CN110849930B - 测量冻土与埋地管道相互作用的实验装置及制备方法 - Google Patents

测量冻土与埋地管道相互作用的实验装置及制备方法 Download PDF

Info

Publication number
CN110849930B
CN110849930B CN201911344877.1A CN201911344877A CN110849930B CN 110849930 B CN110849930 B CN 110849930B CN 201911344877 A CN201911344877 A CN 201911344877A CN 110849930 B CN110849930 B CN 110849930B
Authority
CN
China
Prior art keywords
pipeline
box body
soil
vehicle
experimental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911344877.1A
Other languages
English (en)
Other versions
CN110849930A (zh
Inventor
滕振超
刘宇
赵誉翔
张云峰
李文
詹界东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Publication of CN110849930A publication Critical patent/CN110849930A/zh
Application granted granted Critical
Publication of CN110849930B publication Critical patent/CN110849930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种测量冻土与埋地管道相互作用的实验装置及制备方法,涉及实验模型技术领域,它包括车型箱体,车型箱体由两块横向钢板、两块侧向钢板和一块底面钢板所围成的开口箱体结构,车型箱体一侧壁穿有前端部管道,前端部管道伸入车型箱体内的一端与中间管道一端通过法兰盘焊接,中间管道另一端通过法兰盘与后端部管道一端焊接,前端部管道、中间管道和后端部管道上贴有应变片,应变片通过导线与静态电阻应变仪连接;车型箱体内铺设土层,土层内安装温度探针,温度探针通过导线与静态电阻应变仪连接。本测量冻土与埋地管道相互作用的实验装置及制备方法通过实验土温度的变化和管道的应变情况,准确的测量出冻土与埋地管道相互作用的关系。

