RU2705935C1 - Реактор для контроля гидратообразования - Google Patents

Реактор для контроля гидратообразования Download PDF

Info

Publication number
RU2705935C1
RU2705935C1 RU2019113726A RU2019113726A RU2705935C1 RU 2705935 C1 RU2705935 C1 RU 2705935C1 RU 2019113726 A RU2019113726 A RU 2019113726A RU 2019113726 A RU2019113726 A RU 2019113726A RU 2705935 C1 RU2705935 C1 RU 2705935C1
Authority
RU
Russia
Prior art keywords
cell
holes
plug
hydrate formation
hydrate
Prior art date
Application number
RU2019113726A
Other languages
English (en)
Inventor
Александр Нефедович Гульков
Юрий Михайлович Ем
Алексей Андреевич Морозов
Владислав Николаевич Барышев
Павел Игоревич Осмоловский
Антон Алексеевич Пичугов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ)
Priority to RU2019113726A priority Critical patent/RU2705935C1/ru
Application granted granted Critical
Publication of RU2705935C1 publication Critical patent/RU2705935C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Abstract

Изобретение относится к области автоматического контроля условий гидратообразования природного газа и может быть использовано для изучения условий гидратообразования на различных материалах в условиях залежей углеводородов и магистральных трубопроводов. Реактор для контроля гидратообразования содержит металлическую ячейку, снабженную пробкой, выполненной с возможностью герметичного запирания ячейки и снабженной каналами для термопары и подвода воды и газа под давлением, пробка выполнена в виде цилиндра, снабженного кольцевым пояском, снабжена герметизирующими кольцевыми уплотнениями в зазоре между поверхностью пробки и внутренней поверхностью ячейки, вертикальные стенки ячейки снабжены диаметрально расположенными сквозными отверстиями, в которых размещены герметизированные смотровые стекла из материала, прозрачного для лазерного пучка спектрометра, ячейка снабжена узлом охлаждения, содержащим камеры, охватывающие боковые поверхности ячейки, кроме участков, на которых выполнены сквозные отверстия, причем камеры, охватывающие боковые поверхности ячейки, сообщены горизонтальным каналом, в качестве верхней стенки которого использовано дно ячейки, при этом в полости ячейки находятся образцы испытуемых материалов, кроме того, контуры охлаждения снабжены отверстиями для подвода и отвода охлаждающей жидкости. Техническим результатом является возможность моделирования среды для образования углеводородных газогидратов с возможностью моментальной регистрации гидратообразования углеводородов на нано- и гибридных функциональных материалах, сплавах и покрытиях со специальными свойствами с помощью спектроскопии комбинационного рассеяния. 2 ил.

