RU2703593C2 - Способ и контур регулирования для регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля - Google Patents

Способ и контур регулирования для регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля Download PDF

Info

Publication number
RU2703593C2
RU2703593C2 RU2016120714A RU2016120714A RU2703593C2 RU 2703593 C2 RU2703593 C2 RU 2703593C2 RU 2016120714 A RU2016120714 A RU 2016120714A RU 2016120714 A RU2016120714 A RU 2016120714A RU 2703593 C2 RU2703593 C2 RU 2703593C2
Authority
RU
Russia
Prior art keywords
compressed air
air compressor
compressor
electric drive
instantaneous
Prior art date
Application number
RU2016120714A
Other languages
English (en)
Other versions
RU2016120714A (ru
RU2016120714A3 (ru
Inventor
Андреас ХАЗЕ
Original Assignee
Ман Трак Унд Бас Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ман Трак Унд Бас Аг filed Critical Ман Трак Унд Бас Аг
Publication of RU2016120714A publication Critical patent/RU2016120714A/ru
Publication of RU2016120714A3 publication Critical patent/RU2016120714A3/ru
Application granted granted Critical
Publication of RU2703593C2 publication Critical patent/RU2703593C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/26Compressed-air systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/005Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2066Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1201Rotational speed of the axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1202Torque on the axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1204Position of a rotating inclined plate
    • F04B2201/12041Angular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0207Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/03Torque
    • F04C2270/035Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/60Prime mover parameters
    • F04C2270/605Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/70Type of control algorithm

Abstract

Изобретение относится к способу регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля. Изобретение также относится к соответствующему контуру регулирования. В соответствии с изобретением мгновенный приложенный к приводному валу компрессора сжатого воздуха крутящий момент (31) нагрузки компрессора сжатого воздуха оценивается как функция по меньшей мере одного рабочего параметра (22) и в качестве оценки возмущающего воздействия включается в контур регулирования электрического привода (20), чтобы снизить ошибку регулирования, созданную за счет приложенного крутящего момента (31) нагрузки. Обеспечивается улучшение электрического привода и способа его эксплуатации. 3 н. и 7 з.п. ф-лы, 3 ил.