Description

测量冻土与埋地管道相互作用的实验装置及制备方法
技术领域:
本发明涉及实验模型技术领域,具体涉及测量冻土与埋地管道相互作用的实验装置及制备方法。
背景技术:
石油和天然气运输与国民经济、人民生活息息相关,管道输送具有安全、便捷、经济的特点,埋地管道在石油运输中应用广泛,但在冻土区因土体温度场和冻土层厚度等因素的影响,尤其是季节交替时的冻融循环现象易使管道发生冻胀和融沉等不良现象。目前,对埋地输油管道的研究还建立在现场实验和有限元模拟研究阶段,很难在实验室环境下通过大型实验模拟装置来对土体冻融循环对埋地输油管道的破坏进行观测,无法模拟出不同气象情况下的大型实验。
发明内容:
本发明的目的是为了克服上述现有技术存在的不足之处,而提供一种测量冻土与埋地管道相互作用的实验装置及制备方法,它通过实验土温度的变化和管道的应变情况,准确的测量出冻土与埋地管道相互作用的关系。
本发明采用的技术方案为:测量冻土与埋地管道相互作用的实验装置及制备方法,包括车型箱体,车型箱体由两块横向钢板、两块侧向钢板和一块底面钢板所围成的开口箱体结构,车型箱体一侧壁穿有前端部管道,前端部管道伸入车型箱体内的一端与中间管道一端通过法兰盘焊接,中间管道另一端通过法兰盘与后端部管道一端焊接,后端部管道另一端穿出车型箱体外,所述的前端部管道、中间管道和后端部管道上贴有应变片,应变片通过导线与静态电阻应变仪连接;车型箱体内铺设土层,土层内安装温度探针,温度探针通过导线与静态电阻应变仪连接。
所述的车型箱体的侧向钢板侧壁上均焊接扶手,所述的车型箱体的底部安装滚动轮。
所述的两块横向钢板和两块侧向钢板外部均粘有苯板,苯板厚度为40~60mm,苯板外围有铁皮保护层,铁皮保护层厚度为0.5~1.5mm。
所述的车型箱体两侧壁均焊接有照准杆;所述的前端部管道、中间管道和后端部管道顶部均焊接有标志杆,标志杆外套有塑料套筒,塑料套筒直径为13~15mm,标志杆和照准杆为钢筋柱,钢筋柱的直径为9~11mm。
所述的前端部管道一端伸出车型箱体外9~11cm,且与外道焊接;所述的后端部管道一端伸出车型箱体外9~11cm,且管道上设有存水释放阀门;所述的车型箱体的底面钢板上设有两个泄水筛孔,两个泄水筛孔位于对角线上,泄水筛孔直径为90~110mm。
所述的横向钢板、侧向钢板和底面钢板的厚度为3~5mm;所述的前端部管道、中间管道和后端部管道的厚度为1.0~2.0mm。
所述的前端部管道、中间管道和后端部管道的管道壁上均贴有四个应变片,四个应变片均等分布在管道的圆周面上。
所述的温度探针个数为若干个,由上至下、由左至右以及右前至后均有布置,由上至下布置时温度探针与温度探针之间的间距逐级增大。
所述的中间管道内安装控温器。
制作方法步骤如下:
1)土样的装配,实验前将实验土样进行筛分,选择适宜的含水率等的实验土,将实验土分为五层填于实验车型箱体(1)中,每层厚度控制在20cm,层层压实,每层土样用木锤敲实,使其达到天然土密度,直至三层土样填充完毕,此时土样高度达到车型箱体(1)高度三分之二管道下边缘处;
2)在管道上标记测点,在测点处贴好应变片,将应变片贴于车型箱体(1)内的管道上,为确定管道的主应力方向,故采用三轴应变花的形式,一共分为五组,一组四个检测点,测量管道轴向环向应变,进而计算管道主应力大小及方向,并连接好导线并在中间管道中,提前置入控温器,将中间管道通过法兰(4)与焊接在箱体上的前端部管道(2)和后端部管道(3)相连,检验连接后管道的密实性;
3)制作温度探针,在塑料管上每隔一定间距钻有3~6个直径为0.5mm的小孔,根据温度场分布规律,小孔间距从上到下逐渐增大,将热电偶穿过塑料管,并从小孔处穿出,热电偶头部稍露出小孔即可,为保证热电偶与土体接触良好,使用树脂胶涂敷热电偶头部以达到绝缘和密封的效果,热电偶引线从塑料管的另一侧引出,固定在接线盒中,塑料管的另一端用堵头密封,至此温度探针制作完毕;
4)土体中置入温度探针,采用插管进行布置温度探针(热电偶),将应变片连接好留出的导线和温度探针测试线通过导线连接静态电阻应变仪上,利用温度探针来测量土体各个位置的温度变化;
