RU2700428C1 - Керамический композиционный материал и изделие, выполненное из него - Google Patents
Керамический композиционный материал и изделие, выполненное из него Download PDFInfo
- Publication number
- RU2700428C1 RU2700428C1 RU2018126456A RU2018126456A RU2700428C1 RU 2700428 C1 RU2700428 C1 RU 2700428C1 RU 2018126456 A RU2018126456 A RU 2018126456A RU 2018126456 A RU2018126456 A RU 2018126456A RU 2700428 C1 RU2700428 C1 RU 2700428C1
- Authority
- RU
- Russia
- Prior art keywords
- ceramic composite
- sic
- temperature
- composite material
- silicon carbide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/65—Reaction sintering of free metal- or free silicon-containing compositions
- C04B35/651—Thermite type sintering, e.g. combustion sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива. Предложен керамический композиционный материал, содержащий, мас.%: 5-7 нитрида алюминия AlN, 5-15 карбидокремниевых нитевидных кристаллов SiCw, 3-5 оксида иттрия Y2O3, и SiC в качестве основы. Керамический материал получен методом искрового плазменного спекания с применением индукционного нагрева. Технический результат - снижение температуры спекания керамического композиционного материала до 1800-1900°С, повышение рабочей температуры до 1500°С и жаростойкости (изменение массы в атмосфере воздуха и продуктах сгорания топлива при температуре 1500°С в течение 500 ч не более 3%) при сохранении прочностных характеристик при комнатной температуре, а также обеспечение теплопроводности материала на уровне 65-100 Вт/м⋅К. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.
Description
Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива.
Высокотемпературные металлы и керамика в сочетании с системами охлаждения играют решающую роль в развитии аэрокосмических двигателей, а также в системах тепловой защиты транспортных средств. Однако возрастающая тяжесть условий эксплуатации во многих случаях ограничивает выбор материалов высокотемпературной керамикой. Общепризнанно, что компоненты суперсплавов в настоящее время работают в температурных пределах 1150-1250°С и для дальнейшего улучшения характеристик двигателя требуются новые материалы и технологии охлаждения. Основным препятствием для использования керамических материалов являются риски, связанные с катастрофическим разрушением, что характерно для монолитной керамики. Поэтому ключевым требованием, предъявляемым к керамическим материалам, является объемная прочность, которая должна значительно превышать напряжения, возникающие в узлах и деталях при условиях эксплуатации. Керамика на основе карбида кремния является одним из наиболее перспективных материалов для получения элементов горячего тракта двигателей и установок новых поколений. Однако вследствие ковалентной природы связи Si-C спекание карбида кремния без использования активаторов заканчивается при достижении плотности порядка 70% от теоретической (ТП), что резко снижает прочностные свойства керамики. Традиционные подходы уплотнения SiC представляют собой твердофазное спекание с добавками В и С или жидкофазное спекание с добавками оксидов металлов, таких как Al2O3 и Y2O3. Преимущество керамики SiC, спеченной при наличии жидкой фазы, заключается в мелкодисперсной микроструктуре, сформированной при более низкой температуре за счет наличия жидкой фазы.
Известен керамический композиционный материал, содержащий 60,0-94,0 масс. % карбида кремния SiC и спекающие добавки - 0,5-20,0 масс. % нитрида алюминия AlN и 2,0-20,0 масс. % углерода С (GB 2170511 А, 06.08.1986 г.).
Данный материал обладает высокими прочностными характеристиками при относительной плотности 70-99% от теоретической. К его недостаткам можно отнести низкую рабочую температуру, составляющую 1400°С. Наличие несвязанного углерода в материале способствует диффузии кислорода через систему пор, образующихся в результате выгорания углерода и образования газообразных веществ, что приводит, в свою очередь, к снижению прочностных характеристик материала и его жаростойкости при температуре 1500°С. Также к недостаткам можно отнести высокую температуру спекания 2150°С, что делает затруднительным изготовление крупногабаритных сложнопрофильных деталей.