Description

Изобретение относится к способу регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля. Изобретение также относится к соответствующему контуру регулирования.
Из практики известно обеспечение компрессора сжатого воздуха, так называемого воздушного компрессора (LP), для снабжения пневматических тормозных устройств в грузовых автомобилях, которые работают, например, на поршневом принципе. Для гибридно-электрических грузовых автомобилей, т.е. грузовых автомобилей, которые оснащены гибридной трансмиссией, в зависимости от цели использования, требуется предусмотреть воздушный компрессор, который приводится в действие электрически по меньшей мере частично, также кратко обозначаемый как так называемый “e-LP“. Электрический привод электрически приводимого в действие компрессора сжатого воздуха может включать в себя частотный преобразователь и электродвигатель, причем электродвигатель может быть выполнен, например, как асинхронная машина, синхронная машина или реактивная синхронная машина.
В частности, основанные на поршневой технике воздушные компрессоры имеют крутящие моменты нагрузки с высокими пиками и нелинейными колебаниями, которые электрический привод должен скомпенсировать. Даже при постоянных соотношениях давлений на выходном штуцере LP, крутящий момент изменяется в сильно нелинейной степени на полном обороте коленчатого вала. Это приводит к высоким потерям мощности, прежде всего в непрерывном режиме работы. Другими недостатками являются требуемый высокий электрический резерв мощности, в частности, для пуска двигателя воздушного компрессора, а также высокие требования к охлаждению, например, при медленном пуске двигателя при высоком крутящем моменте асинхронной машины с воздушным охлаждением. Это приводит к слишком высоким затратам и стоимости в силовой электронике и в двигателе, например, что касается термического потока и допустимой нагрузки по току.
Таким образом, задачей изобретения является обеспечить улучшенный электрический привод или соответственно улучшенный способ эксплуатации для электрического привода электрически приводимого в действие компрессора сжатого воздуха, с помощью которого могут быть преодолены недостатки обычных методов.
Эти задачи решаются способами и устройствами с признаками независимых пунктов. Предпочтительные формы выполнения и применения изобретения следуют из зависимых пунктов и более подробно поясняются в нижеследующем описании частично со ссылками на чертежи.
Согласно первому аспекту изобретения, предложен способ регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля. Автомобиль предпочтительно выполнен как грузовой автомобиль, и компрессор сжатого воздуха предпочтительно предусмотрен для снабжения пневматической компрессорной установки, в частности, тормозной установки с пневматическим приводом.
В соответствии с изобретением, мгновенный приложенный к приводимому в действие электрическим приводом приводному валу компрессора сжатого воздуха крутящий момент нагрузки компрессора сжатого воздуха оценивается как функция по меньшей мере одного рабочего параметра и в качестве оценки возмущающего воздействия подключается в контур регулирования электрического привода, чтобы снизить ошибку регулирования, созданную за счет приложенного крутящего момента нагрузки. Тем самым оцененный, мгновенный приложенный к приводному валу компрессора сжатого воздуха крутящий момент нагрузки как функция по меньшей мере одного рабочего параметра таким образом включается в качестве оценки возмущающего воздействия в контур регулирования электрического привода, что создаваемая за счет характеристики крутящего момента нагрузки ошибка регулирования в контуре регулирования снижается, предпочтительно минимизируется и, следовательно, повышается динамика электрического привода.
Подключение возмущающего воздействия момента нагрузки приводного вала для регулирования машины обеспечивает возможность снижения ошибки регулирования, в частности, для числа оборотов и электрического тока в регулировании двигателя, и минимизацию пиков и колебаний в фазном токе двигателя или крутящем моменте двигателя. Дополнительные преимущества заключаются в сокращении электрических потерь и резерва мощности в частотном преобразователе, также в сокращении механического нагружения для компрессора сжатого воздуха и двигателя.
Согласно предпочтительной форме выполнения, мгновенный приложенный к приводному валу компрессора сжатого воздуха крутящий момент нагрузки компрессора сжатого воздуха оценивается как функция по меньшей мере одного из следующих параметров: мгновенного углового положения приводного вала компрессора сжатого воздуха; мгновенного числа оборотов приводного вала компрессора сжатого воздуха, которое задается посредством числа оборотов двигателя электрического привода; и мгновенного значения параметра давления, из которого может выводиться или оцениваться текущее значение давления воздуха, приложенного на выходном штуцере компрессора сжатого воздуха, и/или которое указывает меру для противодавления, созданного компрессорной установкой, связанной с компрессором сжатого воздуха.
Эти три рабочих параметра обуславливают наибольшую долю в колебаниях крутящего момента нагрузки, создаваемого компрессором сжатого воздуха на приводимом в действие электрическим приводом приводном валу компрессора сжатого воздуха, и, таким образом, особенно предпочтительны для оценки крутящего момента нагрузки.
Согласно особенно предпочтительной форме выполнения, мгновенный приложенный к приводному валу компрессора сжатого воздуха крутящий момент нагрузки компрессора сжатого воздуха оценивается с применением по меньшей мере этих трех рабочих параметров, т.е. как функция мгновенного углового положения приводного вала, мгновенного числа оборотов приводного вала и мгновенного значения параметра давления. Это обеспечивает возможность особенно точной оценки возмущающего воздействия и, тем самым, особенно сильное снижение ошибки регулирования.
Функция для оценки мгновенного приложенного к приводному валу компрессора сжатого воздуха крутящего момента нагрузки компрессора сжатого воздуха может сохраняться как поле характеристик, например, как матричное поле характеристик, причем поле характеристик определяется заранее посредством замера момента нагрузки в зависимости от рабочих параметров.
