RU2704971C1 - Способ получения клатратных гидратов для хранения и транспортировки газов - Google Patents

Способ получения клатратных гидратов для хранения и транспортировки газов Download PDF

Info

Publication number
RU2704971C1
RU2704971C1 RU2019122038A RU2019122038A RU2704971C1 RU 2704971 C1 RU2704971 C1 RU 2704971C1 RU 2019122038 A RU2019122038 A RU 2019122038A RU 2019122038 A RU2019122038 A RU 2019122038A RU 2704971 C1 RU2704971 C1 RU 2704971C1
Authority
RU
Russia
Prior art keywords
hydrate
minus
gas
water
dispersion
Prior art date
Application number
RU2019122038A
Other languages
English (en)
Inventor
Андрей Сергеевич Стопорев
Антон Павлович Семенов
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина"
Priority to RU2019122038A priority Critical patent/RU2704971C1/ru
Application granted granted Critical
Publication of RU2704971C1 publication Critical patent/RU2704971C1/ru

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

Изобретение описывает способ получения клатратных гидратов, включающий формирование порошкообразной дисперсии путем смешивания дисперсного гидрофобного порошкообразного диоксида кремния и воды, охлаждение полученной порошкообразной дисперсии до температуры в диапазоне от минус 200°С до минус 10°С, смешивание льдосодержащей дисперсии со стабилизирующим агентом при атмосферном давлении и температуре ниже точки плавления льда, выдерживание полученной смеси в атмосфере газа-гидратообразователя при температуре выше точки плавления льда в диапазоне от 0 до плюс 10°С и при давлении, превышающем равновесное давление гидратообразования, с получением дисперсии газового гидрата, последующее охлаждение ее до температур минус 80°С - минус 1°С и сброс давления до атмосферного. Технический результат заключается в увеличении площади контакта капель воды и гидратообразующего газа, а также повышении стабильности гидратных частиц в метастабильных условиях при температуре от минус 80°С до минус 1°С и атмосферном давлении за счет проявления эффекта самоконсервации, обусловленного наличием слоя стабилизирующего агента (ингибитора разложения гидрата) на их поверхности. 10 пр.

