传感器的量程,则得到该差压传感器所对应的非中心垂直井与中心垂直井的压力差;若未超过差压传感器量程,则同时打开该差压传感器两侧的非中心垂直井出口阀门和连通器阀门,利用该差压传感器测量到相应的非中心垂直井与中心垂直井的压力差。受压力差的影响,气液会自发从高压流向低压(或有自发从高压流向低压的趋势),也即反应釜内的流场被准确测量出来。
由此可见,本实施提供的表征装置通过反应釜内各点的压力差来量化反应釜内流场,准确、高效;将中心垂直井的测点分别与各个垂直井的测点之间连接差压传感器,测量压力差, 对于整个反应釜内部三维空间分配合理,模拟出的流场更加易于分析反应釜内气液流动趋势;通过压力传感器反馈的信息进行初判断,再决定是否开启差压传感器,在压力差大和压力差小的工况下,均能测量反应釜内流场,同时对差压传感器也能得到有效的保护。同时由于整个测量装置是通过垂直井出口管线相连接的,也就是说整个测量装置可以外接反应釜的,亦即该差压传感器和连通器均设置于反应釜之外,不需要对整个天然气水合物系统进行大的改造,不会对现有的实验装置造成损坏,对于不具备表征功能的天然气水合物实验系统,可以随时外加本装置。
同时,由于目前已有的天然气水合物实验设备尺度对比实际地层环境都不足以拥有温度梯度,所以大多天然气水合物反应釜都是做的恒温水浴,但是在实际开采中,天然气水合物储层受地层温度的影响,温度随着深度的变化是有一定温差与温度梯度的,且这种温度梯度的存在会对天然气水合物的生成开采均具有一定的影响,这就需要对更接近实际开采真实情况的大尺度天然气水合物设备有着需要模拟地层温度梯度更高要求,如何精确控制地层温度梯度以实现NGH藏原位温度场模拟就是目前要解决的技术难题。
为此,如图3所示,该反应釜包括反应釜体200以及安装在反应釜体上端面的上釜盖201以及安装在反应釜体下端面的下釜盖202,该反应釜体200与上、下釜盖之间的联接通过螺栓206的方式,联接稳定牢固、安全可靠。
在该反应釜体200内的上下两端分别布置有上循环盘管203和下循环盘管204,该上循环盘管203和下循环盘管204均采用独立的热交换装置(未图示)来实现热传导介质在盘管内的循环,该热交换装置具有制冷、加热以及恒温的功能。在上循环盘管203和下循环盘管204的作用下,可以使得反应釜体200内的上部和下部均形成等温面,但如果仅仅是反应釜上部和下部均形成等温面,由于反应釜四周无法做到绝热,在热对流的影响下,会形成高温自下而上占据大部分空间,无法做到均衡的温度梯度,从而不能模拟地层温度梯度。为此,在本实施中,在该反应釜体200内、上循环盘管203和下循环盘管204之间间隔设置有N根控温管205,以使得在反应釜体200内产生垂直温度梯度,N为正整数,当然控温管205数量可根据实际需求而定,在本实施例中,N为3,即布置有三根控温管205,每一控温管205也均是采用独立的热交换装置来实现热传导介质在控温管内的循环。
如此,通过在反应釜体内的上下两端布置有上循环盘管和下循环盘管,上循环盘管和下循环盘管的设计保障了加热稳定,而通过在循环盘管和下循环盘管之间间隔设置有N根控温管,控温管环绕反应釜体,而每一根控温管也是有独立的热交换装置来实现热传导介质在控温管内的循环,即也是可以实现制冷、加热以及恒温的功能,如此即可以单独地调整每一根 控温管的温度,从而可以在反应釜体内模拟出地层温度梯度。
此外,由于地层温度为自下而上温度以一定梯度逐渐降低,为了更精确地模拟出地层温度梯度,该N根控温管自下而上等距分布且控温管之间的温差恒定,如此,即可以实现低温到高温等温差等距自上而下排列,具体为下循环盘管204为设定高温T1,上循环盘管74为设定低温T2,有N根控温管205,控温管205之间温差可以表示为:ΔT=(T1-T2)/(N+1),也即控温管205自上而下温度分别设定为T2+ΔT、T2+2ΔT、…、T2+NΔT。
另外,为了使得温管之间温差ΔT实时保持稳定状态,以达到对地层最真实的模拟,该反应釜体200内还设置有温度传感器,以用于检测上循环盘管203、下循环盘管204以及N根控温管205的温度,并将所监测到的温度数据传输至温度控制器,由温度控制器根据所监测到温度数据来实时调整各热交换装置的工作,以保证反应釜体内的垂直温度梯度实时保持稳定状态。具体到本实施例中,垂直温度梯度温差控制为5℃,控温精度为±0.5℃。
一种天然气水合物大尺度实验系统中物性表征方法,使用如上任一的天然气水合物大尺度实验系统中物性表征装置,其包括以下步骤:
将反应釜内腔的沉积物层分成若干层;
将旁侧竖直井集成19和温压电阻集成20以矩阵阵列布置并纵向插入反应釜;
根据压力测管6和温度测管7和电阻率测柱5的传感器的立体点阵数据,利用数据处理软件生成变化云图,实时观测反应釜内的温度场,压力场和电阻率场,进而模拟反应釜中的水合物分布场、压力场及温度场。
进一步地,反应釜内腔为高度1680mm,直径1400mm的圆柱体,内腔的沉积物层划分为5层面,五个层面分别距储层顶端160mm,500mm,840mm,1180mm,1520mm。
进一步地,矩阵阵列为以反应釜的轴线为中心的900mm×900mm矩形平面,两相邻的集成相距150mm。