5)埋置温度探针后继续装配土样,每层厚度20cm,装配两层直至装满车型箱体(1),并层层压实至天然土密度;
6)将上述连接好的实验装置进行试验,根据实验的不同要求进行冻融循环实验,确定冻融循环的具体周期时间长短,按照周期进行循环条件设置,如将装置置于温度为15~20度的室内环境中48小时后,将装置置于温度为-15~-20度的室外环境中48小时,每96小时为一次冻融循环,通过静态电阻应变仪实时测量管道内外应变变化。
本发明的有益效果如下:
1)可以用于各种埋地管道在冻融循环作用下的受力分析,能直接测量管道的受力状态;
2)通过设置管道中控温器,可以模拟管道内液体的不同温度;
3)通过在车型箱体中装入不同的土,可以模拟各种土质对管道的作用;
4)装置下部设有滚动轮,易于改变实验箱体外部环境,可模拟实现整个冻融循环周期环境;
5)能实时监测出管道周围温度变化,并通过静态电阻应变仪等信息处理,描绘出整个冻融循环周期管道周围温度场分布及变化,进一步分析管道周边冻融圈随冻融循环的变化规律;
6)能实时监测出管道各部位在冻融循环作用下的位移沉降量,管道应变值;
7)通过静态电阻应变仪等信息处理,能检测出整个冻融循环作用下管道的应力应变的变化规律。
附图说明:
图1是本发明正视图;
图2是本发明拆解图;
图3是本发明俯视图;
图4是本发明剖视图;
图5是本发明温度探针布置图;
图6是本发明应变片分布俯视图;
图7是本发明管道应变片布置立体图;
图8是本发明管道应变片布置截面图。
具体实施方式:
参照各图,测量冻土与埋地管道相互作用的实验装置及制备方法,包括车型箱体1,车型箱体1由两块横向钢板5、两块侧向钢板6和一块底面钢板7所围成的开口箱体结构,车型箱体1一侧壁穿有前端部管道2,前端部管道2伸入车型箱体1内的一端与中间管道一端通过法兰盘4焊接,中间管道另一端通过法兰盘4与后端部管道3一端焊接,后端部管道3另一端穿出车型箱体1外,所述的前端部管道2、中间管道和后端部管道3上贴有应变片,应变片通过导线与静态电阻应变仪连接;车型箱体1内铺设土层,土层内安装温度探针,温度探针通过导线与静态电阻应变仪连接。所述的车型箱体1的侧向钢板6侧壁上均焊接扶手8,所述的车型箱体1的底部安装滚动轮。所述的两块横向钢板5和两块侧向钢板6外部均粘有苯板10,苯板厚度为40~60mm,苯板10外围有铁皮保护层11,铁皮保护层11厚度为0.5~1.5mm。所述的车型箱体1两侧壁均焊接有照准杆12;所述的前端部管道2、中间管道和后端部管道3顶部均焊接有标志杆14,标志杆14外套有塑料套筒15,塑料套筒15直径为13~15mm,标志杆14和照准杆13为钢筋柱,钢筋柱的直径为9~11mm。所述的前端部管道2一端伸出车型箱体1外9~11cm,且与外道焊接;所述的后端部管道3一端伸出车型箱体1外9~11cm,且管道上设有存水释放阀门9;所述的车型箱体1的底面钢板7上设有两个泄水筛孔12,两个泄水筛孔12位于对角线上,泄水筛孔1直径为90~110mm。所述的横向钢板5、侧向钢板6和底面钢板7的厚度为3~5mm;所述的前端部管道2、中间管道和后端部管道3的厚度为1.0~2.0mm。所述的前端部管道2、中间管道和后端部管道3的管道壁上均贴有四个应变片,四个应变片均等分布在管道的圆周面上。所述的温度探针个数为若干个,由上至下、由左至右以及右前至后均有布置,由上至下布置时温度探针与温度探针之间的间距逐级增大。所述的中间管道内安装控温器。
制作方法步骤如下:
1)土样的装配,实验前将实验土样进行筛分,选择适宜的含水率等的实验土,将实验土分为五层填于实验车型箱体(1)中,每层厚度控制在20cm,层层压实,每层土样用木锤敲实,使其达到天然土密度,直至三层土样填充完毕,此时土样高度达到车型箱体(1)高度三分之二管道下边缘处;
2)在管道上标记测点,在测点处贴好应变片,将应变片贴于车型箱体(1)内的管道上,为确定管道的主应力方向,故采用三轴应变花的形式,一共分为五组,一组四个检测点,测量管道轴向环向应变,进而计算管道主应力大小及方向,并连接好导线并在中间管道中提前置入控温器,将中间管道通过法兰(4)与焊接在箱体上的前端部管道(2)和后端部管道(3)相连,检验连接后管道的密实性;