Description

Изобретение относится к газовой промышленности и может быть использовано для хранения и транспортировки метана и других гидратообразующих газов в твердом виде в форме клатратных гидратов.
Известен способ получения газовых гидратов (RU 2457010, 2010), включающий синтез гидрата при кристаллизации двухкомпонентных аморфных конденсатов в глубоком вакууме. Конденсаты получают осаждением в вакууме (10-4-10-5 мм рт.ст.) молекулярных пучков воды и газа на поверхность, охлажденную ниже температуры стеклования смеси.
Недостатками способа является необходимость поддержания глубокого вакуума и криогенных температур в реакторе, что значительно усложняет технологический процесс получения газовых гидратов.
Известен способ получения газовых гидратов (RU 2270053, 2003), при котором газ подвергают сжатию и охлаждению, после чего смешивают в реакторе с водой, находящейся под давлением и при температуре ниже значения равновесной температуры образования гидратов. Затем на газожидкостную смесь воздействуют ударными волнами с повышением давления и с возникновением дробления газовой фазы. Ударные волны создают электромагнитным импульсным излучателем или пневмоударником.
Недостатком способа является сложное аппаратурное оформление и высокие энергетические затраты, связанные с необходимостью генерирования ударных волн в газо-жидкостной среде.
В известном способе получения гидратов природного газа (RU 2277121, 2003) вода и газ смешиваются в реакторе, при этом производится непрерывное охлаждение и поддержание требуемой температуры полученной смеси с одновременным поддержанием давления не ниже равновесного, необходимого для гидратообразования.
Известный способ характеризуется низкой производительностью и малой эффективностью, что связано с практически полной остановкой процесса гидратообразования после формирования гидратной пленки на границе раздела газ-вода. После формирования слоя гидрата скорость-определяющей стадией процесса становится медленно-протекающая диффузия компонентов (газ, вода) через слой гидрата. В связи с этим необходимо интенсивное перемешивание газо-жидкостной среды для разрушения гидратной корки и постоянного обновления межфазной поверхности газ-вода, что также требует значительных энергетических затрат.
Использование кинетических промоторов - добавок, улучшающих кинетику образования гидратов, является основным подходом для интенсификации процесса гидратообразования. Известен способ получения газовых гидратов из водных растворов поверхностно-активных веществ в качестве кинетических промоторов (US 6389820, 2002), [Кутергин О.Б., Мельников В.П., Нестеров А.Н. //Доклады Академии наук. 1992. т. 323. №. 3. с. 549-553.], [Kutergin О.В., Mel'nikov V.P., Nesterov V. Effect of surfactants on the mechanism and kinetics of gas-hydrate formation // Transactions Doklady-Russian Academy Of Sciences Earth Science Sections. 1994. т. 325. с. 211-215.]. Использование водных растворов ПАВ вместо чистой воды позволяет многократно увеличить скорость процесса гидратообразования и степень превращения воды в гидрат особенно в статических условиях (в реакторах без перемешивания). Процесс формирования гидрата из чистой воды происходит на границе раздела газовой и жидкой фаз. После того, как межфазная поверхность покрывается гидратной пленкой, скорость процесса резко уменьшается из-за медленно протекающей диффузии газа или воды через слой гидрата. В присутствии ПАВ в статических условиях образование гидрата в виде пористой структуры происходит вблизи границы раздела газ-жидкость на стенке реактора. За счет капиллярного подсоса непрореагировавшей воды происходит постоянное обновление межфазной границы газ-вода, за счет чего достигается высокая скорость процесса гидратообразования и степень превращения воды в гидрат.
Главным недостатком известного способа является отсутствие эффекта самоконсервации для газового гидрата, полученного в присутствии ПАВ. После синтеза, будучи переведенным в метастабильное состояние (для гидрата метана температура от минус 80 до 0°С при атмосферном давлении), гидрат разлагается с очень высокой скоростью, что не позволяет его использовать в качестве «контейнера» для хранения и транспортировки газа. Высокая скорость разложения связана с определенной морфологией гидратных кристаллов, полученных в присутствии ПАВ (пористая структура), а также влиянием молекул ПАВ, адсорбированных из водного раствора на поверхности гидратных частиц в процессе их кристаллизации.