温压场和水合物分布场的生成,分析和应用:根据温压和电阻率传感器立体点阵数据利用数据处理软件生成变化云图,可以实时观测大尺度实验系统的反应釜内的温度场,压力场和电阻率场,由于电阻率与水合物的生成与分解有关,所以电阻率场可表示水合物场,进而直观实现大尺度实验系统中水合物分布场,压力场及温度场的模拟。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种天然气水合物大尺度实验系统中物性表征装置,包括反应釜、水平井管和竖直井管,所述反应釜包括上釜盖、下釜盖和釜体,上釜盖、下釜盖密封闭合在釜体的两端以形成密闭内腔,其特征在于,所述内腔填充有多孔介质和液体,多孔介质和液体用于模拟水合物储层的地质分层结构,还包括旁侧竖直井集成和温压电阻集成,旁侧竖直井集成和温压电阻集成从上釜盖到下釜盖贯穿所述反应釜设置,
    所述旁侧竖直井集成和所述温压电阻集成均包括安装管、集成密封头、压帽、电阻率测柱、压力测管和温度测管,所述安装管与所述上釜盖相连,所述集成密封头密封插接在所述安装管的顶端并被所述压帽固定,所述电阻率测柱、所述压力测管和所述温度测管相互平行穿过所述集成密封头并沿所述安装管的轴向延伸,压力测管和温度测管的底端分别对应套设有压力探头和温度探头,所述旁侧竖直井集成还设有所述竖直井管,所述竖直井管与电阻率测柱、压力测管和温度测管平行设置且底部设有井管防砂筛网,所述水平井管以与所述竖直井管垂直方向插入所述反应釜,旁侧竖直井集成和温压电阻集成用于采集温度、压强和电阻率以表征反应釜内的水合物储层的地质分层结构。
  2. 根据权利要求1所述的天然气水合物大尺度实验系统中物性表征装置,其特征在于,所述旁侧竖直井集成内设有电阻率测柱架,所述电阻率测柱架的上端固定在所述集成密封头上且所述电阻率测柱架上设有若干沿其轴向布置的电阻率测柱架卡口,所述电阻率测柱架卡口固定所述电阻率测柱。
  3. 根据权利要求1所述的天然气水合物大尺度实验系统中物性表征装置,其特征在于,所述旁侧竖直井集成和所述温压电阻集成的矩阵阵列为9x9矩阵,矩阵阵列中布置有三排所述旁侧竖直井集成且每排等距布置有三所述旁侧竖直井集成,每两所述旁侧竖直井集成之间等距布置有两所述温压电阻集成。
  4. 根据权利要求1-3任一所述的天然气水合物大尺度实验系统中物性表征装置,其特征在于,所述旁侧竖直井集成和所述温压电阻集成内均设有五所述电阻率测柱、五所述压力测管和五所述温度测管;矩阵阵列为以反应釜的轴线为中心的900mm×900mm矩形平面,两相邻的集成相距150mm。
  5. 根据权利要求1-3任一所述的天然气水合物大尺度实验系统中物性表征装置,其特征在于,所述压力测管的表面喷涂绝热绝缘涂层并作表面粗糙化处理,以防止反应釜内气液沿壁串流、热量流失以及对层析成像电阻率测试场的干扰;所述温度测管采用不锈钢管且表面作粗糙化处理,以防止反应釜内气液沿壁串流、热量流失以及温度损失。
  6. 根据权利要求3所述的天然气水合物大尺度实验系统中物性表征装置,其特征在于,矩阵阵列中位于反应釜中心的竖直井管为中心竖直井管,其余的为非中心竖直井管,中心竖直井管的压力测管的压力传感器为中心垂直井压力传感器,非中心竖直井管的压力测管的压力传感器为非中心垂直井压力传感器,此外,还包括非中心垂直井出口阀门、连通器阀门、差压传感器、连通器和中心垂直井出口阀门,
    所述非中心垂直井压力传感器、非中心垂直井出口阀门、差压传感器、连通器阀门的个数和非中心垂直井相同;每一非中心垂直井均设置有非中心垂直井出口管线,每一非中心垂直井出口管线均对应地依次连通安装有非中心垂直井压力传感器、非中心垂直井出口阀门、差压传感器、连通阀门,所有的连通器阀门均汇集连通至连通器;
    所述中心垂直井设置有中心垂直井出口管线,中心垂直井出口管线依次连通安装有中心垂直井压力传感器和中心垂直井出口阀门,中心垂直井出口阀门连通至连通器。
  7. 根据权利要求6所述的天然气水合物大尺度实验系统中物性表征装置,其特征在于,所述差压传感器和连通器均设置于反应釜之外;所述压差传感器的精度高于中心垂直井压力传感器和非中心垂直井压力传感器的精度,量程小于中心垂直井压力传感器和非中心垂直井压力传感器的量程。
  8. 一种天然气水合物大尺度实验系统中物性表征方法,使用如根据权利要求1-5任一所述的天然气水合物大尺度实验系统中物性表征装置,其特征在于,包括以下步骤:
    将反应釜内腔的沉积物层分成若干层;
    将旁侧竖直井集成和温压电阻集成以矩阵阵列布置并纵向插入反应釜;
    根据压力测管和温度测管和电阻率测柱的传感器的立体点阵数据,利用数据处理软件生成变化云图,实时观测反应釜内的温度场,压力场和电阻率场,进而模拟反应釜中的水合物分布场、压力场及温度场。
  9. 根据权利要求8所述的天然气水合物大尺度实验系统中物性表征方法,其特征在于,反应釜内腔为高度1680mm,直径1400mm的圆柱体,内腔的沉积物层划分为5层面,五个层面分别距储层顶端160mm,500mm,840mm,1180mm,1520mm。
  10. 根据权利要求8所述的天然气水合物大尺度实验系统中物性表征方法,其特征在于,矩阵阵列为以反应釜的轴线为中心的900mm×900mm矩形平面,两相邻的集成相距150mm。
PCT/CN2020/114087 2020-08-06 2020-09-08 缩尺天然气水合物藏物性表征装置及方法 WO2021159696A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/973,784 US11566493B2 (en) 2020-08-06 2020-09-08 Physical characterization device and method for scale model of natural gas hydrate reservoir