3)制作温度探针,在塑料管上每隔一定间距钻有3~6个直径为0.5mm的小孔,根据温度场分布规律,小孔间距从上到下逐渐增大,将热电偶穿过塑料管,并从小孔处穿出,热电偶头部稍露出小孔即可,为保证热电偶与土体接触良好,使用树脂胶涂敷热电偶头部以达到绝缘和密封的效果,热电偶引线从塑料管的另一侧引出,固定在接线盒中,塑料管的另一端用堵头密封,至此温度探针制作完毕;
4)土体中置入温度探针,采用插管进行布置温度探针(热电偶),将应变片连接好留出的导线和温度探针测试线通过导线连接静态电阻应变仪上,利用温度探针来测量土体各个位置的温度变化;
5)埋置温度探针后继续装配土样,每层厚度20cm,装配两层直至装满车型箱体(1),并层层压实至天然土密度;
6)将上述连接好的实验装置进行试验,根据实验的不同要求进行冻融循环实验,确定冻融循环的具体周期时间长短,按照周期进行循环条件设置,如将装置置于温度为15~20度的室内环境中48小时后,将装置置于温度为-15~-20度的室外环境中48小时,每96小时为一次冻融循环,通过静态电阻应变仪实时测量管道内外应变变化。
本实验环境为东北寒冷地区,上述步骤6)中的冻融温度仅为参考值,冻融上下限可根据具体环境选取,当温度下限达不到-20度时,冻融循环作用会有相应折减,可以采取其它措施实现低温环境,如冷冻室等。
由于实际工程中管道传热问题涉及到的时间尺度和空间尺度都很大,必须使用缩小的相似性模型进行实验,根据相似理论准则,
Figure BDA0002333063320000081
其中,L—特征长度,m;Γ—地表温度变化周期,s;保证实验系统与实际系统的F0不变,则两者具有相似的物理特性。
从相似准则数F0的形式可见:在缩小的相似性模型实验中,几何尺度比实际缩小10倍时,时间尺度Γ缩短100倍。按照一年365天计算,实际中每年有365×24=8760h,则模型实验中一年的周期为87.6h;则连续进行4d,可模拟在实际系统中1a中的变化过程。
本实验装置几何长度相似比近似为10:1,故实验中每个冻融循环周期近似控制为98h,其它冻融周期可根据相似理论准则推算。
制作温度探针时,根据温度场分布规律,小孔间距从上到下逐渐增大,间距按照公式Δh=25n+100(mm)选取。
本装置能实时监测出管道周围温度变化,并通过信息处理,描绘出整个冻融循环周期管道周围温度场分布及变化,进一步分析管道周边冻融圈随冻融循环的变化规律。实验数据显示,1)管道周围土体温度沿深度方向随时间变化规律与大气温度变化规律相似,基本符合正弦周期变化;2)温度变化曲线的振幅随深度的增加出现明显的衰减,符合冻土区温度变化规律;3)随着冻融循环次数的增加,管道周围冻融圈的区域范围变化规律呈先增大后趋于恒定的趋势,具体参数与环境有关。
本装置能实时监测出管道各部位在冻融循环作用下的位移沉降量,管道应变值。通过信息处理,能检测出整个冻融循环作用下管道的应力应变的变化规律。实验数据显示,随着冻融循环次数的增加,管道的整体应变量持续增加,但是增量由大到小,并在循环次数足够多的时候,趋于稳定,具体次数上限受冻融温度、土体性质等因素影响。
本装置为了减少钢筋柱与土体之间的摩擦,在钢筋柱外套有塑料套筒。
本实验所用到的应变仪为江苏东华测试生产的静态电阻应变仪DH3818Y,温度探针(温度传感器)为北京世纪建通科技生产的温度传感器JTNT-A,可测温度及热流。
综上所述,本测量冻土与埋地管道相互作用的实验装置及制备方法,可以用于各种埋地管道在冻融循环作用下的受力分析,能直接测量管道的受力状态;通过设置管道中控温器,可以模拟管道内液体的不同温度;通过在车型箱体中装入不同的土,可以模拟各种土质对管道的作用;装置下部设有滚动轮,易于改变实验箱体外部环境,可模拟实现整个冻融循环周期环境;能实时监测出管道周围温度变化,并通过静态电阻应变仪等信息处理,描绘出整个冻融循环周期管道周围温度场分布及变化,进一步分析管道周边冻融圈随冻融循环的变化规律;能实时监测出管道各部位在冻融循环作用下的位移沉降量,管道应变值;通过静态电阻应变仪等信息处理,能检测出整个冻融循环作用下管道的应力应变的变化规律。