Известен способ получения газовых гидратов с использованием так называемой сухой воды (CN 101863483, 2010), [Wang W., Bray С.L., Adams D.J., Cooper A. I. Methane storage in dry water gas hydrates //Journal of the American Chemical Society. - 2008. - T. 130. - №. 35. - C. 11608-11609.], [Carter В.O., Wang W., Adams D.J., Cooper A. I. (2009). Gas storage in "dry water" and "dry gel" clathrates. Langmuir, 26(5), 3186-3193.], представляющей собой текучую порошкообразную дисперсию, которая получается при интенсивном перемешивании обычной воды (до 98% мас.) и наноразмерного гидрофобного порошка диоксида кремния. Вода в такой дисперсии находится в виде отдельных капель размером несколько мкм и в виде их агрегатов размером десятки мкм. Стабильность такой дисперсной системы обеспечивается адсорбцией наночастиц диоксида кремния на поверхности микрокапель воды, что предотвращает их коалесценцию. Использование сухой воды позволяет значительно улучшить кинетику процесса гидратообразования (сократить индукционный период, увеличить скорость поглощения газа и степень превращения воды в гидрат) за счет высокой удельной поверхности капель воды. Недостатком известного способа является высокая скорость разложения газовых гидратов при атмосферном давлении и температурах от минус 80°С до 0°С, обусловленная малым размером гидратных частиц (единицы - десятки микрон). Вследствие этого эффект самоконсервации для гидрата метана, полученного из сухой воды, практически отсутствует, т.к. гидрат не способен существовать в метастабильном состоянии сколько-нибудь продолжительное время без дополнительной стадии получения более крупных гидратсодержащих гранул, например, с помощью компактирования (прессования) гидратных частиц. Проявление эффекта самоконсервации гидрата является очень важным для практического применения гидратной технологии хранения и транспорта газа, так как позволяет реализовать технологический процесс при сравнительно мягких условиях (умеренно низкие температуры от 0°С до минус 80°С и атмосферное давление).
Наиболее близким по технической сути и достигаемому результату к предлагаемому способу получения клатратных гидратов является способ, описанный в заявке CN 102784604, 2012. Способ получения гидратов включает использование кинетического промотора, образованного в результате высокоскоростного перемешивания и диспергирования раствора поверхностно-активных веществ и гидрофобных твердых частиц. В качестве раствора ПАВ используют водный раствора одного или нескольких анионных, катионных или неионогенных поверхностно-активных веществ, а в качестве гидрофобных твердых частиц - порошок, состоящий из гидрофобизированных твердых частиц одного или нескольких видов, выбранных из ряда: диоксид кремния, диоксид титана, оксид титана (III), оксид алюминия, оксид цинка, карбонат кальция, монтмориллонит, диатомит, зольная пыль, цеолит, тальк, слюда. Кинетический промотор представляет собой смесь ПАВ и твердых частиц в дисперсии в виде микрокапель водного раствора ПАВ, покрытых и стабилизированных частицами твердого порошка. Благодаря значительному межфазному контакту газа-вода, а также из-за наличия ПАВ в водной фазе известный способ позволяет проводить наработку газовых гидратов в реакторах без перемешивания с высокой скоростью и степенью превращения воды в гидрат.
Недостатком известного способа является низкая стабильность газовых гидратов при отрицательных температурах (от минус 80°С до 0°С) и сбросе давления до атмосферного. Из-за малых размеров частиц гидрата (2-50 мкм) и их особой морфологии поверхности, обусловленной наличием молекул поверхностно-активных веществ, эффект самоконсервации отсутствует.
Техническая проблема настоящего изобретения заключается в повышении эффективности процесса получения газовых гидратов с высокой скоростью с обеспечением способности полученных гидратных частиц к проявлению эффекта самоконсервации, что позволяет использовать их для хранения и транспортировки газов при атмосферном давлении и температуре от минус 80°С до минус 1°С.
Указанная техническая проблема решается описываемым способом получения клатратных гидратов, включающим формирование порошкообразной дисперсии путем смешивания дисперсного гидрофобного порошкообразного диоксида кремния и воды, охлаждение полученной порошкообразной дисперсии до температуры в диапазоне от минус 200°С до минус 10°С, смешивание льдосодержащей дисперсии со стабилизирующим агентом при атмосферном давлении и температуре ниже точки плавления льда, выдерживание полученной смеси в атмосфере газа-гидратообразователя при температуре выше точки плавления льда в диапазоне от 0 до плюс 10°С и при давлении, превышающем равновесное давление гидратообразования, с получением дисперсии газового гидрата, последующее охлаждение ее до температур минус 80°С - минус 1°С и сброс давления до атмосферного.
Достигаемый технический результат заключается в увеличении площади контакта капель воды и гидратообразующего газа, а также повышении стабильности гидратных частиц в метастабильных условиях при температуре от минус 80°С до минус 1°С и атмосферном давлении за счет проявления эффекта самоконсервации, обусловленного наличием слоя стабилизирующего агента (ингибитора разложения гидрата) на их поверхности.
Способ реализуют следующим образом.