Description

Изобретение относится к области автоматического контроля условий гидратообразования природного газа и может быть использовано для изучения условий гидратообразования на различных материалах в условиях залежей углеводородов и магистральных трубопроводов.
Известно устройство для автоматического контроля температуры гидратообразования природного газа, содержащее входную и выходную линии анализируемого природного газа; гидратную ячейку, расположенную между этими линиями, и датчик расхода газа, установленный на линии анализируемого природного газа, фильтр механических примесей и жидкой фазы, установленный на входной линии анализируемого природного газа; запорные устройства, вихревую трубку, завихритель которой подключен к источнику сжатого (силового) газа; датчик температуры, датчик давления и устройство отображения информации. Устройство работает в две стадии: на первой стадии происходит наработка гидрата в ячейке, на второй стадии осуществляется разложение гидрата в замкнутом (ограниченном) объеме гидратной ячейки (см. RU № 2313081, МПК G01N 25/00, 2007).
Недостаток устройства в том, что процесс протекает в несколько этапов с обязательной наработкой кристаллов гидратов, оно не приспособлено моментально фиксировать образование гидрата и фиксация идет только по температуре.
Известен также реактор для контроля гидратообразования, содержащий металлическую ячейку, снабженную пробкой, выполненной с возможностью герметичного запирания ячейки снабженной каналами для термопары и подвода воды и газа под давлением. Начало процесса гидратообразования определяют путем контроля температуры газа, поступающего на вход установки комплексной подготовки газа из шлейфа, подачи ингибитора на кусты скважин с дальнейшим сравнением фактической температуры газа на выходе из шлейфа с расчетными значениями температуры выхода газа из устья скважины и окружающей среды и сравнивают динамику её изменения. По результату сравнения судят о начале процесса гидратообразования и необходимости подачи в шлейф ингибитора гидратообразования. (см. RU № 2329371, МПК E21B 43/00, F17D 3/00, 2008).
Недостатком является то, что невозможно определить образование гидратов на различных материалах.
Задача предлагаемого технического решения – обеспечение возможности моделирования условий (среды) для образования углеводородных газогидратов на различных материалах с последующей регистрацией начала процесса.
Технический результат – возможность моделирования условий (среды) для образования углеводородных газогидратов с возможностью моментальной регистрации гидратообразования углеводородов на нано и гибридных функциональных материалах, сплавах и покрытиях со специальными свойствами с помощью спектроскопии комбинационного рассеяния.
Для решения поставленной задачи реактор для контроля гидратообразования, содержащий металлическую ячейку, снабженную пробкой, выполненной с возможностью герметичного запирания ячейки и снабженной каналами для термопары и подвода воды и газа под давлением, отличается тем, что пробка выполнена в виде цилиндра, снабженного кольцевым пояском, снабжена герметизирующими кольцевыми уплотнениями в зазоре между поверхностью пробки и внутренней поверхности ячейки, при этом вертикальные стенки ячейки снабжены диаметрально расположенными сквозными отверстиями, в которых размещены герметизированные смотровые стекла из материала, прозрачного для лазерного пучка спектрометра, при этом ячейка снабжена узлом охлаждения, содержащим камеры, охватывающие боковые поверхности ячейки, кроме участков, на которых выполнены сквозные отверстия, причем камеры, охватывающие боковые поверхности ячейки, сообщены горизонтальным каналом, в качестве верхней стенки которого использовано дно ячейки, при этом в полости ячейки находятся образцы испытуемых материалов, кроме того, контуры охлаждения снабжены отверстиями для подвода и отвода охлаждающей жидкости.
Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».
Признаки отличительной части формулы изобретения обеспечивают решение комплекса функциональных задач.
Признаки «…пробка выполнена в виде цилиндра, снабженного кольцевым пояском…» обеспечивают ее соосное сочленение с блоком реактора.
Признаки, указывающие, что пробка «снабжена герметизирующими кольцевыми уплотнениями в зазоре между поверхностью пробки и внутренней поверхностью стенки ячейки» обеспечивают герметичность внутреннего пространства ячейки относительно внешней среды.
Признаки «…вертикальные стенки ячейки снабжены диаметрально расположенными сквозными отверстиями, в которых размещены герметизированные смотровые стекла…» обеспечивают изоляцию внутреннего пространства ячейки от внешней среды и возможность проникновения во внутреннее пространство спектра видимого излучения.
Признак, указывающий, что смотровые стекла выполнены «из материала, прозрачного для лазерного пучка спектрометра» обеспечивает возможность использования метода рамановской спектроскопии внутри ячейки реактора.
Признак «…ячейка снабжена узлом охлаждения…» обеспечивает контроль охлаждения реактора до заданной температуры.
Признак, указывающий, что узел охлаждения содержит «камеры, охватывающие боковые поверхности ячейки, кроме участков, на которых выполнены сквозные отверстия» обеспечивает возможность охлаждения реактора по поверхности кроме зоны пробки и сквозных отверстий.
Признаки «…камеры, охватывающие боковые поверхности ячейки, сообщены горизонтальным каналом, в качестве верхней стенки которого использовано дно ячейки…» обеспечивают возможность охлаждения днища ячейки.
Признаки «в полости ячейки находятся образцы испытуемых материалов» обеспечивает размещение образцов испытуемых материалов в моделируемой среде гидратообразования.
Признаки «контуры охлаждения снабжены отверстиями для подвода и отвода охлаждающей жидкости» обеспечивают возможность циркуляции охлаждающей жидкости через контуры узла охлаждения реактора.
Изобретение иллюстрируется чертежами, где на фиг.1 показан поперечный разрез реактора; на фиг.2 показан продольный разрез реактора.
На чертежах показаны: металлическая ячейка 1, пробка 2, кольцевой поясок 3, кольцевые уплотнения 4, канал 5 для термопары и каналы 6 и 7 для подвода соответственно воды и газа, сквозные отверстия 8, герметизированные смотровые стекла 9, камеры 10 узла охлаждения, образец 11, накидная гайка 12, лазерный пучок 13 спектрометра, горизонтальный канал 14 системы охлаждения и отверстия 15 и 16 соответственно для подвода и отвода охлаждающей жидкости.
Реактор для контроля гидратообразования содержит металлическую ячейку 1 цилиндрической формы с закрытым дном, снабженную пробкой 2, выполненной с возможностью герметичного запирания ячейки. Пробка 2 выполнена в виде цилиндра с кольцевым пояском 3 и снабжена герметизирующими кольцевыми уплотнениями 4 в зазоре между поверхностью пробки 2 и внутренней поверхностью ячейки 1. Пробка 2 также снабжена каналами 5 для термопары и каналами 6 и 7 для подвода соответственно воды и газа под давлением. При этом вертикальные стенки ячейки 1 снабжены диаметрально расположенными сквозными отверстиями 8, в которых размещены герметизированные смотровые стекла (например, из стекла марки КУ-1) 9, которые прозрачны для лазерного пучка 13 спектрометра. Металлическая ячейка 1 снабжена узлом охлаждения, содержащим камеры 10, охватывающие боковые поверхности ячейки 1, кроме участков, на которых выполнены сквозные отверстия 8. Причем камеры 10, охватывающие боковые поверхности ячейки 1, сообщены горизонтальным каналом 14, в качестве верхней стенки которого использовано дно ячейки 1, кроме того, контуры охлаждения снабжены отверстиями 15 и 16 соответственно для подвода и отвода охлаждающей жидкости. Использование охлаждающей жидкости позволяет тепловой инерции системы снизить искажение теплого эффекта целевой реакции.
Все детали реактора изготавливают из материала, слабо подверженного коррозионному воздействию, например из нержавеющей стали.
Перед запуском реактора в полость ячейки 1 вводят образец 11 испытуемого материала (например – прозрачную пластину с напылением нано-трубок). В качестве испытуемого материала также могут быть использованы нано и гибридные функциональные материалы, сплавы и покрытия со специальными свойствами. Далее сверху вставляют пробку 2, которую с помощью кольцевого пояска 3 фиксируют, например накидной гайкой 12, закручивая с определенным моментом, обеспечивая прижимную силу пробки 2 для сопротивления силе давления в ячейке 1 с помощью резьбового соединения на самой накидной гайке 12, соответствующего резьбе на части корпуса металлической ячейки 1. Через канал 7 в пробке 2 подают газ до создания в ячейке заданного значения давления (до 350 атм) и по каналу 6 воду. Далее через отверстие 15 узла охлаждения подают охлаждающую жидкость (например – смесь воды и этиленгликоля), который, совершив путь через камеры 10 и канал 14, выйдет через отверстие 16, произведя отвод тепла от стенок ячейки 1. Ввод веществ и доведение их до заданного значения давления и температуры имитируют условия (например, трубопровода или подземных/подводных залежей), при которых испытывают образец 11.
После охлаждения камеры 10 ячейки 1 до заданного значения (от 0 до +20ºС) следует запуск лазерного пучка 13 спектрометра (например, i-Raman BWS415-532S) через диаметрально расположенные сквозные отверстия 8, в которых размещены герметизированные смотровые стекла 9. Лазерный пучок 13 спектрометра направляют на выбранные экспериментаторами участки образца 11 испытуемого материала, которые могут находиться как в жидкой или воздушной средах, так и на их разделе. Далее следует выявление процесса гидратообразования (на участке, подсвеченном лазером) в реальном времени, для чего используют метод регистрации комбинационного рассеяния, реализуемый с помощью высокоразрешающей волоконно-оптической системы рамановской спектроскопии через лазерный пучок 13 спектрометра.
Суть явления состоит в том, что связь ОН молекулы воды в жидком фазовом состоянии вибрирует с частотой около 3900 см-1. При переходе в твердое фазовое состояние, создание водородной связи составляет 2800 см-1. Регистрация пиков на спектральной диаграмме регистратора комбинационного рассеяния позволит зарегистрировать момент образования докритических гидратных зерен и сопутствующих термобарических условий.

