RU2697539C1 - Способ комплексной переработки мелкодисперсных металлосодержащих отходов - Google Patents
Способ комплексной переработки мелкодисперсных металлосодержащих отходов Download PDFInfo
- Publication number
- RU2697539C1 RU2697539C1 RU2019110441A RU2019110441A RU2697539C1 RU 2697539 C1 RU2697539 C1 RU 2697539C1 RU 2019110441 A RU2019110441 A RU 2019110441A RU 2019110441 A RU2019110441 A RU 2019110441A RU 2697539 C1 RU2697539 C1 RU 2697539C1
- Authority
- RU
- Russia
- Prior art keywords
- magnetic field
- pulp
- ferromagnetic elements
- stage
- metal
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 32
- 239000002184 metal Substances 0.000 title claims abstract description 32
- 230000005291 magnetic effect Effects 0.000 claims abstract description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 35
- 238000000926 separation method Methods 0.000 claims abstract description 29
- 239000002893 slag Substances 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 17
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 16
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 16
- 230000000694 effects Effects 0.000 claims abstract description 10
- 230000009467 reduction Effects 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 239000004033 plastic Substances 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 9
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910001172 neodymium magnet Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 3
- 239000002956 ash Substances 0.000 claims 1
- 230000008030 elimination Effects 0.000 abstract description 7
- 238000003379 elimination reaction Methods 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 7
- 238000000605 extraction Methods 0.000 abstract description 5
- 239000003245 coal Substances 0.000 abstract description 2
- 239000010802 sludge Substances 0.000 abstract description 2
- 238000005272 metallurgy Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 19
- 230000008569 process Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 238000007885 magnetic separation Methods 0.000 description 10
- 239000012141 concentrate Substances 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 8
- 239000012190 activator Substances 0.000 description 7
- 229910000323 aluminium silicate Inorganic materials 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- -1 chamosite Chemical compound 0.000 description 3
- 229910052595 hematite Inorganic materials 0.000 description 3
- 239000011019 hematite Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 229910052598 goethite Inorganic materials 0.000 description 1
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000320 mechanical mixture Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B5/00—Operations not covered by a single other subclass or by a single other group in this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/002—High gradient magnetic separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/005—Separation by a physical processing technique only, e.g. by mechanical breaking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/18—Magnetic separation whereby the particles are suspended in a liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B2101/00—Type of solid waste
- B09B2101/30—Incineration ashes
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Изобретение относится к области химической и металлургической промышленности и может быть использовано для комплексной переработки мелкодисперсных металлосодержащих отходов, в частности для переработки красного шлама, а также золошлаковых отходов угольных тепловых электростанций. Способ включает этап смешивания металлосодержащих отходов с водой, активированной магнитным полем, до состояния пульпы и этап воздействия на пульпу в реакционной камере вращающимся магнитным полем, образованным вращающимися ферромагнитными элементами. При этом этап воздействия на пульпу вращающимся магнитным полем ведут в вихревом слое при скорости вращения ферромагнитных элементов не менее 2800 об/мин до возникновения эффекта магнитострикции и последующего восстановления оксидов металлов. После этого проводят этап их гидроциклонного разделения. Технический результат изобретения заключается в повышении эффективности переработки отходов за счет извлечения целевых продуктов при ликвидации гелевой составляющей и двойного электрического слоя в красном шламе, и ликвидации двойного электрического слоя в золошлаковых отходах. 8 з.п. ф-лы, 2 табл., 1 пр.
Description
Изобретение относится к области химической и металлургической промышленности и может быть использовано для комплексной переработки мелкодисперсных металлосодержащих отходов, в частности для переработки красного шлама, а также золошлаковых отходов угольных тепловых электростанций.
Из уровня техники известен способ комплексной переработки золошлаковых отходов (Патент России на изобретение №2588521, опубликован 27.06.2016), включающий систему транспортировки золошлаковых отходов, узел подготовки отходов с удалением недожога и последовательный ряд технологических переделов, направленных на селективное извлечение железосодержащего и алюмосиликатного концентратов, а также благородных металлов, при котором на магнитную сепарацию направляют обесшламленные после удаления недожога золошлаковые отходы крупностью не более 0,5 мм, причем магнитную сепарацию осуществляют в две стадии: первую стадию осуществляют в слабом, по сравнению со второй стадией, магнитном поле, а слабомагнитную фракцию первой стадии магнитной сепарации подвергают обработке в более сильном магнитном поле, при этом объединенные магнитные фракции обеих стадий магнитной сепарации направляют на первую винтовую сепарацию для повышения качества железосодержащего концентрата, а хвосты второй стадии магнитной сепарации направляют на вторую винтовую сепарацию для получения алюмосиликатного концентрата, при этом тяжелую фракцию второй винтовой сепарации направляют на концентрационный стол для извлечения благородных металлов, причем удаление недожога осуществляют в виде фракции +0,5 мм при классификации на грохоте.