Получают порошкообразную дисперсию (сухую воду) путем смешивания дисперсного гидрофобного порошка и воды при температуре от 0°С до 60°С. Массовое соотношение дисперсного гидрофобного порошка и воды составляет от 1:5 до 1:50. Предпочтительным является массовое соотношение дисперсного гидрофобного порошка и воды от 1:10 до 1:30, наиболее предпочтительно от 1:15 до 1:20, например, 1:19. Компоненты перемешивают в гомогенизаторе при скорости вращения вала 5000-25000 об/мин в течение 1-20 минут. В качестве дисперсного гидрофобного порошка используют гидрофобизированный порошок диоксида кремния, имеющий удельную площадь поверхности (по методу адсорбции азота по БЭТ) от 50 м2/г до 500 м2/г, со средним размером частиц от 1 нм до 100 нм, с содержанием углерода от 2 до 6% мас, с содержанием влаги не более 1% мас. В качестве дисперсного гидрофобного порошка в частности может быть использован диоксид кремния, выпускаемый под торговыми марками Aerosil R202, Aerosil R812S, HDK H17. При интенсивном перемешивании порошка гидрофобизированного диоксида кремния и воды образуется дисперсия, состоящая из капель воды размером от 1 до 40 мкм, поверхность которых покрыта частицами SiO2, которые стабилизируют дисперсную систему, предотвращая коалесценцию капель воды. Высокая удельная поверхность капель воды обеспечивает ускоренный процесс гидратообразования, а также высокую степень превращения воды в гидрат без использования дополнительных кинетических промоторов (поверхностно-активных веществ).
Полученную порошкообразную водную дисперсию охлаждают до температуры в диапазоне от минус 200°С до минус 10°С для того, чтобы перевести воду, из жидкой фазы в твердую (лед). Данная стадия необходима для предотвращения укрупнения частиц воды/льда в дисперсии при последующем смешивании со стабилизирующим агентом. Смешивание порошкообразной водной дисперсии со стабилизирующим агентом при температуре выше 0°С приводит к нежелательной коалесценции капель воды. Таким образом, порошкообразную водную дисперсию охлаждают до температуры в указанном диапазоне и выдерживают в течение 0,2-2 часа для полного превращения капель воды в частицы льда, получая таким образом льдосодержащую дисперсию.
Стабилизирующий агент охлаждают до температуры ниже точки плавления льда (0°С при атмосферном давлении). После этого льдосодержащую дисперсию смешивают со стабилизирующим агентом, поддерживая температуру смеси ниже 0°С при атмосферном давлении. Массовое соотношение льдосодержащей дисперсии и стабилизирующего агента составляет от 1:6 до 6:1. Предпочтительным является массовое соотношение льдосодержащей дисперсии и стабилизирующего агента от 1:4 до 4:1, наиболее предпочтительно 1:1 до 2:1. После смешения получают дисперсию частиц льда и диоксида кремния, покрытых слоем стабилизирующего агента. В качестве последнего используют индивидуальные соединения, такие как предельные разветвленные углеводороды С1535, их смеси, а также нефть или продукты ее переработки (базовое масло, трансформаторное масло), моторные масла с высокой степенью выработки, асфальтено-смоло-парафиновые отложения, содержащие вышеуказанные углеводороды.
Установлено, что индивидуальные предельные разветвленные углеводороды, а также природные и синтетические смеси, содержащие данные углеводороды (нефти, фракции мальтенов, подфракции насыщенных углеводородов и минеральные масла) в наибольшей степени стабилизируют гидрат метана в метастабильном состоянии (при атмосферном давлении и температуре от минус 80°С до минус 1°С) и, таким образом, способствуют проявлению эффекта самоконсервации, даже в случае мелких частиц гидрата (средний размер менее 250 мкм). При этом в указанных смесях должны отсутствовать поверхностно-активные вещества.
Полученную смесь льдосодержащей дисперсии и стабилизирующего агента помещают в автоклав, подают гидратообразующий газ и выдерживают при температуре выше точки плавления льда (в диапазоне от 0°С до плюс 10°С) и при давлении, превышающем равновесное давление гидратообразования (при данной температуре) в течение 0,5-24 часов, что обеспечивает практически полное превращение частиц льда в частицы газового гидрата за счет сравнительно быстро протекающей диффузии газа через слой стабилизирующего агента к поверхности плавящихся частиц льда, а также за счет малого размера частиц льда (размер от 1 до 50 микрон). Проведение синтеза газового гидрата из льда при термобарических условиях вблизи точки его плавления позволяет значительно ускорить процесс гидратообразования по сравнению с проведением синтеза газового гидрата из дисперсии воды и гидрофобного порошка диоксида кремния вследствие отсутствия необходимости отвода большого количества теплоты, выделяющейся при образовании газового гидрата. Эндотермический тепловой эффект плавления частиц льда будет компенсировать экзотермический эффект реакции образования газового гидрата.
В качестве газа-гидратообразователя используют индивидуальные газы, образующие клатратные гидраты с водой, в частности, метан, этан, этилен, пропан, пропилен, изобутан, изобутен, диоксид углерода, моноксид углерода, азот, кислород, сероводород, ксенон, аргон, криптон или смеси таких газов.
После проведения процесса гидратообразования полученная смесь охлаждается до температуры от минус 80°С до минус 1°С, давление газа сбрасывается до атмосферного. Полученные частицы газового гидрата, покрытые слоем стабилизирующего агента, сохраняются в метастабильном состоянии благодаря эффекту самоконсервации, который обуславливается наличием слоя стабилизирующего агента на поверхности гидратных частиц. При отсутствии слоя стабилизирующего агента эффект самоконсервации не наблюдается либо наблюдается частично вследствие малого размера гидратных частиц, что приводит к их разложению на лед и газ.