Известен керамический композиционный материал, содержащий 87-90 масс. % карбида кремния SiC, 0,5-5,0 масс. % нитрида алюминия AlN, 0,5-3,0 масс. % титана Ti, 0,5-8,0 масс. % углерода С и 0-3,0 масс. % бора В (US 4753903 А, 28.06.1988 г.).
Данный материал обладает высокими прочностными характеристиками при относительной плотности более 90%. Его недостатком является высокая температура спекания 2000-2300°С, что делает затруднительным изготовление крупногабаритных сложнопрофильных деталей. Также он обладает низкой жаростойкостью при температурах выше 1400°С из-за содержания в нем титана.
Наиболее близким аналогом предлагаемого материала является керамический композиционный материал, содержащий:
AlN или Al2O3 или Al4C3 | 5,0 масс. % |
В или BN | 0,5-3,0 масс. % |
Cw | 20,0-30,0 об. % |
SiC | остальное, |
при этом графитовые нитевидные кристаллы (вискеры) Cw имеют диаметр 0,02-2 мкм и длину 5-100 мкм, а соотношение их длины к диаметру составляет не менее 5 (US 4925815 А, п. 1 ф.и., пример 2, 15.05.1990 г.).
Введение в состав материала вискеров углерода Cw повышает прочностные характеристики на 20-25% при комнатной температуре и вакууме, однако из-за низкой окислительной стойкости углерода при высокой температуре происходит его выгорание, что приводит к потере прочности. Также к недостаткам материала можно отнести относительно низкие рабочую температуру, составляющую 1400°С, жаростойкость при температуре 1500°С и высокую температуру спекания 2100-2150°С, которая значительно затрудняет изготовление сложнопрофильных крупногабаритных деталей.
Технической задачей предлагаемой группы изобретений является разработка керамического композиционного материала и изделия, выполненного из него, работоспособных в условиях воздуха (окислительная среда) и продуктах сгорания топлива при температуре 1500°С.
Техническим результатом группы изобретений является снижение температуры спекания керамического композиционного материала до 1800-1900°С, повышение рабочей температуры до 1500°С и жаростойкости (изменение (убыль) массы в атмосфере воздуха и продуктах сгорания топлива при температуре 1500°С в течение 500 ч не более 3%) при сохранении прочностных характеристик при комнатной температуре, а также обеспечение теплопроводности материала на уровне 65-100 Вт/м⋅К.
Для достижения технического результата предложен керамический композиционный материал, полученный методом искрового плазменного спекания с применением индукционного нагрева и содержащий карбид кремния SiC, нитрид алюминия AlN, карбидокремниевые нитевидные кристаллы SiCw и оксид иттрия Y2O3, при следующем соотношении, масс. %:
AlN | 5-7 |
SiCw | 5-15 |
Y2O3 | 3-5 |
SiC | основа. |
Предпочтительное соотношение длины и диаметра нитевидных кристаллов карбида кремния SiCw составляет 400-500.
Также предложено изделие, выполненное из данного керамического композиционного материала.
В отличие от материала-прототипа, для которого при температурах более 1400°C характерно выгорание углерода, в связи с чем материал приобретает пористую структуру и низкую прочность, наличие в предлагаемом составе материала нитевидных волокон карбида кремния SiCw повышает его прочность как при комнатной температуре, так и при температурах порядка 1500°C. Нитевидные кристаллы карбида кремния обладают рядом уникальных физических и механических свойств, в частности исключительно высокой, приближающейся к теоретической, механической прочностью, превышающей прочность массивных монокристаллов в 100-1000 раз, при этом прочность нитевидных кристаллов резко возрастает при уменьшении их диаметра. Это связано с тем, что при малых диаметрах нитевидные кристаллы практически не содержат дислокаций и имеют поверхность с минимальным количеством дефектов. По этой же причине они обладают особыми тепловыми, электро- и магнитными свойствами - благодаря слабому рассеянию носителей заряда на дефектах и поверхностях нитевидные кристаллы карбида кремния обладают более высокими теплопроводностью и электропроводностью, чем у обычных монокристаллов.
При содержании вискеров карбида кремния в количестве более 15 масс. % происходит формирование структурных неоднородностей за счет того, что вискеры могут образовывать локальные агломерации при перемешивании исходных компонентов при получении материала, что в свою очередь способствует снижению механических характеристик.
Предпочтительное соотношение длины и диаметра нитевидных волокон карбида кремния SiCw составляет 400-500. Данное соотношение позволяет равномерно распределить нитевидные кристаллы карбида кремния по объему шихты материала при перемешивании исходных компонентов. Превышение заданных значений приводит к образованию локальных агломераций, которые, в свою очередь, делают процесс изготовления материала более трудоемким и снижают физико-механические свойства спеченного материала. При меньшем соотношении длины и диаметра волокна карбида кремния в меньшей степени влияют на повышение механических свойств керамического композиционного материала.
Спекание предложенного керамического композиционного материала при температурах 1800-1900°C сопровождается рекристаллизационным ростом зерен карбида кремния и соответствующей деградацией механических свойств. Предотвратить рекристаллизацию можно путем введения в спекаемый материал компонентов, изоморфных карбиду кремния и образующих с ним при температуре спекания твердые растворы. К числу таких соединений относится, в частности, нитрид алюминия, имеющий структуру вюртцита, характерную для альфа-модификации карбида кремния, и образующий вследствие этого твердые растворы в химических системах SiC-AlN и SiC-AlN-Al2OC. Роль нитрида алюминия заключается в создании эффективного препятствия росту зерна карбида кремния. При этом твердые растворы SiC-AlN образуются на границах зерен карбида кремния и нитрида алюминия, повышая плотность и трещиностойкость керамики.
Одновременное наличие в составе материала нитрида алюминия и оксида иттрия в заданных количествах обеспечивают повышение рабочей температуры материала до 1500°C, его жаростойкости (изменение (убыль) массы в атмосфере воздуха и продуктах сгорания топлива при температуре 1500°C в течение 500 ч составляет не более 3%), а также снижение открытой пористости до значений не более 1%. Данный эффект достигается за счет взаимодействия Y2O3 с пленкой SiO2, которая образуется под воздействием кислорода воздуха и всегда присутствует на поверхности порошка карбида кремния. Наличие жидкой фазы SiO2-Y2O3 способствует растворению нитрида алюминия в карбиде кремния и перекристаллизации с образованием твердых растворов AlN-SiC. Параллельно жидкая фаза способствует перестройке твердых частиц в соответствии с механизмом скольжения по границам зерен относительно друг друга за счет перераспределения жидкости под действием капиллярных сил, а также происходит граничное растворение зерен карбида кремния, не участвующих в образовании твердых растворов, приводящее к значительному уплотнению. Содержание оксида иттрия 3-5 масс. % в составе шихты достаточно для образования необходимого количества жидкой фазы и обеспечения в дальнейшем высокой жаростойкости конечного материала. Большого количества жидкой фазы следует избегать в силу того, что повышается вероятность деформации готового материала при воздействии рабочих температур, также может наблюдаться испарение жидкой фазы и ее взаимодействие с SiC, что приведет к неполному уплотнению материала.
Таким образом, образование в процессе спекания жидкой фазы взаимодействующих веществ (Y2O3 с пленкой SiO2) приводит к развитию микроструктуры и способствует значительному уплотнению материала, обеспечивая открытую пористость не более 1%, а также приводит к снижению температуры спекания на 200-350°C.
При содержании нитрида алюминия менее 5 масс. % количества образованного твердого раствора SiC-AlN недостаточно для предотвращения процесса рекристаллизации зерен карбида кремния. Введение же нитрида алюминия свыше 7 масс. % приводит в повышению окисляемости и деформации материала при температурах более 1300°C
Высокое содержание Y2O3 более 5 масс. % также приводит к снижению рабочей температуры материала вследствие окисляемости материала из-за высокой подвижности ионов иттрия при температурах выше 1200-1300°C.
Формирование термостойкой стеклокерамической фазы на внешней поверхности материала препятствует проникновению кислорода вглубь материала, а также снижает образование стеклофазы на границе зерен за счет образования твердых растворов, что, в свою очередь, повышает окислительную стойкость керамического композиционного материала, обеспечивая высокие значения его рабочей температуры и жаростойкости.
Получение предлагаемого материала проводят методом искрового плазменного спекания. Технология метода искрового плазменного спекания основана на прохождении импульса постоянного тока непосредственно через заготовку. При этом генерируются очень высокие скорости нагрева и охлаждения (до 600°C/мин). Данный метод позволяет достигнуть 100% уплотнения заготовки при более низких температурах и времени, чем обычный обжиг или горячее изостатическое прессование. Это позволяет исключить нежелательный рост зерен матрицы и деградацию наполнителя в случае армирования получаемого материала.
Таким образом, изготовление материала методом искрового плазменного спекания и подобранное соотношение компонентов, обеспечивающее протекание описанного выше жидкофазного механизма, позволяют снизить температуру спекания материала на 200-350°C.
Примеры осуществления.
Для получения шихты предложенного керамического композиционного материала использовали порошки исходных компонентов со следующим средним размером фракций: 2,5 мкм для карбида кремния, 0,5 мкм для нитрида алюминия и 0,3 мкм для оксида иттрия. Перемешивание тонкодисперсных порошков исходных компонентов проводили посредством магнитной мешалки и ультразвукового гомогенизатора в стеклянных стаканах в среде изопропилового спирта в течение 2 часов с последующей сушкой при температуре 90°C в течение 6-8 ч. Спекание керамического композиционного материала проводили на установке искрового плазменного спекания HPW 400/500-2200-2500-PS/BK методом гибридного нагрева (искровое плазменное спекание и индукционный нагрев) в среде азота при температуре 1800-1900°C.
Были изготовлены образцы предлагаемого керамического композиционного материала трех составов, а также образец материала-прототипа. Составы образцов материалов приведены в таблице 1.
Далее образцы испытывали на жаростойкость в электропечи типа SNOL 12/16 при температуре 1500°C в течение 500 ч. в атмосфере воздуха с фиксацией массы образцов до и после нагрева. Испытания на 4-х точечный изгиб проводили с использованием испытательной машины Zwick Roell Z010 при комнатной температуре. Коэффициент теплопроводности определяли расчетным путем на основании данных измерения температуропроводности и теплоемкости в интервале температур 20-1500°C методами лазерной вспышки (в среде аргона с расходом 70 мл/мин с калибровкой мощности импульса излучения по стандартному образцу из монокристаллического α-Al2O3), дифференциальной сканирующей калориметрии (с использованием платиновых тиглей при нагревании 10°C/мин в среде протока гелия 100 мл/мин) и адиабатической калориметрии (в среде аргона со скоростью нагрева 3°C/мин). Результаты исследований представлены в таблице 2.
Анализ полученных результатов свидетельствует о том, что предлагаемый керамический композиционный материал обладает сниженной на 200-350°C относительно прототипа температурой спекания, повышенной до 1500°C рабочей температурой и жаростойкостью (изменение массы в атмосфере воздуха и продуктах сгорания топлива при температуре 1500°C в течение 500 ч не более 3%), при этом прочностные характеристики при комнатной температуре сохранены на высоком уровне (прочность при 4-х точечном изгибе составляет 510-620 МПа), а значение теплопроводности материала составляет 65-100 Вт/м⋅К.
Таким образом, применение предлагаемого керамического композиционного материала при изготовлении теплонагруженных деталей перспективных газотурбинных установок, в том числе облицовки камеры сгорания, обеспечивает их работоспособность в условиях воздействия агрессивной среды при температуре 1500°C в течение длительного времени (не менее 500 ч), что позволяет повысить надежность и ресурс изделий.
Claims (4)
1. Керамический композиционный материал, содержащий карбид кремния SiC, нитрид алюминия AlN и нитевидные кристаллы, отличающийся тем, что он получен методом искрового плазменного спекания с применением индукционного нагрева, содержит карбидокремниевые нитевидные кристаллы SiCw и дополнительно содержит оксид иттрия Y2O3, при следующем соотношении, масс. %:
2. Керамический композиционный материал по п. 1, отличающийся тем, что соотношение длины и диаметра нитевидных кристаллов карбида кремния SiCw составляет 400-500.
3. Изделие из керамического композиционного материала, отличающееся тем, что оно выполнено из материала по п. 1 или 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018126456A RU2700428C1 (ru) | 2018-07-18 | 2018-07-18 | Керамический композиционный материал и изделие, выполненное из него |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018126456A RU2700428C1 (ru) | 2018-07-18 | 2018-07-18 | Керамический композиционный материал и изделие, выполненное из него |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2700428C1 true RU2700428C1 (ru) | 2019-09-17 |
Family
ID=67989583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018126456A RU2700428C1 (ru) | 2018-07-18 | 2018-07-18 | Керамический композиционный материал и изделие, выполненное из него |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2700428C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2744543C1 (ru) * | 2020-09-15 | 2021-03-11 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Способ получения керамического композиционного материала на основе карбида кремния, армированного волокнами карбида кремния |
RU2795405C1 (ru) * | 2022-04-08 | 2023-05-03 | Общество с ограниченной ответственностью "ЦЕНТР КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ" | Способ получения армированного композиционного материала на основе карбида кремния |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345173A (ja) * | 1986-08-08 | 1988-02-26 | 日本特殊陶業株式会社 | 高靭性セラミツク焼結体とその製造法 |
US4925815A (en) * | 1986-09-03 | 1990-05-15 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Silicon carbide composite ceramic |
US5057465A (en) * | 1985-07-10 | 1991-10-15 | Hitachi, Ltd. | Ceramic matrices reinforced with SiC, Si3 N4 or SiAlON fibers having a coating of C, B or BN containing SiC or Si3 N4 |
RU2018502C1 (ru) * | 1992-06-25 | 1994-08-30 | Акционерное общество закрытого типа "Синалит Ко Лтд" | Способ изготовления керамики на основе карбида кремния |
RU2190582C2 (ru) * | 2001-01-09 | 2002-10-10 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Керамикообразующая композиция, керамический композиционный материал на ее основе и способ его получения |
RU2498963C1 (ru) * | 2012-03-23 | 2013-11-20 | Открытое акционерное общество "Композит" (ОАО "Композит") | Шихта керамического материала для высокотемпературного применения в окислительных средах |
RU2560046C1 (ru) * | 2014-10-07 | 2015-08-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Керамический окислительно-стойкий композиционный материал и изделие, выполненное из него |
-
2018
- 2018-07-18 RU RU2018126456A patent/RU2700428C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5057465A (en) * | 1985-07-10 | 1991-10-15 | Hitachi, Ltd. | Ceramic matrices reinforced with SiC, Si3 N4 or SiAlON fibers having a coating of C, B or BN containing SiC or Si3 N4 |
JPS6345173A (ja) * | 1986-08-08 | 1988-02-26 | 日本特殊陶業株式会社 | 高靭性セラミツク焼結体とその製造法 |
US4925815A (en) * | 1986-09-03 | 1990-05-15 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Silicon carbide composite ceramic |
RU2018502C1 (ru) * | 1992-06-25 | 1994-08-30 | Акционерное общество закрытого типа "Синалит Ко Лтд" | Способ изготовления керамики на основе карбида кремния |
RU2190582C2 (ru) * | 2001-01-09 | 2002-10-10 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Керамикообразующая композиция, керамический композиционный материал на ее основе и способ его получения |
RU2498963C1 (ru) * | 2012-03-23 | 2013-11-20 | Открытое акционерное общество "Композит" (ОАО "Композит") | Шихта керамического материала для высокотемпературного применения в окислительных средах |
RU2560046C1 (ru) * | 2014-10-07 | 2015-08-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Керамический окислительно-стойкий композиционный материал и изделие, выполненное из него |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2744543C1 (ru) * | 2020-09-15 | 2021-03-11 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Способ получения керамического композиционного материала на основе карбида кремния, армированного волокнами карбида кремния |
RU2795405C1 (ru) * | 2022-04-08 | 2023-05-03 | Общество с ограниченной ответственностью "ЦЕНТР КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ" | Способ получения армированного композиционного материала на основе карбида кремния |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Herrmann et al. | Silicon nitride/silicon carbide nanocomposite materials: I, fabrication and mechanical properties at room temperature | |
Sciti et al. | Properties of a pressureless‐sintered ZrB2–MoSi2 ceramic composite | |
Singh et al. | Reactive melt infiltration of silicon-niobium alloys in microporous carbons | |
JP4014254B2 (ja) | Si濃度段階的変化型Si−SiC材料及びSi濃度段階的変化型SiC繊維強化Si−SiC複合材料並びにこれらの製造方法 | |
Ortona et al. | Aging of reticulated Si-SiC foams in porous burners | |
Lim et al. | Low-temperature processing of porous SiC ceramics | |
Choi et al. | Effect of alkaline earth metal oxide addition on flexural strength of porous mullite-bonded silicon carbide ceramics | |
Guo et al. | Low‐temperature hot pressing of ZrB2‐based ceramics with ZrSi2 additives | |
Yan et al. | In situ synthesis of ultrafine ZrB2–SiC composite powders and the pressureless sintering behaviors | |
Vijayan et al. | Low‐density open cellular silicon carbide foams from sucrose and silicon powder | |
Ramírez-Rico et al. | Compressive strength degradation in ZrB2-based ultra-high temperature ceramic composites | |
RU2700428C1 (ru) | Керамический композиционный материал и изделие, выполненное из него | |
CN108409328A (zh) | 一种碳化硼陶瓷复合材料的制备方法 | |
Tsunoura et al. | Oxidation behavior of monolithic HfSi2 and SiC fiber-reinforced composites fabricated by melt infiltration using Si–8.5 at% Hf alloy at 800–1200° C in dry air | |
Wang et al. | Oxidation behavior of SiC platelet‐reinforced ZrB2 ceramic matrix composites | |
Yang et al. | Microstructure and strengthening behavior in high content SiC nanowires reinforced SiC composites | |
Zheng et al. | The High‐Temperature Oxidation Behavior of Reaction‐Bonded Porous Silicon Carbide Ceramics in Dry Oxygen | |
Hu et al. | Porous S i3 N 4/S i C Ceramics Prepared via Nitridation of Si Powder with S i C Addition | |
Khodaei et al. | Improvement toughness of SiC ceramic by adding Cr2O3 and annealing process | |
Ahmadbeygi et al. | Fabrication of SiC body by microwave sintering process | |
Sharma et al. | Flash spark plasma sintering of SiC: Impact of additives | |
RU2560046C1 (ru) | Керамический окислительно-стойкий композиционный материал и изделие, выполненное из него | |
Utkin et al. | Microstructure and mechanical properties of C/(ZrB2–SiC) composites produced from ceramic ribbons | |
RU2689947C1 (ru) | Керамический композиционный материал | |
JPH10167831A (ja) | SiC繊維強化Si−SiC複合材料及びその製造方法 |