Claims (7)

1.一种测量冻土与埋地管道相互作用的实验装置,其特征在于:包括车型箱体(1),车型箱体(1)由两块横向钢板(5)、两块侧向钢板(6)和一块底面钢板(7)所围成的开口箱体结构,车型箱体(1)一侧壁穿有前端部管道(2),前端部管道(2)伸入车型箱体(1)内的一端与中间管道一端通过法兰盘(4)焊接,中间管道另一端通过法兰盘(4)与后端部管道(3)一端焊接,后端部管道(3)另一端穿出车型箱体(1)外,所述的前端部管道(2)、中间管道和后端部管道(3)的管道壁上均贴有四个应变片,四个应变片均等分布在管道的圆周面上,应变片通过导线与静态电阻应变仪连接;车型箱体(1)内铺设土层,土层内安装温度探针,温度探针通过导线与静态电阻应变仪连接;所述的温度探针个数为若干个,由上至下、由左至右以及由前至后均有布置,由上至下布置时温度探针与温度探针之间的间距逐级增大;所述的中间管道内安装控温器,通过设置管道中控温器,模拟管道内液体的不同温度。
2.根据权利要求1所述的测量冻土与埋地管道相互作用的实验装置,其特征在于:所述的车型箱体(1)的侧向钢板(6)侧壁上均焊接扶手(8),所述的车型箱体(1)的底部安装滚动轮。
3.根据权利要求1所述的测量冻土与埋地管道相互作用的实验装置,其特征在于:所述的两块横向钢板(5)和两块侧向钢板(6)外部均粘有苯板(10),苯板厚度为40~60mm,苯板(10)外围有铁皮保护层(11),铁皮保护层(11)厚度为0.5~1.5mm。
4.根据权利要求1所述的测量冻土与埋地管道相互作用的实验装置,其特征在于:所述的车型箱体(1)两侧壁均焊接有照准杆(13);所述的前端部管道(2)、中间管道和后端部管道(3)顶部均焊接有标志杆(14),标志杆(14)外套有塑料套筒(15),塑料套筒(15)直径为13~15mm,标志杆(14)和照准杆(13)为钢筋柱,钢筋柱的直径为9~11mm。
5.根据权利要求1所述的测量冻土与埋地管道相互作用的实验装置,其特征在于:所述的前端部管道(2)一端伸出车型箱体(1)外9~11cm,且与外道焊接;所述的后端部管道(3)一端伸出车型箱体(1)外9~11cm,且管道上设有存水释放阀门(9);所述的车型箱体(1)的底面钢板(7)上设有两个泄水筛孔(12),两个泄水筛孔(12)位于对角线上,泄水筛孔(12)直径为90~110mm。
6.根据权利要求1所述的测量冻土与埋地管道相互作用的实验装置,其特征在于:所述的横向钢板(5)、侧向钢板(6)和底面钢板(7)的厚度为3~5mm;所述的前端部管道(2)、中间管道和后端部管道(3)的厚度为1.0~2.0mm。
7.一种根据权利要求1所述的测量冻土与埋地管道相互作用的实验装置的制备方法,其特征在于:制备方法步骤如下:
1)土样的装配,实验前将实验土样进行筛分,选择适宜的含水率的实验土,将实验土分为五层填于实验车型箱体(1)中,每层厚度控制在20cm,层层压实,每层土样用木锤敲实,使其达到天然土密度,直至三层土样填充完毕,此时土样高度达到车型箱体(1)高度的三分之二,位于管道下边缘处;
2)在管道上标记测点,在测点处贴好应变片,将应变片贴于车型箱体(1)内的管道上,为确定管道的主应力方向,故采用三轴应变花的形式,一共分为五组,一组四个检测点,测量管道轴向环向应变,进而计算管道主应力大小及方向,并连接好导线并在中间管道中提前置入控温器,将中间管道通过法兰盘(4)与焊接在箱体上的前端部管道(2)和后端部管道(3)相连,检验连接后管道的密实性;
3)制作温度探针,在塑料管上每隔一定间距钻有3~6个直径为0.5mm的小孔,根据温度场分布规律,小孔间距从上到下逐渐增大,将热电偶穿过塑料管,并从小孔处穿出,热电偶头部稍露出小孔即可,为保证热电偶与土体接触良好,使用树脂胶涂敷热电偶头部以达到绝缘和密封的效果,热电偶引线从塑料管的另一侧引出,固定在接线盒中,塑料管的另一端用堵头密封,至此温度探针制作完毕;
4)土体中置入温度探针,采用插管进行布置温度探针,将应变片连接好留出的导线和温度探针测试线通过导线连接至静态电阻应变仪上,利用温度探针来测量土体各个位置的温度变化;
5)埋置温度探针后继续装配土样,每层厚度20cm,装配两层直至装满车型箱体(1),并层层压实至天然土密度;
将连接好的实验装置进行试验,根据实验的不同要求进行冻融循环实验,确定冻融循环的具体周期时间长短,按照周期进行循环条件设置,将装置置于温度为15~20度的室内环境中48小时后,将装置置于温度为-15~-20度的室外环境中48小时,每96小时为一次冻融循环,通过静态电阻应变仪实时测量管道内外应变变化。
CN201911344877.1A 2019-09-11 2019-12-24 测量冻土与埋地管道相互作用的实验装置及制备方法 Active CN110849930B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910856295.5A CN110470691A (zh) 2019-09-11 2019-09-11 测量冻土与埋地管道相互作用的实验装置及制备方法
CN2019108562955 2019-09-11

Publications (2)

Publication Number Publication Date
CN110849930A CN110849930A (zh) 2020-02-28
CN110849930B true CN110849930B (zh) 2022-05-10