Полученная смесь, состоящая из газового гидрата, диоксида кремния и стабилизирующего агента может быть использована для хранения и транспортировки газа, содержащегося в концентрированном виде в форме газовых гидратов (до 180 объемов газа при н.у. на объем гидрата) при сравнительно мягких условиях (умеренно-низкие температуры от минус 40°С до минус 10°С и атмосферном давлении).
Заявляемый способ получения клатратных гидратов для хранения и транспортировки газов иллюстрируется следующими примерами, которые не ограничивают область его применения.
Пример 1.
Получают порошкообразную дисперсию (сухую воду) путем смешивания Aerosil R202 (дисперсного гидрофобного порошка) и воды при температуре 20°С и массовом соотношении Aerosil R202 и воды 1:19. Компоненты перемешивают в гомогенизаторе при скорости вращения вала 16000 об/мин в течение 5 минут. Полученную порошкообразную водную дисперсию охлаждают до температуры минус 200°С и выдерживают в течение 0,2 часа для полного превращения капель воды в частицы льда, получая таким образом льдосодержащую дисперсию. Трансформаторное масло (стабилизирующий агент) охлаждают до аналогичного значения температуры. После этого льдосодержащую дисперсию смешивают со стабилизирующим агентом в массовом соотношении 1:1. Полученную смесь льдосодержащей дисперсии и стабилизирующего агента помещают в автоклав и подают метан до давления 40 бар, помещают автоклав в термостат при температуре плюс 1°С. Выдерживают в течение 3 часов. Автоклав охлаждают до температуры минус 80°С и, открывая вентиль, сбрасывают давление газа до атмосферного.
Открывают автоклав, извлекают из него небольшую порцию полученного образца (0,4 г), при температуре жидкого азота помещают ее в специально сконструированную ячейку, которую устанавливают в латунный держатель. При загрузке образца в ячейку также может попадать некоторое количество жидкого азота. Для его удаления ячейка нагревается до минус 160°С. Далее ячейка нагревается самопроизвольно со средней скоростью 1-2°С/мин до плюс 5°С за счет теплообмена с окружающим воздухом. Температура ячейки измеряется цифровым термометром ТЦ-1200 (с хромель-алюмелевой термопарой). Газоотводная трубка соединяется с системой, позволяющей собрать выделяющийся газ в калиброванной бюретке над насыщенным раствором соли (NaCl) в воде. По данным эксперимента строится зависимость объема выделившегося из образца газа (метана) от температуры (термоволюмометрическая кривая), позволяющая определить состав гидрата и температуру начала его разложения, а также долю гидрата, разложившегося в заданном интервале температур. Содержание газа в гидрате определяется пересчетом объема газа (приведенного к н.у.), выделившегося при разложении взятой массы навески образца, исходя из предположения, что состав гидрата метана выражается формулой СН4⋅6H2O. На основании полученных результатов вычисляют степень превращения воды в гидрат а (в % мол.) по уравнению 1,
Figure 00000001
где n - предельное гидратное число - отношение количества вещества воды к количеству вещества газа в гидрате при 100% заполнении полостей гидратообразователем (для метана n=6, поэтому состав гидрата может быть выражен формулой СН4⋅6Н2О), Vg - суммарный объем газа (приведенный к н.у.), выделившийся из образца при разложении гидрата в температурном интервале от минус 80°С до плюс 3°С, М - молярная масса воды, равная 18 г/моль, Vm - молярный объем газа при н.у., m - масса образца в г, ω - массовая доля воды в образце.
Долю гидрата, подвергшегося самоконсервации, β (в % мол.) определяют по уравнению 2,
Figure 00000002
где Vg* - объем газа (приведенный к н.у.) выделившийся из образца при разложении гидрата в температурном интервале от минус 5°С до плюс 3°С. Для образца, полученного по примеру 1, степень превращения воды в гидрат α - 90%, доля гидрата, подвергшегося самоконсервации β=88%.
Пример 2.
Проводят получение образца аналогично примеру 1, но без добавления стабилизирующего агента. Для образца, полученного по примеру 2, степень превращения воды в гидрат α=86%, доля гидрата, подвергшегося самоконсервации β=2%.
Пример 3.
Проводят получение образца аналогично примеру 1, за исключением использования в качестве дисперсного гидрофобного порошка Aerosil R812S. Для образца, полученного по примеру 3, степень превращения воды в гидрат α=95%, доля гидрата, подвергшегося самоконсервации, β=83%.
Пример 4.
Проводят получение образца аналогично примеру 1, за исключением использования в качестве дисперсного гидрофобного порошка HDK H17. Для образца, полученного по примеру 4, степень превращения воды в гидрат α=92%, доля гидрата, подвергшегося самоконсервации, β=85%.
Пример 5.
Получают порошкообразную дисперсию (сухую воду) путем смешивания Aerosil R202 (дисперсного гидрофобного порошка) и воды при температуре плюс 1°С и массовом соотношении Aerosil R202 и воды 1:50. Компоненты перемешивают в гомогенизаторе при скорости вращения вала 25000 об/мин в течение 20 минут. Полученную порошкообразную водную дисперсию охлаждают до температуры минус 10°С и выдерживают в течение 2 часов для полного превращения капель воды в частицы льда, получая таким образом льдосодержащую дисперсию. Базовое масло (например, С-9 (Роснефть); стабилизирующий агент) охлаждают до температуры минус 1°С. После этого льдосодержащую дисперсию смешивают со стабилизирующим агентом в массовом соотношении 6:1. Полученную смесь льдосодержащей дисперсии и стабилизирующего агента помещают в автоклав и подают метан до давления 100 бар, помещают автоклав в термостат при температуре плюс 10°С. Выдерживают в течение 24 часов. Автоклав охлаждают до температуры минус 20°С и, открывая вентиль, сбрасывают давление газа до атмосферного.