Claims (1)

  1. Реактор для контроля гидратообразования, содержащий металлическую ячейку, снабженную пробкой, выполненной с возможностью герметичного запирания ячейки и снабженной каналами для термопары и подвода воды и газа под давлением, отличающийся тем, что пробка выполнена в виде цилиндра, снабженного кольцевым пояском, снабжена герметизирующими кольцевыми уплотнениями в зазоре между поверхностью пробки и внутренней поверхностью ячейки, при этом вертикальные стенки ячейки снабжены диаметрально расположенными сквозными отверстиями, в которых размещены герметизированные смотровые стекла из материала, прозрачного для лазерного пучка спектрометра, при этом ячейка снабжена узлом охлаждения, содержащим камеры, охватывающие боковые поверхности ячейки, кроме участков, на которых выполнены сквозные отверстия, причем камеры, охватывающие боковые поверхности ячейки, сообщены горизонтальным каналом, в качестве верхней стенки которого использовано дно ячейки, при этом в полости ячейки находятся образцы испытуемых материалов, кроме того, контуры охлаждения снабжены отверстиями для подвода и отвода охлаждающей жидкости.
RU2019113726A 2019-05-07 2019-05-07 Реактор для контроля гидратообразования RU2705935C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019113726A RU2705935C1 (ru) 2019-05-07 2019-05-07 Реактор для контроля гидратообразования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019113726A RU2705935C1 (ru) 2019-05-07 2019-05-07 Реактор для контроля гидратообразования