Недостатками известного способа являются сложная технологическая схема переработки, а также ограничение переработки золошлаковых отходов по крупности (не более 0,5 мм).
Известен способ переработки золошлаковых отходов из отвалов системы гидрозолоудаления тепловых электростанций, работающих на каменноугольном топливе (Патент России на изобретение №2363885, опубликован 10.08.2009), включающий механическую транспортировку отходов из отвала, их разжижение, разделение разжиженной золошлаковой смеси по фракциям с требуемой для последующей утилизации крупностью золошлаковых частиц, по меньшей мере, на два потока, сгущение каждого потока с отделением полых микросфер и частиц несгоревшего угля, а также осветленной воды, и подачу обезвоженной массы каждой фракции на соответствующую утилизацию, причем дополнительно проводят гидродинамическую активацию золошлаковых отходов разжижающей средой, в качестве разжижающей среды используют, по меньшей мере, часть пульпы текущего поступления из системы гидрозолоудаления, причем скорость подачи пульпы на разжижение и активацию золошлаковых отходов в зоне смешения с ними пульпы устанавливают в пределах от 20 до 40 м/с, а соотношение твердой и жидкой фаз полученной смеси - в пределах от 1:20 до 1:10.
Недостатком известного способа является сложность технологической схемы переработки, а также использование большого объема воды. Кроме того, известное техническое решение характеризуется большими энергетическими затратами.
Известен способ переработки мелкодисперсного красного шлама (Патент России на изобретение №2588910, опубликован 10.07.2016), включающий его измельчение и последующее разделение с помощью магнитного поля на магнитную и немагнитную фракции, причем измельчение производят с одновременным разделением красного шлама на составные части путем пропускания красного шлама через дезинтегратор с вращающимся электромагнитным полем, с частотой вращения в диапазоне от 110 до 130 Гц и напряженностью от 100 до 160 А/м, разделяющим частицы красного шлама на окислы металлов и окислы кремния, после чего отводят воду, а сухой остаток подают на разделение с помощью магнитного поля на магнитную и немагнитную фракции. Перед измельчением красного шлама с одновременным разделением его на составные части красный шлам нагревают до температуры 120-180°C.
Недостатками известного способа является сложность и громоздкость технологической схемы, при этом предварительный нагрев красного шлама до температуры 120-180°C приводит также к дополнительным энергетическим затратам. Кроме того, известное техническое решение характеризуется большим энергопотреблением вследствие неравномерности электромагнитного поля по сечению потока, из-за чего необходимо поддерживать высокое значение его напряженности.
Известен способ комплексной переработки красного шлама (Патент России на изобретение №2528918, опубликован 20.09.2014), содержащего гематит, шамозит, гетит, магнетит и алюмосиликаты, путем магнитно-гравитационной обработки с получением железосодержащего концентрата и алюмосиликатного продуктов, причем исходный красный шлам предварительно подвергают диспергации в присутствии гексаметафосфата натрия в роторно-пульсационном аппарате, затем осуществляют низкоградиентную мокрую магнитную сепарацию в поле напряженностью 0,1-0,15 Тл с получением магнетитового и коллективного концентрата, коллективный концентрат подвергают высокоградиентной магнитной сепарации в две стадии в поле напряженностью не менее 1,2 Тл с извлечением магнитной и немагнитной фракций, магнитную фракцию подвергают гравитационному обогащению на концентрационном столе с получением гематитового концентрата и хвостов, а немагнитную фракцию объединяют с хвостами гравитационного обогащения и подвергают двухстадийной селективной флокуляции в присутствии флокулянта для отделения компонента, состоящего главным образом из оксидов алюминия и кремния, от железосодержащего продукта, который обогащают высокоградиентной магнитной сепарацией при напряженности поля 0,5-0,7 Тл с получением дополнительного железосодержащего продукта, который объединяют с гематитовым концентратом с получением железосодержащего концентрата и остаточных алюмосиликатов, которые объединяют с компонентом, состоящим главным образом из оксидов алюминия и кремния, с получением алюмосиликатного продукта.