Для полученного образца регистрируют термоволюмометрическую кривую аналогично примеру 1. По результатам термоволюмометрии для образца, полученного по примеру 5, степень превращения воды в гидрат α=98%, доля гидрата, подвергшегося самоконсервации, β=81%.
Пример 6.
Получают порошкообразную дисперсию (сухую воду) путем смешения Aerosil R812S (дисперсного гидрофобного порошка) и воды при температуре плюс 60°С и массовом соотношении Aerosil R812S и воды 1:5. Компоненты перемешивают в гомогенизаторе при скорости вращения вала 5000 об/мин в течение 10 минут. Полученную порошкообразную водную дисперсию охлаждают до температуры минус 100°С и выдерживают в течение 0,3 часов для полного превращения капель воды в частицы льда, получая таким образом льдосодержащую дисперсию. Нефть Юрубчено-Тохомского месторождения (стабилизирующий агент) охлаждают до температуры минус 40°С. После этого льдосодержащую дисперсию смешивают со стабилизирующим агентом в массовом соотношении 1:6. Полученную смесь льдосодержащей дисперсии и стабилизирующего агента помещают в автоклав и подают метан до давления 70 бар, помещают автоклав в термостат при температуре плюс 5°С. Выдерживают в течение 5 часов. Автоклав охлаждают до температуры минус 40°С и, открывая вентиль, сбрасывают давление газа до атмосферного.
Для полученного образца регистрируют термоволюмометрическую кривую аналогично примеру 1. По результатам термоволюмометрии для образца, полученного по примеру 6, степень превращения воды в гидрат α=95%, доля гидрата, подвергшегося самоконсервации β=89%.
Пример 7.
Получают порошкообразную дисперсию (сухую воду) путем смешения дисперсного гидрофобного порошка HDK H17 и воды при температуре плюс 30°С и массовом соотношении HDK H17 и воды 1:20. Компоненты перемешивают в гомогенизаторе при скорости вращения вала 10000 об/мин в течение 10 минут. Полученную порошкообразную водную дисперсию охлаждают до температуры минус 50°С и выдерживают в течение 0,5 часов для полного превращения капель воды в частицы льда, получая таким образом льдосодержащую дисперсию. Фракцию мальтенов нефти Вахского месторождения (стабилизирующий агент) охлаждают до аналогичного значения температуры. После этого льдосодержащую дисперсию смешивают со стабилизирующим агентом в массовом соотношении 1:1. Полученную смесь льдосодержащей дисперсии и стабилизирующего агента помещают в автоклав и подают метан до давления 80 бар, помещают автоклав в термостат при температуре плюс 3°С. Выдерживают в течение 0,5 часов. Автоклав охлаждают до температуры минус 60°С и, открывая вентиль, сбрасывают давление газа до атмосферного.
Для полученного образца регистрируют термоволюмометрическую кривую аналогично примеру 1. По результатам термоволюмометрии для образца, полученного по примеру 7, степень превращения воды в гидрат α=75%, доля гидрата, подвергшегося самоконсервации β=93%.
Пример 8.
Проводят получение образца аналогично примеру 7, за исключением использования в качестве стабилизирующего агента предельного разветвленного углеводорода сквалана. Для образца, полученного по примеру 8, степень превращения воды в гидрат α=90%, доля гидрата, подвергшегося самоконсервации β=92%.
Пример 9.
Проводят получение образца аналогично примеру 7, за исключением использования в качестве стабилизирующего агента подфракции насыщенных углеводородов нефти Советского месторождения. Для образца, полученного по примеру 8, степень превращения воды в гидрат α=80%, доля гидрата, подвергшегося самоконсервации β=94%.
Пример 10.
Проводят получение образца по известному способу, описанному в заявке CN 102784604, 2012. Для получения гидрата используют кинетический промотор, состоящий из гидрофобного модифицированного диоксида кремния (Aerosil R202) и 0,1%мас.водного раствора анионного ПАВ (додецилсульфат натрия). Синтез гидрата метана проводят при давлении 40 бар и температуре плюс 1°С в течение 3 часов. Для образца, полученного по примеру 10, степень превращения воды в гидрат α=87%, доля гидрата, подвергшегося самоконсервации β=3%.
Таким образом, предлагаемый способ позволяет повысить эффективность процесса получения газовых гидратов путем обеспечения высокой скорости процесса гидратообразования, высокой конверсии воды в гидрат в статических условиях в реакторе без перемешивания (α до 98%), повышения стабильности гидратных частиц в метастабильных условиях при температуре от минус 80°С до минус 1°С и атмосферном давлении за счет проявления эффекта самоконсервации (β от 81% до 94%), обусловленного наличием слоя стабилизирующего агента (ингибитора разложения гидрата) на их поверхности. Как следует из примеров 2 и 10, образцы гидрата, полученные без использования стабилизирующего агента, характеризуются низкой стабильностью, не демонстрируют эффект самоконсервации (β=2-3%), т.е. не способны существовать продолжительное время в метастабильных условиях.