Publications (1)

Publication Number Publication Date
RU2705935C1 true RU2705935C1 (ru) 2019-11-12

Family

ID=68579699

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019113726A RU2705935C1 (ru) 2019-05-07 2019-05-07 Реактор для контроля гидратообразования

Country Status (1)

Country Link
RU (1) RU2705935C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1206655A1 (ru) * 1984-02-28 1986-01-23 Специальное проектно-конструкторское бюро "Промавтоматика" Устройство дл контрол наличи гидратов
GB2347938A (en) * 1999-03-15 2000-09-20 Mitsubishi Heavy Ind Ltd Production method for gas hydrates and device for producing same
RU2231046C1 (ru) * 2003-05-30 2004-06-20 Деревягин Александр Михайлович Способ измерения точки росы и устройство для его осуществления
RU2313081C2 (ru) * 2005-12-26 2007-12-20 Открытое акционерное общество "НПО "Промавтоматика" Устройство для автоматического контроля температуры гидратообразования природного газа
RU2329371C1 (ru) * 2006-10-26 2008-07-20 ООО "Ямбурггаздобыча" Способ управления процессом предупреждения гидратообразования во внутрипромысловых шлейфах газовых и газоконденсатных месторождений крайнего севера

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1206655A1 (ru) * 1984-02-28 1986-01-23 Специальное проектно-конструкторское бюро "Промавтоматика" Устройство дл контрол наличи гидратов
GB2347938A (en) * 1999-03-15 2000-09-20 Mitsubishi Heavy Ind Ltd Production method for gas hydrates and device for producing same
RU2231046C1 (ru) * 2003-05-30 2004-06-20 Деревягин Александр Михайлович Способ измерения точки росы и устройство для его осуществления
RU2313081C2 (ru) * 2005-12-26 2007-12-20 Открытое акционерное общество "НПО "Промавтоматика" Устройство для автоматического контроля температуры гидратообразования природного газа
RU2329371C1 (ru) * 2006-10-26 2008-07-20 ООО "Ямбурггаздобыча" Способ управления процессом предупреждения гидратообразования во внутрипромысловых шлейфах газовых и газоконденсатных месторождений крайнего севера

Similar Documents

Publication Publication Date Title
CN109681198B (zh) 一种针对不同类型天然气水合物储层的多方式开采模拟装置及方法
US8261601B2 (en) Top of the line corrosion apparatus
RU2705707C1 (ru) Реактор для контроля гидратообразования
CN110887776B (zh) 一种测定含水合物储层的水平/垂向渗透率的装置及方法
CN102435716A (zh) 一种成岩作用模拟实验装置
SG187943A1 (en) Apparatus and method for phase equilibrium with in-situ sensing
WO2022001095A1 (zh) 可燃冰开采泄漏模拟及环境参数定量反演的系统与方法
CN111650354A (zh) 一种水合物评价实验系统及方法
RU2705935C1 (ru) Реактор для контроля гидратообразования
CN106918542A (zh) 热冷冲击下煤体渗透率测试装置及测试方法
Pironon et al. Petroleum and aqueous inclusions from deeply buried reservoirs: Experimental simulations and consequences for overpressure estimates
WO2021035753A1 (zh) 用于原位拉曼分析的气体水合物保压置换装置及方法
Looijmans et al. A pulse-expansion wave tube for nucleation studies at high pressures
RU2705709C1 (ru) Реактор для контроля гидратообразования
WO2023279859A1 (zh) 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法
Phelps et al. A new experimental facility for investigating the formation and properties of gas hydrates under simulated seafloor conditions
CN109387336A (zh) 一种用于非金属密封件密封性能鉴定的试验装置及方法
CN108254480A (zh) 一种用于碳酸盐岩的碳氧同位素检测系统及检测方法
CN110441286B (zh) 用于原位拉曼分析的气体水合物保压置换装置及方法
CN105651550B (zh) 带压取样装置
RU2532815C2 (ru) Способ исcледования газовых и газоконденсатных скважин
Li et al. Evolution of limestone fracture permeability under coupled thermal, hydrological, mechanical, and chemical conditions
RU2483292C2 (ru) Установка для испытаний металлического урана
US11714079B2 (en) High temperature high pressure (HTHP) cell in sum frequency generation (SFG) spectroscopy for oil/brine interface analysis with reservoir conditions and dynamic compositions
CN212622573U (zh) 一种水合物评价实验系统