Недостатком известного способа является его не комплексность, поскольку выделяются только железосодержащие соединения и алюмосиликат. Кроме того, известное техническое решение характеризуется сложностью технологического процесса и громоздкостью технологической схемы, а также большими энергетическими затратами.
Наиболее близким техническим решением по совокупности существенных признаков к заявляемому изобретению является способ переработки красного шлама (Патент России на изобретение №2634106, опубликован 23.10.2017), принятый за прототип, включающий его измельчение и последующее разделение магнитной сепарацией на магнитную и немагнитную фракции, причем перед измельчением красный шлам смешивают с активированной магнитным полем водой до состояния пульпы, для измельчения шлама формируют поток пульпы, пропускают его через «кипящий слой» ферромагнетиков, на который воздействуют вращающимся магнитным полем с изменением частоты вращения магнитного поля до появления в потоке пульпы кавитации при резонансе колебаний ферромагнетиков с собственными колебаниями частиц пульпы в диапазоне частот 14-25 кГц, разрушающих твердые фракции пульпы на составляющие мелкодисперсные элементы, которые после отвода воды для последующего цикла отправляют на магнитную сепарацию.
Недостатком известного способа является его не комплексность, поскольку описанные этапы направлены на измельчение и последующее отделение только железа посредством магнитной сепарации.
Общий недостаток описанных выше технических решений обусловлен тем, что металлосодержащие соединения в красном шламе покрыты оболочкой из кремниевых соединений (гелевая составляющая) и двойным электрическим слоем, а в случае с золошлаковыми отходами угольных тепловых электростанций - только двойным электрическим слоем. Стоит отметить, что только ликвидация этих составляющих позволяет разложить и выделить наибольшее количество оксидов металлов, находящихся в мелкодисперсных металлосодержащих отходах.
Предлагаемым изобретением решается техническая проблема недостаточного извлечения оксидов металлов, входящих в состав мелкодисперсных металлосодержащих отходов.
Технический результат заявляемого изобретения заключается в повышении эффективности переработки мелкодисперсных металлосодержащих отходов за счет извлечения целевых продуктов при ликвидации гелевой составляющей и двойного электрического слоя в красном шламе, и ликвидации двойного электрического слоя в золошлаковых отходах.
Указанный технический результат достигается за счет того, что способ комплексной переработки мелкодисперсных металлосодержащих отходов включает этап смешивания металлосодержащих отходов с водой, активированной магнитным полем, до состояния пульпы и этап воздействия на пульпу в реакционной камере вращающимся магнитным полем, образованным вращающимися ферромагнитными элементами, причем этап воздействия на пульпу вращающимся магнитным полем ведут в вихревом слое при скорости вращения ферромагнитных элементов не менее 2800 об/мин. до возникновения эффекта магнитострикции и последующего восстановления оксидов металлов, после чего проводят этап их гидроциклонного разделения.
В дополнительном аспекте предложенное техническое решение характеризуется тем, что в качестве мелкодисперсных металлосодержащих отходов используют красный шлам.
В дополнительном аспекте предложенное техническое решение характеризуется тем, что в качестве мелкодисперсных металлосодержащих отходов используют золошлаковые отходы угольных тепловых электростанций.
В дополнительном аспекте предложенное техническое решение характеризуется тем, что рН воды, активированной магнитным полем, составляет не менее 7 единиц.
В дополнительном аспекте предложенное техническое решение характеризуется тем, что вязкость пульпы не превышает 1,48 Па·с.
В дополнительном аспекте предложенное техническое решение характеризуется тем, что для образования вращающегося магнитного поля используют индуктор со статором асинхронного двигателя мощностью не менее 3 кВт с двумя обмотками трехфазного тока.
В дополнительном аспекте предложенное техническое решение характеризуется тем, что ферромагнитные элементы выполнены из никеля и покрыты пластмассой.
В дополнительном аспекте предложенное техническое решение характеризуется тем, что ферромагнитные элементы выполнены из сплава неодим-железо-бор и покрыты пластмассой.
В дополнительном аспекте предложенное техническое решение характеризуется тем, что этап гидроциклонного разделения проводят в герметичных ёмкостях в среде инертных газов.
Предлагаемая совокупность этапов заявляемого способа направлена на извлечение целевых продуктов из мелкодисперсных металлосодержащих отходов.