Одна возможность соответствующей изобретению реализации предусматривает, что контур регулирования для электрического регулирования тока (контур регулирования тока) электрического привода нагружается оценкой возмущающего воздействия. В частности, оценка возмущающего воздействия инвертируется передаточной функцией контура регулирования тока и суммируется с регулирующим параметром регулятора числа оборотов и тем самым подключается к контуру регулирования для электрического регулирования тока электрического привода.
Результирующий параметр оценки (оценка возмущающего воздействия) посредством инверсной передаточной функции контура регулирования тока суммируется с регулирующим параметром регулятора числа оборотов электрического привода и, тем самым, подключается к контуру регулирования для электрического регулирования тока электрического привода.
Особое преимущество этой реализации заключается в том, что могут осуществляться самостоятельные измерения компрессора сжатого воздуха и получаемое на этой основе поле характеристик может применяться для параметра оценки с любым электродвигателем и частотным преобразователем. Тем самым никакие дополнительные требования не предъявляются к сенсорной технике электродвигателя и частотного преобразователя с регулируемым по числу оборотов режимом работы. Кроме того, известное нелинейное поведение компрессора сжатого воздуха большей частью может относительно просто отображаться и отрабатываться. Детальное, затратное моделирование механического объекта регулирования внутренней структуры компрессора сжатого воздуха не требуется – что представляет существенно более высокие затраты в отношении вычислительной мощности и способности реального времени аппаратных средств и программного обеспечения для регулирования – благодаря чему реализация влечет за собой меньшие дополнительные расходы на регулятор при улучшенной функциональности.
Для того чтобы дополнительно повысить точность оценки крутящего момента нагрузки, можно оценивать мгновенный приложенный к приводному валу компрессора сжатого воздуха крутящий момент нагрузки компрессора, согласно дополнительному варианту выполнения, как функцию по меньшей мере одного из следующих параметров: момента сил трения поршня, причем компрессор сжатого воздуха выполнен как поршневой компрессор сжатого воздуха; температуры воздуха окружающей среды и температуры охладителя контура охлаждения компрессора сжатого воздуха.
Компрессор сжатого воздуха может быть выполнен как поршневой компрессор сжатого воздуха, например, с одним или двумя цилиндрами. В случае компрессоров сжатого воздуха, работающих по поршневому принципу, колебания в моменте нагрузки особенно велики. Однако соответствующий изобретению способ может также применяться для других технологий компрессоров. Так компрессор сжатого воздуха может также быть выполнен как винтовой компрессор сжатого воздуха (так называемый спиральный принцип) или как лопастной компрессор сжатого воздуха.
Согласно дополнительной предпочтительной форме выполнения, частотный преобразователь для регулирования электрического привода эксплуатируется с векторным управлением с ориентированием по полю, которое может быть выполнено с датчиком числа оборотов или без него. Для включения возмущающего воздействия и для реализации соответствующего изобретению способа регулирования или контура регулирования требуется измерение тока. Для дальнейшей реализации, без использования датчика, векторного управления с ориентированием по полю необходимо соответствующее требование к точности измерения тока, однако можно сэкономить затраты на упомянутые датчики или отдельные датчики для определения углового положения и числа оборотов приводного вала.
Изобретение в отношении конструктивного выполнения электрической машины электрического привода не ограничено определенной конструкцией. Электрическая машина может быть выполнена как асинхронная машина, синхронная машина, реактивная синхронная машина или машина постоянного тока.
Согласно второму аспекту изобретения, предложен контур регулирования для регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля. В соответствии с изобретением контур регулирования выполнен так, чтобы осуществлять способ регулирования электрического привода, как описано в настоящем документе. В частности, контур регулирования выполнен так, чтобы оценивать мгновенный приложенный к приводному валу компрессора крутящий момент нагрузки компрессора как функцию по меньшей мере одного рабочего параметра и в качестве оценки возмущающего воздействия подключать в контур регулирования электрического привода таким образом, чтобы снизить ошибку регулирования, созданную за счет приложенного крутящего момента нагрузки. Во избежание повторений, признаки, описанные в контексте способа, должны также считаться раскрытыми и заявленными в контексте устройства и, таким образом, также характеризуют контур регулирования.
Изобретение также относится к автомобилю, в частности, грузовому автомобилю, с электрически приводимым в действие компрессором сжатого воздуха для снабжения пневматической компрессорной установки/ тормозной установки и таким контуром регулирования.
Вышеописанные предпочтительные формы выполнения и признаки изобретения могут комбинироваться друг с другом различным образом. Дальнейшие особенности и преимущества изобретения описываются ниже со ссылками на приложенные чертежи, на которых показано следующее:
Фиг.1 - эквивалентная схема или соответственно модель в лапласовой области контура регулирования без включения возмущающего воздействия;
Фиг.2 - эквивалентная схема или соответственно модель в лапласовой области контура регулирования с включением возмущающего воздействия согласно форме выполнения изобретения; и
Фиг.3 - функция характеристики момента нагрузки поршневого компрессора сжатого воздуха согласно форме выполнения изобретения.