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010783706.5 2020-08-06
CN202010783706.5A CN112083124B (zh) 2020-08-06 2020-08-06 天然气水合物大尺度实验系统中物性表征装置及方法

Publications (1)

Publication Number Publication Date
WO2021159696A1 true WO2021159696A1 (zh) 2021-08-19

Family

ID=73735364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114087 WO2021159696A1 (zh) 2020-08-06 2020-09-08 缩尺天然气水合物藏物性表征装置及方法

Country Status (3)

Country Link
US (1) US11566493B2 (zh)
CN (1) CN112083124B (zh)
WO (1) WO2021159696A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447542B (zh) * 2021-06-30 2022-04-19 北京科技大学 一种能够施加载荷的高温高压电化学反应釜装置
US11905812B2 (en) * 2021-08-24 2024-02-20 China University Of Petroleum (East China) Intra-layer reinforcement method, and consolidation and reconstruction simulation experiment system and evaluation method for gas hydrate formation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550816A (zh) * 2009-05-20 2009-10-07 中国科学院广州能源研究所 天然气水合物三维开采模拟实验装置
CN202220587U (zh) * 2011-09-05 2012-05-16 中国科学院广州能源研究所 天然气水合物三维多井联合开采实验装置
KR20130125186A (ko) * 2012-05-08 2013-11-18 한국지질자원연구원 가스 하이드레이트 생산모사시스템 및 이를 이용한 생산모사방법
CN109236244A (zh) * 2018-11-02 2019-01-18 广州海洋地质调查局 三维综合性储层水合物模拟分析装置
CN109236243A (zh) * 2018-11-02 2019-01-18 广州海洋地质调查局 三维综合性储层水合物模拟分析系统及分析方法
CN109611059A (zh) * 2018-11-02 2019-04-12 广州海洋地质调查局 一种水合物环境模拟装置
RU2705707C1 (ru) * 2019-05-07 2019-11-11 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Реактор для контроля гидратообразования