Магнитную подготовку воды проводят с целью последующей ликвидации двойного электрического слоя и ликвидации гелевой составляющей (жидкого стекла) на этапе воздействия на полученную пульпу вращающимся магнитным полем в вихревом слое (при скорости вращения ферромагнитных элементов не менее 2800 об/мин), образованным ферромагнитными элементами в реакционной камере. При воздействии на воду магнитным полем создаются условия для изменения состояния кристаллической решетки молекул воды, а именно условия для диссоциации воды с образованием положительных ионов водорода Н+ и отрицательных ионов ОН-. После магнитной обработки рН воды составляет не менее 7 единиц, что способствует протеканию процесса электролиза на следующих этапах. При рН воды менее 7 единиц процесс электролиза замедляется, при этом без электролитического процесса затруднено выделение в водный раствор оксидов металлов, входящих в состав мелкодисперсных металлосодержащих отходов.
Последующее смешивание мелкодисперсных металлосодержащих отходов с водой, активированной магнитным полем, проводят контролируя вязкость образующейся пульпы. Вязкость пульпы не должны превышать 1,48 Па·с. Рост вязкости влияет на скорость вращения ферромагнитных элементов и, как следствие, на образующийся вихревой слой. При вязкости полученной пульпы более 1,48 Па·с, на этапе воздействия на нее вращающимся магнитным полем, ухудшается ее движение, в результате чего замедляется протекание физико-химических процессов в реакционной камере.
За счет проведения процесса переработки мелкодисперсных металлосодержащих отходов в вихревом слое, при скорости вращения ферромагнитных элементов не менее 2800 об/мин, до возникновения эффекта магнитострикции и последующего восстановления оксидов металлов, достигается извлечение целевых продуктов из металлосодержащих отходов, причем ликвидируется гелевая составляющая и двойной электрический слой в красном шламе и двойной электрический слой в золошлаковых отходах. За счет воздействия магнитного поля на пульпу адсорбированные ионы Н+ и ОН- соединяются, нейтрализуя друг друга, в результате чего двойной электрический слой и гелевая составляющая распадается. Этот процесс стимулируется интенсивным перемешиванием, магнитогидродинамическими ударами (ударной волной), ультразвуком и другими факторами. В результате твердая частица, лишенная гелевой составляющей и двойного электрического слоя, приобретает способность к увеличенной скорости оседания и протеканию химических реакций восстановления оксидов металлов в системе. Это позволяет на этапе гидроциклонного разделения в среде инертных газов беспрепятственно разделять получаемые продукты по размерности и удельной плотности.
При воздействии на пульпу вращающимся магнитным полем, созданным вращающимися ферромагнитными элементами, при скорости их вращения не менее 2800 об/мин в реакционной камере возникают следующие силы и энергии:
-акустические волны;
-магнитный гидравлический импульс (удар);
-тепловая энергия;
- звуковые волны;
-кавитация механическая;
-кавитация гидродинамическая;
- кавитация акустическая;
-механическая сила удара;
-механическая сила трения;
-ультразвук.
Кроме перечисленных сил и энергий в процессе переработки принимают участие:
- центробежная сила вращения ферромагнитных элементов;
-центробежная сила вращения пульпы;
-электромагнитные волны;
- процесс электролиза.
Перечисленные процессы протекают одновременно, воздействуя на химические соединения, входящие в состав мелкодисперсных металлосодержащих отходов, с получением химических элементов в виде оксидов металлов, входящих в состав перерабатываемого сырья. Кроме того, перечисленные силы и энергии обеспечивают разложение всех сложных соединений и обеспечивают выделение связанной воды, содержание которой может достигать 60% в красном шламе, при этом не требуется тепловая энергия для ликвидации влаги, а полученная вода может быть использована на этапе намагничивания. Скорость вращения ферромагнитных элементов должна составлять не менее 2800 об/мин, в предпочтительном варианте выполнения не менее 3000 об/мин При заданной скорости в вихревом слое возникают все перечисленные силы и энергии. При скорости вращения ферромагнитных элементов менее 2800 об./мин не происходит процесс измельчения металлосодержащих отходов, а также последующее восстановление и разделение оксидов металлов, поскольку в этом случае система работает как смеситель. Ферромагнитные элементы, покрытые пластмассой, изготовленные из никеля, увеличивают магнитострикцию в 200 раз, а изготовленные из сплава неодим-железо-бор в 1000 раз и более. Покрытие ферромагнитных элементов пластмассой исключает растворение основного металла ферромагнитного элемента и переход его в воду на этапе намагничивания воды, и в пульпу на этапе воздействия на неё вращающимся магнитным полем. Использование таких ферромагнитных элементов обеспечивает создание высоких параметров магнитострикции. Для образования вихревого слоя количество ферромагнитных элементов в реакционной камере может быть от ста до несколько тысяч штук. При протекании процесса электролиза ферромагнитные элементы, выполненные из никеля или из сплава неодим-железо-бор, являются электродами, обеспечивающие образование водорода. Образующийся водород, в свою очередь, является восстановителем в системе.