Claims (1)

  1. Способ получения клатратных гидратов для хранения и транспортировки газов, включающий формирование порошкообразной дисперсии путем смешивания дисперсного гидрофобного порошкообразного диоксида кремния и воды, охлаждение полученной порошкообразной дисперсии до температуры в диапазоне от минус 200°С до минус 10°С, смешивание льдосодержащей дисперсии со стабилизирующим агентом при атмосферном давлении и температуре ниже точки плавления льда, выдерживание полученной смеси в атмосфере газа-гидратообразователя при температуре выше точки плавления льда в диапазоне от 0 до плюс 10°С и при давлении, превышающем равновесное давление гидратообразования, с получением дисперсии газового гидрата, последующее охлаждение ее до температур минус 80°С - минус 1°С и сброс давления до атмосферного.
RU2019122038A 2019-07-12 2019-07-12 Способ получения клатратных гидратов для хранения и транспортировки газов RU2704971C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019122038A RU2704971C1 (ru) 2019-07-12 2019-07-12 Способ получения клатратных гидратов для хранения и транспортировки газов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019122038A RU2704971C1 (ru) 2019-07-12 2019-07-12 Способ получения клатратных гидратов для хранения и транспортировки газов

Publications (1)

Publication Number Publication Date
RU2704971C1 true RU2704971C1 (ru) 2019-11-01

Family

ID=68500825

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019122038A RU2704971C1 (ru) 2019-07-12 2019-07-12 Способ получения клатратных гидратов для хранения и транспортировки газов

Country Status (1)

Country Link
RU (1) RU2704971C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113943557A (zh) * 2021-10-12 2022-01-18 中国石油大学(华东) 一种卵磷脂接枝纳米二氧化硅水合物稳定剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090100118A (ko) * 2008-03-19 2009-09-23 한국에너지기술연구원 가스 하이드레이트 제조장치 및 제조방법
WO2010010372A1 (en) * 2008-07-25 2010-01-28 Ulive Enterprises Limited Clathrates for gas storage
KR20100081501A (ko) * 2009-01-06 2010-07-15 에스티엑스조선해양 주식회사 잠재적 수화물 결정을 이용한 가스 수화물 제조 방법
CN102784604A (zh) * 2012-07-24 2012-11-21 华南理工大学 气体水合物生成促进剂及其制法和应用
UA102659C2 (ru) * 2012-10-15 2013-07-25 Частное Акционерное Общество "Донецксталь" - Металлургический Завод" Способ получения газовых гидратов из газовой смеси дегазационной скважины
EP3153606A1 (fr) * 2015-10-09 2017-04-12 Bgh Procede pour cristalliser des clathrates hydrates, et procede de purification d'un liquide aqueux utilisant les clathrates hydrates ainsi cristallises