В описанном примере выполнения электрически приводимый в действие компрессор сжатого воздуха выполнен в качестве примера как двухцилиндровый поршневой компрессор сжатого воздуха. Электрический привод включает в себя электрическую машину, которая приводит в действие коленчатый вал (приводной вал) компрессора сжатого воздуха. Компрессор сжатого воздуха и коленчатый вал, которые могут быть выполнены известным образом, не показаны. Принцип способа регулирования и контура регулирования поясняются на основе регулирования электрической машины, выполненной как машина постоянного тока. Для этого фиг.1 показывает эквивалентную схему и модель в лапласовой области контура регулирования или объекта регулирования для иллюстрации регулирования якорного тока и числа оборотов двигателя. На фиг.1 представлен контур регулирования сначала без соответствующего изобретению включения возмущающего воздействия, которое затем поясняется на основе фиг.2.
Фиг.1 показывает известную как таковую каскадную схему для выполнения регулируемого по числу оборотов и регулируемого по току контура регулирования или регулятора (каскадное регулирование). Этот известный принцип регулирования в данном случае применяется для регулирования электрического привода компрессора сжатого воздуха. Регулятор может быть выполнен, например, как PID-, PD- или PI-регулятор.
Заданные параметры на фиг.1 и фиг.2 обозначены звездочкой “*“.
Каскадная схема имеет внешний контур регулирования, включающий в себя регулятор 3 числа оборотов и объект 11 регулирования для моделируемого момента инерции масс компрессора сжатого воздуха, которые на фиг.1 представлены как передаточные функции G_Rω(S) и G_Sω(S). При этом регулятор 3 числа оборотов нагружается ошибкой ε_ω регулирования числа оборотов, т.е. образованной в дифференциаторе 2 разностью мгновенного заданного числа оборотов ω* и фактически определенного мгновенного числа оборотов ω приводного вала. Регулятор 3 числа оборотов определяет отсюда регулирующий параметр в форме заданного крутящего момента T*, которым нагружается внутренний контур 10 регулирования каскадной схемы.
Внутренний контур 10 регулирования (на фиг.1 и фиг.2 также обозначен как G_T(S)) служит для электрического регулирования тока электрического привода. Целью этого регулирования является, как известно, устанавливать заданный ток в машине и регулировать возмущения рабочего напряжения. По существу применяется подчиненное регулирование тока для улучшения регулирования числа оборотов, чтобы снизить влияние противодействующей электродвижущей силы (EMK). Ссылочной позицией 8 на фиг.1 обозначена передаточная функция ψ константы для электродвижущей силы (EMK), ссылочной позицией 4 - соответственно передаточная функция 1/ψ. Передаточная функция 1/ψ вычисляет из заданного крутящего момента T* заданный ток i*.
Дифференциатор 5 вычисляет ошибку ε_i регулирования тока путем образования разности из заданного тока i* и фактически определенного тока i машины постоянного тока. Регулятор 6 тока, здесь представленный как передаточная функция G_Ri(S), нагружается ошибкой ε_i регулирования тока и вычисляет соответствующий регулирующий параметр для объекта 7 регулирования для токового контура электрической машины (на фиг.1 представлено как передаточная функция Лапласа, G_Si(S)).
Параметр T_L описывает момент нагрузки на электрической машине или крутящий момент коленчатого вала компрессора сжатого воздуха, который представляет возмущающий режим для контура регулирования. Чем больше колебание в возмущающем воздействии T_L, тем больше ошибка регулирования контура регулирования и тем сильнее колеблется параметр T_B и, тем самым, крутящий момент, который должен скомпенсировать объект регулирования G_Sω(S).
Момент нагрузки на электрической машине, T_L, или крутящий момент коленчатого вала компрессора сжатого воздуха состоит из нескольких составляющих:
- Первой составляющей, которая задает крутящий момент T_KW=f(δ_KW, ω, p) как функцию, зависящую от углового положения δ, коленчатого вала, числа оборотов ω и давления p в компрессорной установке.
- Второй составляющей крутящего момента, T_Ö, которая следует из режима работы масляного насоса компрессора сжатого воздуха и неизвестного остаточного члена T_Rest.
(Формула 1): T_L=T_KW+T_Ö+T_Rest
При этом первая составляющая T_KW представляет собой гораздо большую компоненту.
Поэтому показанная на фиг.1 модель регулирования дополнительно усовершенствована за счет того, что мгновенный приложенный на приводном валу компрессора сжатого воздуха крутящий момент T_L нагрузки компрессора сжатого воздуха оценивается как функция по меньшей мере одного рабочего параметра и в качестве оценки возмущающего воздействия таким образом включается в контур регулирования электрического привода, что созданная приложенным крутящим моментом нагрузки ошибка регулирования уменьшается. В данном случае для включения возмущающего воздействия оценивается только первая составляющая T_KW. Параметр оценки для T_KW далее обозначается посредством T^_KW. Оценка T^_KW крутящего момента T_KW осуществляется посредством матричного поля характеристик21 на основе характеристик из заранее выполненных экспериментальных измерений на компрессоре сжатого воздуха.
В данном примере выполнения процесс измерялся в зависимости от мгновенного углового положения δ приводного вала компрессора сжатого воздуха, мгновенного числа оборотов ω приводного вала компрессора сжатого воздуха, которое задается посредством числа оборотов двигателя электрического привода, и мгновенного значения параметра давления p, из которого может выводиться или оцениваться текущее значение воздушного давления, приложенного на выходном штуцере компрессора сжатого воздуха, и/или которое указывает меру для противодавления, создаваемого в связанной с компрессором сжатого воздуха компрессорной установке.
Фиг.3 показывает в качестве примера характеристику приложенного на приводимом электрическим приводом коленчатом валу двухцилиндрового поршневого компрессора сжатого воздуха момента T_KW нагрузки как функцию углового положения δ коленчатого вала.
При этом кривая 31, показанная сплошной линией, иллюстрирует зависимую от углового положения характеристику крутящего момента нагрузки для числа оборотов ω, составляющего 3000 оборотов в минуту, в то время как кривая 32, показанная пунктирной линией, иллюстрирует зависимую от углового положения характеристику крутящего момента нагрузки для числа оборотов ω, составляющего 1000 оборотов в минуту. Как можно видеть из фиг.3, крутящий момент сильно зависит от нарастания давления на поршне или угла коленчатого вала (KW). Даже при постоянных соотношениях давления на выходном штуцере компрессора сжатого воздуха крутящий момент изменяется в значительной степени нелинейно на полном обороте коленчатого вала и колеблется отчасти до 180 Нм в данном примере. Динамика непосредственно зависит от числа оборотов привода, что представлено в качестве примера с помощью различных характеристик 31 и 32. Для упрощения представления зависимость крутящего момента нагрузки от параметра давления p на фиг.3 не представлена. Кроме того, зависимость от числа оборотов момента нагрузки на фиг.3 также только для примера указана на основе двух значений параметра числа оборотов ω, причем, однако, характеристика измеряется и сохраняется для всего диапазона числа оборотов электрического двигателя.
Без компенсации, регулирование для сведения к минимуму этих колебаний в двигателе и преобразователе электрического привода приводит к высоким потерям мощности, прежде всего в непрерывном режиме работы. Кроме того, должен быть достаточным высокий резерв мощности, особенно для запуска двигателя компрессора сжатого воздуха. Наконец, возрастают требования к охлаждению, например, быстрый запуск двигателя асинхронной машины с воздушным охлаждением. Это приводит к повышенным затратам и повышенной стоимости в силовой электронике и двигателе (термический поток, допустимая нагрузка по току).
При постоянном воздушном давлении на выходном штуцере воздушного компрессора характеристика момента T_L нагрузки поршневого компрессора сжатого воздуха повторяется периодически после каждого полного оборота на 360° и может, таким образом, предсказываться с применением характеристики (характеристик) 31, 32. Давление на выходном штуцере или в камерах сжатого воздуха имеет существенно более медленную постоянную времени и изменяется лишь незначительно на протяжении нескольких сотен оборотов. При эксплуатации грузового автомобиля, например, имеющееся измерение давления камер сжатого воздуха может использоваться для определения параметра p сжатого воздуха.
Фиг.2 показывает дальнейшее развитие модели регулирования согласно фиг.1. При этом компоненты с теми же ссылочными позициями соответствуют компонентам на фиг.1 и отдельно не описываются. Особенностью соответствующего изобретению способа регулирования и отличие от фиг.1 заключаются, как упомянуто выше, уже в том, что посредством матричного поля характеристик21 оценивается мгновенный приложенный на приводном валу компрессора сжатого воздуха крутящий момент нагрузки компрессора сжатого воздуха в форме параметра T^_KW.
Для этого непрерывно определяются мгновенные значения 22 рабочих параметров δ, ω, p и на основе сохраненной матрицы 21 характеристик оценивается мгновенное значение для крутящего момента T_KW нагрузки. Результирующий параметр оценки T^_KW через инверсную передаточную функцию G-1_T(s) контура 10 регулирования тока суммируется с регулирующим параметром u регулятора 3 числа оборотов электрического привода и тем самым включается в контур 10 регулирования для электрического регулирования тока электрического привода. Включение возмущающего воздействия, таким образом, используется для того, чтобы регулировать нагрузку, приложенную к электрическому приводу.
В качестве выходного параметра внутреннего контура 10 регулирования (контура регулирования тока) получается, таким образом, регулирующий параметр, который соответствует крутящему моменту T:
(Формула 2): T=G_T*u+T^_KW,
причем G_T является передаточной функцией контура 10 регулирования тока, и u является регулирующим параметром регулятора 3 числа оборотов. Символ “*“ описывает умножение в лапласовой области (не свертку).
В результате, в качестве входного параметра T_B объекта регулирования G_Sω(S) 11 теперь получается параметр T´_B:
(Формула 3): T´_B=T–T_L=G_T*u–T_R–T_Ö–ΔT,
причем ΔT=T_KW–T^_KW, таким образом, соответствует ошибке оценки крутящего момента коленчатого вала.
Без включения возмущающего воздействия для T_B согласно устройству по фиг.1 получается:
(Формула 4): T_B=T–T_L=G_T*u–T_R–T_Ö–T_KW,
Посредством небольшого изменения в контуре регулирования, выражающегося в ΔT по сравнению с T_KW, могут быть снижены ошибки ε_ω и ε_i регулирования и повышено качество регулятора.
Включение возмущающего воздействия момента нагрузки приводного вала для регулирования машины обеспечивает, таким образом, возможность снижения ошибок регулирования, в частности, для числа оборотов и электрического тока в регулировании двигателя, и минимизацию пиков и колебаний в фазном токе двигателя или крутящем моменте двигателя. Дальнейшие преимущества заключаются в снижении электрических потерь и резерва мощности в частотном преобразователе, а также в снижении механического нагружения для компрессора сжатого воздуха и двигателя.
Хотя изобретение было описано со ссылками на определенные примеры выполнения, для специалиста должно быть очевидно, что могут выполняться различные изменения и применяться эквиваленты в качестве замены без отклонения от объема изобретения. Дополнительно могут выполняться многие модификации без отклонения от объема изобретения. Так, например, можно известные возмущающие воздействия коленчатого вала интерпретировать и оценивать иначе, чем число оборотов, и включать их в контур регулирования в другом месте. Следовательно, изобретение не должно ограничиваться раскрытыми примерами выполнения, а должно охватывать все примеры выполнения, которые входят в объем приложенной формулы изобретения. В частности, изобретение также испрашивает защиту объекта и признаков зависимых пунктов формулы изобретения независимо от пунктов, на которые они ссылаются.
Перечень ссылочных позиций
1 контур регулирования без включения возмущающего воздействия
2 дифференциатор
3 регулятор числа оборотов
4 передаточная функция 1/ψ константы для электродвижущей силы
5 дифференциатор
6 регулятор тока
7 объект регулирования электрическая машина для цепи якоря
8 передаточная функция ψ константы для электродвижущей силы
9 дифференциатор
10 контур регулирования электрического регулирования тока электрического привода
11 объект регулирования для момента инерции масс компрессора сжатого воздуха
20 контур регулирования с включением возмущающего воздействия
21 матричное поле характеристик крутящего момента нагрузки
22 значения рабочих параметров матричного поля характеристик23 инверсия передаточной функции контура регулирования тока
25 сумматор
31 профиль характеристики для 3000 оборотов в минуту
32 профиль характеристики для 1000 оборотов в минуту