В результате описанных процессов, на выходе из реакционной камеры водяная пульпа представляет механическую смесь, состоящую из воды и химических соединений: Al2O3; SiО2; Fe2О3; СаО; ТiO2; MgО, оксидов редкоземельных металлов и других металлов, входящих в перерабатываемый красный шлам и золошлаковые отходы угольных тепловых электростанций.
Этап разделения восстановленных оксидов металлов проводят в гидроциклонах в среде инертных газов. Преимуществом гидроциклонного разделения в среде инертных газов в данном случае является быстрота разделения, обеспечивающая высокую удельную производительность, эффективность и надежность. Установлено, что на воздухе активность восстановленных металлов уменьшается (то есть происходит поглощение кислорода из воздуха), при этом реакция соединения ведёт к большому выделению тепла, что может привести к возгоранию и взрыву при разделении восстановленных оксидов на воздухе. Для повышения безопасности разделения, восстановленных оксидов металлов, этап гидроциклонного разделения проводят в герметичных ёмкостях в среде инертных газов.
Способ осуществляется следующим образом. В емкость подается вода до ее заполнения. При заполнении заданного объёма срабатывает датчик уровня воды, при этом запускается водяной насос трубопровода подачи воды в магнитный активатор, одновременно с запуском водяного насоса трубопровода запускается магнитный активатор. При запуске магнитного активатора воды в реакционной камере магнитного активатора ферромагнитными элементами создается вихревой слой. Обработанная таким образом вода (рН воды составляет не менее 7 единиц) из магнитного активатора поступает в емкость, из которой по трубопроводу она подаётся в накопительную емкость водяным насосом.
К обработанной магнитным полем воде добавляют мелкодисперсные металлосодержащие отходы (красный шлам или золошлаковые отходы угольных тепловых электростанций), получая при этом пульпу с вязкостью не более 1,48 Па·с. Полученная пульпа подается в магнитный активатор представляющий собой реакционную камеру, состоящую из трубы из немагнитного материала, индуктора со статором асинхронного двигателя мощностью не менее 3 кВт с двумя обмотками трехфазного тока и корпуса. Во внутреннюю полость немагнитной цилиндрической трубы магнитного активатора закладываются ферромагнитные элементы цилиндрической формы из никеля, покрытые пластмассой, или ферромагнитные элементы, выполненные из сплава неодим-железо-бор, также покрытые пластмассой. Реакционная камера из немагнитного материала может быть выполнена в виде трубы из нержавеющих сталей, композиционных материалов, базальта, стеклопластика, стекловолокна, резины и других материалов. При подаче 3-х фазного тока начинает вращаться магнитное поле внутри реакционной камеры с одновременным вращением ферромагнитных элементов, в которых возникают магнитострикционные явления. Процесс комплексной переработки мелкодисперсных металлосодержащих отходов протекает в вихревом слое, образованным ферромагнитными элементами, при этом скорость вращения ферромагнитных элементов составляет не менее 2800 об/мин Этап воздействия на пульпу вращающимся магнитным полем проводят до возникновения эффекта магнитострикции и последующего восстановления оксидов металлов. Время воздействия на пульпу вращающимся магнитным полем составляет не менее 30 секунд.
Полученный раствор шламовым насосом подается в группу циклонов для разделения в среде инертных газов по фракциям и гранулометрическим размерам полученных продуктов с последующей промывкой их водой. Возможно использование других видов сепарации, используемых в горнодобывающей промышленности. После промывки полученных оксидов проводят отделение промывочной воды от порошков на центрифугах, причем вода возвращается в технологический процесс переработки. Предлагаемый способ обеспечивает восстановление и разделение всех металлов, содержащихся в красном шламе и в золошлаковых отходах угольных тепловых электростанций.