Family

ID=68515475

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910856295.5A Pending CN110470691A (zh) 2019-09-11 2019-09-11 测量冻土与埋地管道相互作用的实验装置及制备方法
CN201911344877.1A Active CN110849930B (zh) 2019-09-11 2019-12-24 测量冻土与埋地管道相互作用的实验装置及制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910856295.5A Pending CN110470691A (zh) 2019-09-11 2019-09-11 测量冻土与埋地管道相互作用的实验装置及制备方法

Country Status (1)

Country Link
CN (2) CN110470691A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896575A (zh) * 2020-08-10 2020-11-06 东北石油大学 测量温度土埋地管道相互作用的组合实验装置及制备方法
CN112268782A (zh) * 2020-10-22 2021-01-26 常州大学 一种模拟冻土环境下管道力学反应的试验装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597222A (zh) * 2015-01-13 2015-05-06 河南大学 具有补水功能和冻胀测试功能的大型冻土模型试验系统
CN106872668A (zh) * 2017-03-03 2017-06-20 中国矿业大学(北京) 温度‑渗流‑应力三场耦合相似试验方法
CN110057688A (zh) * 2019-04-24 2019-07-26 塔里木大学 一种寒区管道管土界面力学性能参数试验系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597222A (zh) * 2015-01-13 2015-05-06 河南大学 具有补水功能和冻胀测试功能的大型冻土模型试验系统
CN106872668A (zh) * 2017-03-03 2017-06-20 中国矿业大学(北京) 温度‑渗流‑应力三场耦合相似试验方法
CN110057688A (zh) * 2019-04-24 2019-07-26 塔里木大学 一种寒区管道管土界面力学性能参数试验系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Experimental Studies of Pipeline Uplift Resistance in Frozen Ground》;Bill Liu et al.;《Proceedings of IPC2004》;20081204;第2408页右栏第7段-第2412页右栏最后一段及图1-11 *

Also Published As

Publication number Publication date
CN110470691A (zh) 2019-11-19
CN110849930A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
CN206339506U (zh) 一种测试一维土柱冻胀变形的试验装置
CN108181343B (zh) 土体冻结过程水热力综合试验方法
Tarara et al. Measuring soil water content in the laboratory and field with dual‐probe heat‐capacity sensors
CN103743771B (zh) 一种适用于天然盐渍土的冻融循环检测装置
CN107782628A (zh) 一种静水压力条件下单裂隙岩石试件直剪‑渗流试验装置与试验方法
CN110849930B (zh) 测量冻土与埋地管道相互作用的实验装置及制备方法
CN104360042B (zh) 一种压实土内部冻胀量的测试装置及测试方法
CN108195723B (zh) 一种加固松散砾石土的渗透注浆试验系统及方法
CN109490350B (zh) 气冷式土体冻胀试验装置及试验方法
CN107024499A (zh) 一维土柱冻胀变形测定仪
CN107870201B (zh) 一种气泡混合轻质土路堤无损检测方法
CN102879425A (zh) 一种岩土体综合导热系数和比热容的测试系统及测试方法
CN203587589U (zh) 一种适用于天然盐渍土的冻融循环检测装置
CN105158438A (zh) 一种土冻胀率测试仪
CN204536237U (zh) 一种土体冻结过程水热力综合试验系统
CN109870477B (zh) 一种非接触式检测土的冻胀单体及其检测方法
CN211478117U (zh) 一种便携式盐渍土现场原位冻胀及溶陷检测装置
Sharma et al. Evaluation of soil moisture sensing technologies in silt loam and loamy sand soils: Assessment of performance, temperature sensitivity, and site-and sensor-specific calibration functions
CN115236115A (zh) 模拟冻融循环边坡侵蚀试验装置及方法
CN113433155B (zh) 一种寒区路基未冻水实时监测系统及方法
He et al. Temperature tracer method in structural health monitoring: A review
Sun et al. Evaluating three measurement methods of soil ground heat flux based on actively heated distributed temperature sensing technology
CN106442603A (zh) 一种模拟不同热负荷下土体热物性参数的测试方法
CN103276713B (zh) 一种可原位评价饱和土渗透特征的环境孔压静力触探探头
CN110487838A (zh) 一种便携式盐渍土现场原位冻胀及溶陷检测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant