RU2702883C1 - Способ вскрытия флюорита - Google Patents
Способ вскрытия флюорита Download PDFInfo
- Publication number
- RU2702883C1 RU2702883C1 RU2019106368A RU2019106368A RU2702883C1 RU 2702883 C1 RU2702883 C1 RU 2702883C1 RU 2019106368 A RU2019106368 A RU 2019106368A RU 2019106368 A RU2019106368 A RU 2019106368A RU 2702883 C1 RU2702883 C1 RU 2702883C1
- Authority
- RU
- Russia
- Prior art keywords
- fluorite
- ammonium
- temperature
- ammonium fluoride
- fluoride
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B9/00—General methods of preparing halides
- C01B9/08—Fluorides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B59/00—Obtaining rare earth metals
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Изобретение относится к способам переработки минерального сырья, в частности флюорита и флюоритовых концентратов, с получением соединений фтора, используемых в качестве фторирующих агентов. Способ переработки сырья включает сульфатизацию, осуществляемую путем обжига с 20% избытком фторида аммония при температуре 420-450°С в течение 1,0-1,5 часа с получением гипса и фторида аммония в качестве продуктов. Способ позволяет упростить процесс при одновременном повышении его безопасности. 2 пр.
Description
Изобретение относится к способам переработки минерального сырья, в частности, флюорита и флюоритовых концентратов, с получением соединений фтора, используемых в качестве фторирующих агентов. Флюорит является основным источником фтора для нужд промышленности.
Наиболее распространенным методом вскрытия флюорита в промышленности является сернокислотное разложение, в ходе которого получают гипс и фтористый водород (Зайцев В.А., Новиков А.А., Родин В.И. Производство фтористых соединений при переработке фосфатного сырья. М.: Химия, 1982. 248 с.). Способ затратный и экономически неэффективный: на реакцию связывания фтора с кремнием с образованием SiF4 теряется до 7% фтора, на взаимодействие с кальцитом тратится лишняя серная кислота.
Известен способ получения фтористоводородной кислоты путем высокотемпературного превращения в системе CaF2-SiO2-H2O, осуществление которого возможно в двух температурных режимах: высокотемпературным гидролизом флюоритовых руд (Михайлов М.А. Разложение фторидов металлов второй группы перегретым водяным паром. // Труды ДВ филиала СО АН СССР, серия химическая. 1961. №5. С. 49-65) и взаимодействием компонентов системы в расплаве [Раков Э.Г. и др. Известия вузов. Химия и химическая технология, 1977. Т. 20. №2. С. 289-291]. Однако при пирогидролизе твердых продуктов реакция тормозится диффузией паров воды к частицам материала, а при взаимодействии в расплаве - низкой растворимостью и малой скоростью диффузии паров воды в силикатных шлаках. Температура реакции в обоих случаях составляет 1200-1500°С. Кроме того, практическая реализация процессов пирогидролиза сталкивается с существенными трудностями, обусловленными большой агрессивностью газовой фазы по отношению к металлам и сплавам и разрушением при температуре процесса огнеупорных материалов образующимся оксидом кальция и, помимо этого, высокой энергоемкостью процесса.
Известен способ вскрытия флюорита сплавлением с борной кислотой (Мишукова О.И. и др. Исследование способа вскрытия редкометаллического минерального сырья борной кислотой. // Ползуновский вестник. 2017. №3. С. 115-120). В соответствии с этим способом, нагревают смесь флюорита с борной кислотой, взятой с 20% избытком от стехиометрического количества. При этом в газовую фазу выделяется фтористый водород. Максимальная степень вскрытия флюоритового концентрата (~95%) достигается при температуре выше 600°С. К недостаткам способа относятся необходимость использования дорогостоящей борной кислоты и возможность выделения в газовую фазу вместе с фтористым водородом фторида бора.
В качестве прототипа выбран способ сернокислотного вскрытия флюоритового сырья с получением кристаллического гидродифторида аммония путем его сульфатизации серной кислотой в присутствии диоксида кремния, минуя стадию получения концентрата (Гордиенко П.С., Крысенко Г.Ф., Ярусова С.Б., Колзунов В.А., Пашнина Е.В. Комплексная переработка флюоритсодержащего сырья и техногенных отходов. // Химическая технология. 2010. Т. 11. №3. С. 134-138). В соответствии с известным способом, минеральное сырье заливают концентрированной серной кислотой, нагревают при температуре 140-150°С в течение 3-4 ч с непрерывной подачей в реакционную смесь газа-носителя или водяного пара. Газообразные продукты реакции улавливают раствором аммиака. В результате получают раствор гексфторсиликата аммония. Далее гексафторосиликат аммония, образующийся при улавливании газообразных продуктов вскрытия, подвергают последующему гидролизу раствором аммиака с получением раствора фторида аммония, который отделяют от диоксида кремния фильтрацией. Полученный при гидролизе гексафторосиликата аммония раствор фторида аммония предлагается переводить выпариванием раствора в кристаллический гидродифторид аммония, который является не имеющим запаха веществом, более удобным для хранения и использования в качестве фторирующего реагента в отличие от токсичных газообразных фтора и фтористого водорода и жидкой фтористоводородной кислоты, а по реакционной способности сопоставим с газообразным фтористым водородом.
Известный способ является технологически сложным и экологически небезопасным, что связано с использованием концентрированной серной кислоты и образованием газообразных продуктов, которые необходимо улавливать раствором аммиака, что влечет за собой дополнительные стадии фильтрации для отделения от нерастворимого диоксида кремния и упаривания больших объемов растворов для получения кристаллического фторида аммония.
Задачей изобретения является создание простого в осуществлении способа вскрытия флюоритового концентрата, безопасного для здоровья человека и окружающей среды.
Технический результат способа заключается в упрощении процесса при одновременном повышении его безопасности за счет проведения сульфатизации в твердой фазе без использования водных растворов, в том числе серной кислоты, а также за счет устранения необходимости улавливания газообразных продуктов раствором аммиака, исключения стадий фильтрации и упаривания.
Указанный технический результат достигают способом вскрытия флюорита сульфатизацией, в котором в отличие от известного в качестве сульфатизирующего агента используют сульфат аммония, при этом смешивают твердый флюорит с небольшим избытком твердого сульфата аммония (~20%) и подвергают обжигу при температуре 420-450°С в течение 1,0-1,5 часа.
Способ осуществляют следующим образом.
Флюорит или флюоритовый концентрат смешивают с сульфатом аммония и подвергают обжигу при температуре 420-450°С в течение преимущественно 1,0-1,5 часов.
В этом случае при взаимодействии флюорита с сульфатом аммония протекают следующие реакции:
В результате взаимодействия флюорита с сульфатом аммония при данной температуре в газовую фазу выделяются аммиак и HF, которые собираются в конденсаторе в виде кристаллического продукта NH4F (1) и NH4HF2 (3) и, кроме того, образуется гипс. В начале процесса в газовую фазу выделяется также аммиак, который улавливают в сатураторе и возвращают в процесс.
Обжиг при температуре ниже 420°С приводит к неполному вступлению CaF2 в реакцию и, соответственно, неполному превращению флюорита в гипс. Повышение температуры выше 450°С нецелесообразно, поскольку приводит к непродуктивным затратам электроэнергии без улучшения показателей продукции.
В начале процесса в газовую фазу выделяется также аммиак (2), который улавливают в сатураторе и возвращают в процесс с получением в качестве продуктов гипса и фторида аммония.
При переработке концентратов, содержащих кроме флюорита силикаты и карбонат кальция, в газовую фазу вместе с фторидом аммония выделяется также гексафторосиликат аммония, который может быть отделен от фторидов аммония селективной сублимацией. Гексафторосиликат аммония сам по себе является товарным продуктом, может быть использован для получения оксида кремния и фторида аммония известным способом.
Примеры конкретного осуществления способа.
Пример 1
Смесь, состоящую из 20 г флюорита и 40 г (118% от стехиометрического количества) сульфата аммония, помещают в стеклографитовый тигель и ставят в электропечь, снабженную конденсатором. Поднимают температуру до 420°С и нагревают в токе воздуха при достигнутой температуре в течение 1,5 часов. Фторид аммония на выходе из печи улавливается в конденсаторе, а в газовую фазу выделяется аммиак, который поглощается 10% раствором серной кислоты.
В результате на выходе получают 34,8 г безводного сульфата кальция с выходом 99,8% и 18,8 г фторида аммония с выходом 99,0%.
Пример 2
Смесь 20 г флюоритового концентрата с содержанием флюорита 92% (SiO2 3,5%) и 41 г сульфата аммония помещают в стеклографитовый тигель, ставят в электропечь и нагревают в токе воздуха при температуре 450°С в течение 1,5 часов. На выходе из печи в конденсаторе улавливается фторид аммония и гексафторосиликат аммония. В результате получают 33,4 г безводного сульфата кальция с выходом 99,8%, 14,9 г фторида аммония с выходом 98,8% и 2,0 г гексафторосиликата аммония с выходом 99,8%. Смесь фторида аммония и гексафторосиликата аммония разделяют при помощи возгонки. При температуре 240°С отгоняют фторид аммония, а гексафторосиликат аммония, температура возгонки которого составляет 330°С, остается в конденсаторе.
Таким образом, предлагаемый способ позволяет практически в одну стадию получить товарные продукты из минерального сырья, при этом исключает необходимость переработки и утилизации большого объема растворов, в том числе агрессивных и вызывающих коррозию.
Claims (1)
- Способ переработки минерального сырья, содержащего флюорит, путем сульфатизации с получением гипса и фторида аммония, отличающийся тем, что в качестве сульфатизирующего реагента используют сульфат аммония, сульфатизацию проводят в твердой фазе сырья путем обжига с 20% избытком сульфата аммония при температуре 420-450°С в течение 1,0-1,5 часа.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019106368A RU2702883C1 (ru) | 2019-03-06 | 2019-03-06 | Способ вскрытия флюорита |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019106368A RU2702883C1 (ru) | 2019-03-06 | 2019-03-06 | Способ вскрытия флюорита |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2702883C1 true RU2702883C1 (ru) | 2019-10-11 |
Family
ID=68280113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019106368A RU2702883C1 (ru) | 2019-03-06 | 2019-03-06 | Способ вскрытия флюорита |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2702883C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1723036A1 (ru) * | 1990-07-02 | 1992-03-30 | Институт Химии Дальневосточного Отделения Ан Ссср | Способ очистки флюоритового концентрата |
CN102586632A (zh) * | 2012-02-22 | 2012-07-18 | 中南大学 | 一种综合回收矿物中氟、钨的方法 |
CN102861665A (zh) * | 2012-09-20 | 2013-01-09 | 浙江武义神龙浮选有限公司 | 一种利用萤石尾矿再磨再选生产萤石精矿的方法 |
RU2630989C1 (ru) * | 2016-12-08 | 2017-09-15 | Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) | Способ переработки фторидного редкоземельного концентрата |
-
2019
- 2019-03-06 RU RU2019106368A patent/RU2702883C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1723036A1 (ru) * | 1990-07-02 | 1992-03-30 | Институт Химии Дальневосточного Отделения Ан Ссср | Способ очистки флюоритового концентрата |
CN102586632A (zh) * | 2012-02-22 | 2012-07-18 | 中南大学 | 一种综合回收矿物中氟、钨的方法 |
CN102861665A (zh) * | 2012-09-20 | 2013-01-09 | 浙江武义神龙浮选有限公司 | 一种利用萤石尾矿再磨再选生产萤石精矿的方法 |
RU2630989C1 (ru) * | 2016-12-08 | 2017-09-15 | Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) | Способ переработки фторидного редкоземельного концентрата |
Non-Patent Citations (1)
Title |
---|
ГОРДИЕНКО П.С. и др. Комплексная переработка флюоритсодержащего сырья и техногенных отходов. Химическая технология. т. 11, N 3, 2010, с.134-138. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104843712B (zh) | 一种工业氟硅酸的提纯并联产白炭黑的方法 | |
RU2526075C2 (ru) | Способ обработки материала на основе диоксида циркония гидродифторидом аммония | |
RU2553150C2 (ru) | Способ обработки минералов | |
EP2118000B1 (en) | Preparation of hydrogen fluoride from calcium fluoride and sulfuric acid | |
US5853685A (en) | Process for the production of high purity silica from waste by-product silica and hydrogen fluoride | |
RU2702883C1 (ru) | Способ вскрытия флюорита | |
RU2502568C2 (ru) | Способ комплексной переработки золы от сжигания углей | |
RU2624749C2 (ru) | Способ получения оксида бериллия и металлического бериллия | |
NO137232B (no) | Fremgangsm}te for fremstilling av hydrogenfluorid | |
US1859998A (en) | Hydrated silica | |
Krysenko et al. | Studying the possibility for defluorination of calcium and rare-earth fluorides by ammonium sulfate | |
RU2048559C1 (ru) | Способ переработки циркониевого концентрата | |
JPH03265514A (ja) | ふっ素化合物を含むエッチング廃液の処理方法 | |
Rimkevich et al. | Study of fluoride treatment of silica-containing raw material | |
Rimkevich et al. | Fluoride processing of non-bauxite ores | |
RU2748972C1 (ru) | Способ переработки датолитового концентрата | |
CA3083505C (en) | Pyrometallurgical method for obtaining compounds of lithium and intermediates from alpha-spodumene and lepidolite | |
US3021193A (en) | Production of sodium fluoride | |
US4830842A (en) | Preparation of pure boron trifluoride | |
US3316060A (en) | Recovery of anhydrous hydrogen fluoride from gaseous mixtures | |
RU128874U1 (ru) | Технологический комплекс для получения монокристаллического кремния | |
RU2261841C1 (ru) | Способ гидрохимического получения высокодисперсного диоксида кремния из техногенного кремнийсодержащего сырья | |
JPH0656421A (ja) | カリウムおよびセシウムフツ化物の製造 | |
CN104477947A (zh) | 硝酸钠的制备方法 | |
US3310369A (en) | Process for producing anhydrous ammonium bifluoride from an aqueous solution of ammonium fluoride |