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710088A (zh) * 2009-12-17 2010-05-19 中国海洋石油总公司 一种天然气水合物生成与分解测试方法及装置
CN101963057B (zh) * 2010-09-21 2013-01-23 中国科学院广州能源研究所 一种天然气水合物地质分层模拟实验装置
CN102109513B (zh) * 2010-12-23 2014-01-08 中国科学院广州能源研究所 一种天然气水合物三维生成开采物性检测实验装置
CN202064908U (zh) * 2011-03-16 2011-12-07 中国海洋石油总公司 一种天然气水合物三维合成与开采模拟装置
CN102323394B (zh) * 2011-08-23 2014-02-19 中国地质大学(武汉) 研究天然气水合物地层对钻井液侵入响应特性的实验装置及实验方法
CN102305052A (zh) * 2011-09-05 2012-01-04 中国科学院广州能源研究所 天然气水合物三维多井联合开采实验装置及其实验方法
CA2912301C (en) * 2015-01-23 2018-01-09 Exxonmobil Upstream Research Company Method and system for enhancing the recovery of heavy oil from a reservoir
CN109696360B (zh) * 2019-01-28 2023-10-31 中国地质大学(武汉) 水合物开采储层响应与出砂模拟多功能反应釜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550816A (zh) * 2009-05-20 2009-10-07 中国科学院广州能源研究所 天然气水合物三维开采模拟实验装置
CN202220587U (zh) * 2011-09-05 2012-05-16 中国科学院广州能源研究所 天然气水合物三维多井联合开采实验装置
KR20130125186A (ko) * 2012-05-08 2013-11-18 한국지질자원연구원 가스 하이드레이트 생산모사시스템 및 이를 이용한 생산모사방법
CN109236244A (zh) * 2018-11-02 2019-01-18 广州海洋地质调查局 三维综合性储层水合物模拟分析装置
CN109236243A (zh) * 2018-11-02 2019-01-18 广州海洋地质调查局 三维综合性储层水合物模拟分析系统及分析方法
CN109611059A (zh) * 2018-11-02 2019-04-12 广州海洋地质调查局 一种水合物环境模拟装置
RU2705707C1 (ru) * 2019-05-07 2019-11-11 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Реактор для контроля гидратообразования

Also Published As

Publication number Publication date
CN112083124B (zh) 2021-08-17
US20220235632A1 (en) 2022-07-28
CN112083124A (zh) 2020-12-15
US11566493B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2021159696A1 (zh) 缩尺天然气水合物藏物性表征装置及方法
CN112031714B (zh) 一种大尺度全尺寸开采井三维综合试验开采系统
US9841531B2 (en) Three-dimensional simulating device for the stratum stability in the natural hydrate exploitation
CN101929970B (zh) 接触热阻测试方法
CN102109513B (zh) 一种天然气水合物三维生成开采物性检测实验装置
CN104568226B (zh) 一种海底热流长期观测探针及其使用方法
CN109162708A (zh) 一种模拟水合物开采过程中储层参数多维监测装置
KR20130125186A (ko) 가스 하이드레이트 생산모사시스템 및 이를 이용한 생산모사방법
WO2021159698A1 (zh) 一种天然气水合物地质分层装置和方法
CN101929969A (zh) 带有冷却装置的接触热阻测试设备
CN109611059B (zh) 一种水合物环境模拟装置
CN101907590A (zh) 一种接触热阻测试设备
CN102590284A (zh) 一种测量高温高压岩心含水饱和度分布的装置
CN103280143B (zh) 一种基于聚变裂变混合堆水冷包层的实验段及其实验方法
CN109236244A (zh) 三维综合性储层水合物模拟分析装置
WO2021159700A1 (zh) 一种天然气水合物全尺寸生产井开采试验装置及方法
CN210834784U (zh) 水合物岩心样品制备及其电阻成像与声波联合探测装置
CN106816190B (zh) 核电站反应堆主管道冷却剂温度测量系统以及方法
CN115223738A (zh) 一种用于测量包壳温度和电位的实验段及测量方法
CN111948370B (zh) 用于天然气水合物实验系统的流场测量装置及测量方法
CN206756728U (zh) 一种良导体导热系数实验仪
CN110849930B (zh) 测量冻土与埋地管道相互作用的实验装置及制备方法
CN103185648B (zh) 分布式光纤温度传感器的温度校准用光纤环集成固定平台
CN110023769A (zh) 测量非饱和土壤电阻率各向异性的电阻率测量单元
CN212202014U (zh) 基于光纤感测技术的水合物储层多场耦合效应模拟反应釜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918492

Country of ref document: EP

Kind code of ref document: A1