Claims (22)

1. Способ регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля, причем компрессор сжатого воздуха предпочтительно предусмотрен для снабжения пневматической компрессорной установки/тормозной установки, отличающийся тем, что мгновенный приложенный к приводному валу компрессора сжатого воздуха крутящий момент (31) нагрузки компрессора сжатого воздуха оценивают как функцию по меньшей мере одного рабочего параметра (22) и в качестве оценки возмущающего воздействия включают в контур (20) регулирования электрического привода для снижения ошибки регулирования, созданной за счет приложенного крутящего момента (31) нагрузки.
2. Способ по п. 1, отличающийся тем, что мгновенный приложенный к приводному валу компрессора сжатого воздуха крутящий момент (31) нагрузки компрессора сжатого воздуха оценивают как функцию по меньшей мере одного из следующих параметров:
(а) мгновенного углового положения (δ) приводного вала компрессора сжатого воздуха;
(b) мгновенного числа оборотов (ω) приводного вала компрессора сжатого воздуха, которое задается посредством числа оборотов двигателя электрического привода; и
(с) мгновенного значения параметра давления (p), из которого может выводиться или оцениваться текущее значение воздушного давления, приложенного на выходном штуцере компрессора сжатого воздуха, и/или которое указывает меру для противодавления, созданного компрессорной установкой, связанной с компрессором сжатого воздуха.
3. Способ по п. 2, отличающийся тем, что мгновенный приложенный к приводному валу компрессора сжатого воздуха крутящий момент (31) нагрузки компрессора сжатого воздуха оценивают по меньшей мере как функцию мгновенного углового положения (δ) приводного вала, мгновенного числа оборотов (ω) приводного вала и мгновенного значения параметра давления (p).
4. Способ по любому из пп. 1-3, отличающийся тем, что функция задается в качестве поля характеристик (21).
5. Способ по п. 1, отличающийся тем, что
(а) контур (10) регулирования для электрического регулирования тока электрического привода нагружают оценкой возмущающего воздействия; и/или
(b) оценку возмущающего воздействия инвертируют с помощью передаточной функции контура (10) регулирования для электрического регулирования тока электрического привода и суммируют с регулирующим параметром (u) регулятора (3) числа оборотов электрического привода и тем самым включают в контур (10) регулирования для электрического регулирования тока электрического привода.
6. Способ по п. 1, отличающийся тем, что компрессор сжатого воздуха выполнен как поршневой компрессор сжатого воздуха, как винтовой компрессор сжатого воздуха или как лопастной компрессор сжатого воздуха.
7. Способ по п. 1, отличающийся тем, что мгновенный приложенный к приводному валу компрессора крутящий момент (31) нагрузки компрессора оценивают как функцию по меньшей мере одного из следующих параметров:
(а) момента сил трения поршня, причем компрессор сжатого воздуха выполнен как поршневой компрессор сжатого воздуха;
(b) температуры воздуха окружающей среды и
(с) температуры охладителя контура охлаждения компрессора сжатого воздуха.
8. Способ по п. 1, отличающийся тем, что
(а) частотный преобразователь для регулирования электрического привода эксплуатируют с векторным управлением с ориентированием по полю; и/или
(b) электрический привод включает в себя электрическую машину, которая выполнена как асинхронная машина, синхронная машина, реактивная синхронная машина или машина постоянного тока.
9. Контур (20) регулирования для регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля, отличающийся тем, что контур (20) регулирования выполнен с возможностью:
(а) оценивать мгновенный приложенный к приводному валу компрессора крутящий момент (31) нагрузки компрессора как функцию по меньшей мере одного рабочего параметра (22) и в качестве оценки возмущающего воздействия подключать в контур регулирования электрического привода для снижения ошибки регулирования, создаваемой за счет приложенного крутящего момента (31) нагрузки; и/или
(b) осуществлять способ по любому из пп. 1-8.
10. Автомобиль, в частности грузовой автомобиль, с электрически приводимым в действие компрессором сжатого воздуха для снабжения пневматической компрессорной установки/тормозной установки в грузовом автомобиле, содержащий контур (20) регулирования по п. 9.
RU2016120714A 2015-05-29 2016-05-27 Способ и контур регулирования для регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля RU2703593C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015006988.8A DE102015006988A1 (de) 2015-05-29 2015-05-29 Verfahren und Regelkreis zur Regelung eines elektrischen Antriebs eines elektrisch angetriebenen Druckluftverdichters eines Kraftfahrzeugs
DE102015006988.8 2015-05-29

Publications (3)

Publication Number Publication Date
RU2016120714A RU2016120714A (ru) 2017-11-28
RU2016120714A3 RU2016120714A3 (ru) 2019-08-20
RU2703593C2 true RU2703593C2 (ru) 2019-10-21

Family

ID=55854540

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016120714A RU2703593C2 (ru) 2015-05-29 2016-05-27 Способ и контур регулирования для регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля

Country Status (6)

Country Link
US (1) US10132304B2 (ru)
EP (1) EP3098448B1 (ru)
CN (1) CN106194682B (ru)
BR (1) BR102016010391B1 (ru)
DE (1) DE102015006988A1 (ru)
RU (1) RU2703593C2 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016111101A1 (de) * 2016-06-17 2017-12-21 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren und Einrichtung zur Schwingungskompensation bei einem Kolbenkompressor
KR102222453B1 (ko) * 2017-10-31 2021-03-02 가부시키가이샤 아루박 진공펌프 및 그 제어방법
US10823172B2 (en) * 2018-03-05 2020-11-03 Haier Us Appliance Solutions, Inc. Method for operating a rolling piston compressor
RU2681199C1 (ru) * 2018-03-12 2019-03-05 Акционерное общество "Научно-технический комплекс "Криогенная техника" Способ регулирования и работы двигателя судового спирального компрессора с частотным регулированием оборотов
CN209704787U (zh) * 2019-01-03 2019-11-29 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的制冷装置
CN111277189B (zh) * 2020-03-25 2022-02-25 海信(山东)空调有限公司 压缩机低频振动抑制方法及系统
US20220090594A1 (en) * 2020-09-18 2022-03-24 Caterpillar Inc. Hydraulic fracturing pump control system
CN113669242A (zh) * 2021-08-03 2021-11-19 新奥数能科技有限公司 空压机系统的功率控制方法、装置和计算机设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333265B1 (de) * 2002-01-25 2005-09-07 Snap-On Equipment GmbH Messen einer Unwucht eines Motorrad-Rades mit einer Lösung der Mitnehmereinrichtung durch eine kurzzeitige Drehzahlaenderung
DE102008006860A1 (de) * 2008-01-31 2009-08-06 Haldex Brake Products Gmbh Kraftfahrzeug mit einer von einem Kompressor versorgten Druckluftanlage und Verfahren zur Steuerung des Luftstroms in einer Druckluftanlage
JP4407109B2 (ja) * 2002-10-11 2010-02-03 ダイキン工業株式会社 電動機制御方法およびその装置
US8536812B2 (en) * 2010-03-23 2013-09-17 Kabushiki Kaisha Toshiba Motor control device and electrical equipment with motor controlled thereby
EP2674341A1 (en) * 2011-02-10 2013-12-18 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2838578B2 (ja) * 1990-06-19 1998-12-16 株式会社日立製作所 モータ制御装置、外乱負荷トルク推定装置
DE10036504B4 (de) * 1999-08-02 2011-05-19 Schaeffler Technologies Gmbh & Co. Kg Antriebsstrang
WO2005105503A1 (es) 2004-04-29 2005-11-10 Francisco Javier Ruiz Martinez Mecanismo recuperador de energía en vehículos autopropulsados
CN1756064A (zh) * 2004-09-27 2006-04-05 乐金电子(天津)电器有限公司 同步磁阻电机的负载转矩控制装置和补偿方法
JP4596906B2 (ja) * 2004-12-22 2010-12-15 日立アプライアンス株式会社 電動機の制御装置
JP4569372B2 (ja) * 2005-05-09 2010-10-27 トヨタ自動車株式会社 モータ制御装置
DE102007011257A1 (de) 2007-03-08 2008-09-11 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Hybridantrieb, Verfahren zum Steuern eines Druckluftkompressors und Kraftfahrzeug mit einem Hybridantrieb
JP4476314B2 (ja) * 2007-08-10 2010-06-09 三洋電機株式会社 モータ制御装置及び圧縮機
DE102011053568B4 (de) 2011-09-12 2022-03-31 Linde Material Handling Gmbh Bremssteuerungssystem einer mobilen Arbeitsmaschine
CN202535303U (zh) * 2012-04-28 2012-11-14 瑞萨电子(中国)有限公司 变频空调用压缩机的驱动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333265B1 (de) * 2002-01-25 2005-09-07 Snap-On Equipment GmbH Messen einer Unwucht eines Motorrad-Rades mit einer Lösung der Mitnehmereinrichtung durch eine kurzzeitige Drehzahlaenderung
JP4407109B2 (ja) * 2002-10-11 2010-02-03 ダイキン工業株式会社 電動機制御方法およびその装置
DE102008006860A1 (de) * 2008-01-31 2009-08-06 Haldex Brake Products Gmbh Kraftfahrzeug mit einer von einem Kompressor versorgten Druckluftanlage und Verfahren zur Steuerung des Luftstroms in einer Druckluftanlage
US8536812B2 (en) * 2010-03-23 2013-09-17 Kabushiki Kaisha Toshiba Motor control device and electrical equipment with motor controlled thereby
EP2674341A1 (en) * 2011-02-10 2013-12-18 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle

Also Published As

Publication number Publication date
RU2016120714A (ru) 2017-11-28
BR102016010391A2 (pt) 2016-11-29
CN106194682A (zh) 2016-12-07
CN106194682B (zh) 2020-05-15
US20160348667A1 (en) 2016-12-01
BR102016010391A8 (pt) 2021-09-08
BR102016010391B1 (pt) 2022-10-04
DE102015006988A1 (de) 2016-12-01
RU2016120714A3 (ru) 2019-08-20
EP3098448A1 (de) 2016-11-30
US10132304B2 (en) 2018-11-20
EP3098448B1 (de) 2022-12-21

Similar Documents

Publication Publication Date Title
RU2703593C2 (ru) Способ и контур регулирования для регулирования электрического привода электрически приводимого в действие компрессора сжатого воздуха автомобиля
JP6622452B2 (ja) モータ制御装置、圧縮機、空気調和機およびプログラム
CN104158454B (zh) 同步电机控制装置
CN108336938B (zh) 压力控制装置、系统及方法
US20160218650A1 (en) Method and system for damping torsional oscillations
US9134712B2 (en) Method and control arrangement for controlling a controlled system with a repeating working cycle
JP6456650B2 (ja) モータ制御装置、圧縮機、空気調和機およびプログラム
EP3115606B1 (en) A method and a system for protecting a resonant linear compressor
US10030591B2 (en) Operating an internal combustion engine coupled to a generator
WO2018016276A1 (ja) 電動オイルポンプ装置
KR100494919B1 (ko) 병렬형 하이브리드 전기자동차의 모터 제어방법 및 그제어장치
CN108462413B (zh) 电动机控制装置以及电动机控制方法
US6979181B1 (en) Method for controlling the motor of a pump involving the determination and synchronization of the point of maximum torque with a table of values used to efficiently drive the motor
CN103986392B (zh) 一种低速直驱式交流伺服系统的控制方法
Briskin et al. On the energy efficiency of cyclic mechanisms
EP2553805B1 (en) Sensorless torsional mode damping system and method
KR20060053131A (ko) 냉장고
JP5749716B2 (ja) 周期的な負荷にかけられる電動モータ用の予測制御システムおよび電動モータ用の予測制御方法
JP5510752B2 (ja) 制御装置
CN109779740A (zh) 对用于内燃机的、电运行式增压装置进行转速调节的方法和设备
JP2021197752A (ja) トルク推定装置およびトルク推定方法
JP5277790B2 (ja) 慣性モーメント同定器を備えたモータ制御装置
JP3222337U (ja) モータ制御装置
WO2023175992A1 (ja) 発電機制御方法及び発電機制御装置
JP2012210061A (ja) モータの制御装置、及びモータの制御方法