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090100118A (ko) * 2008-03-19 2009-09-23 한국에너지기술연구원 가스 하이드레이트 제조장치 및 제조방법
WO2010010372A1 (en) * 2008-07-25 2010-01-28 Ulive Enterprises Limited Clathrates for gas storage
KR20100081501A (ko) * 2009-01-06 2010-07-15 에스티엑스조선해양 주식회사 잠재적 수화물 결정을 이용한 가스 수화물 제조 방법
CN102784604A (zh) * 2012-07-24 2012-11-21 华南理工大学 气体水合物生成促进剂及其制法和应用
UA102659C2 (ru) * 2012-10-15 2013-07-25 Частное Акционерное Общество "Донецксталь" - Металлургический Завод" Способ получения газовых гидратов из газовой смеси дегазационной скважины
EP3153606A1 (fr) * 2015-10-09 2017-04-12 Bgh Procede pour cristalliser des clathrates hydrates, et procede de purification d'un liquide aqueux utilisant les clathrates hydrates ainsi cristallises

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Л.С.Поденко, А.О.Драчук, Н.С.Молокитина, А.Н.Нестеров "Образование гидратов природного газа в дисперсном льду, стабилизированном наночастицами диоксида кремния". Криосфера Земли, 2017, т. XXI, N2, с.43-51. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113943557A (zh) * 2021-10-12 2022-01-18 中国石油大学(华东) 一种卵磷脂接枝纳米二氧化硅水合物稳定剂及其制备方法

Similar Documents

Publication Publication Date Title
Govindaraj et al. Kinetics of methane hydrate formation in the presence of activated carbon and nano-silica suspensions in pure water
Nashed et al. Review the impact of nanoparticles on the thermodynamics and kinetics of gas hydrate formation
Dholabhai et al. Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions
Ershadi et al. Carbonate and sandstone reservoirs wettability improvement without using surfactants for Chemical Enhanced Oil Recovery (C-EOR)
Muduli et al. Evolution of hydrogen by few-layered black phosphorus under visible illumination
RU2704971C1 (ru) Способ получения клатратных гидратов для хранения и транспортировки газов
Kang et al. Confined tetrahydrofuran in a superabsorbent polymer for sustainable methane storage in clathrate hydrates
Vostrikov et al. Mechanism and kinetics of Al2O3 nanoparticles formation by reaction of bulk Al with H2O and CO2 at sub-and supercritical conditions
JP2011529036A (ja) ガス貯蔵のための包接化合物
CN108408781B (zh) 一种规则二维MoS2纳米片的水热制备方法
Mel’nikov et al. Production of methane hydrates in dispersed frozen aqueous solutions of polyvinyl alcohol
Nashed et al. Investigating the effect of silver nanoparticles on carbon dioxide hydrates formation
Belosludov et al. Clathrate hydrates for energy storage and transportation
Shi et al. Pyrolytic aerogels with tunable surface groups for efficient methane solidification storage via gas hydrates
Roosta et al. Experimental study of CO2 hydrate formation kinetics with and without kinetic and thermodynamic promoters
RU2419586C1 (ru) Способ получения терморасширяющегося соединения на основе графита
Kuznetsov et al. Carbon redistribution processes in nanocarbons
Englezos et al. Formation and decomposition of gas hydrates of natural gas components
Schicks Gas hydrates: formation, structures, and properties
Porgar et al. Phase equilibrium for hydrate formation in the Methane and Ethane system and effect of inhibitors
Chen et al. Novel core–shell and recyclable gas hydrate promoter for efficient solidified natural gas storage
Simonato et al. Sorption and separation of CO 2 via nanoscale AlO (OH) hollow spheres
Trivedi et al. Enhancing CO2 hydrate formation: Effect of coconut fibers on nucleation kinetics of CO2 hydrates
JP3957804B2 (ja) ガス水和物の製造方法及びガス水和物製造用添加物
JP3173611B2 (ja) 輸送及び貯蔵のためのガス水和物の製造方法