Способ поясняется примерами.
Пример 1. Комплексная переработка красного шлама. На первом этапе была обработана вода магнитным полем (рН = 7) после чего она смешивалась с 50 кг красного шлама до состояния пульпы вязкостью 1,15 Па·с. Затем проводился этап воздействия на пульпу вращающимся магнитным полем ферромагнитными элементами в реакционной камере, причем процесс переработки проходил в вихревом слое, при этом скорость вращения ферромагнитных элементов равна 2800 об/мин Этап воздействия на пульпу вращающимся магнитным полем проводили до возникновения эффекта магнитострикции и последующего восстановления оксидов металлов. Для образования вращающегося магнитного поля использовался индуктор со статором асинхронного двигателя мощностью 5,5 кВт с двумя обмотками трехфазного тока, одна из которых подсоединена к внешнему источнику тока по схеме звезда, а вторая по схеме треугольник. Ферромагнитные элементы выполнены из никеля и покрыты пластмассой. После воздействия на пульпу вращающимся магнитным полем был проведен этап гидроциклонного разделения в среде инертных газов восстановленных оксидов металлов, после которого проводили этап удаления воды. В результате переработки красного шлама получено 24 кг оксидов металлов, 17 кг воды и 8,69 кг минеральной составляющей, при этом потери составили 0,31 кг. Дисперсность полученных металлов составила от 2 до 50 мкм. Химический состав проб полученных продуктов представлен в Таблице 1.
Таблица 1
Химический состав проб полученных продуктов
Номер пробы |
Процентное содержание % | |||
Fe2О3 | ТiO2 | Al2O3 | SiO2 | |
1 | 34,6 | 3 | 12,9 | 9,6 |
2 | 33,8 | 3,2 | 15,0 | 12,3 |
3 | 32,8 | 3,8 | 15,0 | 14,9 |
4 | 33,7 | 3,6 | 9,1 | 12,7 |
5 | 33,1 | 3,4 | 15,3 | 13,6 |
6 | 33,7 | 3,4 | 15,6 | 13,7 |
Кроме того, получены и другие оксиды, их процентное содержание в полученных пробах составляет от 0,01 до 2 %, а именно MgO, V2O5, NаО, SО4 и другие. Содержание CaO в пробах составляет от 2,5 до 12,5%.
Пример 2. Комплексная переработка золошлаковых отходов угольных тепловых электростанций. На первом этапе была обработана вода магнитным полем (рН = 7,5) после чего она смешивалась с 50 кг золошлаковых отходов угольных тепловых электростанций до состояния пульпы вязкостью 1,48 Па·с. Затем проводился этап воздействия на пульпу вращающимся магнитным полем ферромагнитными элементами в реакционной камере, причем процесс переработки проходил в вихревом слое, при этом скорость вращения ферромагнитных элементов равна 3000 об/мин Этап воздействия на пульпу вращающимся магнитным полем проводили до возникновения эффекта магнитострикции и последующего восстановления оксидов металлов. Для образования вращающегося магнитного поля использовался индуктор со статором асинхронного двигателя мощностью 5,0 кВт с двумя обмотками трехфазного тока, одна из которых подсоединена к внешнему источнику тока по схеме звезда, а вторая по схеме треугольник. Ферромагнитные элементы выполнены из сплава неодим-железо-бор и покрыты пластмассой. После воздействия на пульпу вращающимся магнитным полем был проведен этап гидроциклонного разделения в среде инертных газов восстановленных оксидов металлов, с последующей промывкой их водой. Химический состав проб полученных продуктов представлен в Таблице 2.
Таблица 2
Химический состав проб полученных продуктов
Номер пробы |
Процентное содержание % | ||
Fe2О3 | Al2O3 | SiO2 | |
1 | 10,6 | 18,3 | 37,8 |
2 | 10,4 | 18,9 | 53,5 |
3 | 11,9 | 19,5 | 40,8 |
4 | 11,3 | 17,4 | 47,1 |
5 | 16,8 | 15,0 | 50,5 |
6 | 7,0 | 15,0 | 60,8 |
Кроме того, получены и другие оксиды, их процентное содержание в полученных пробах составляет от 0,01 до 2%, а именно CuО, V2O5, Ag2О, TiO2; WО3, CrО, NiО; MoО2, MnО, BaО, SrО, SnО и другие.
Таким образом, как показано в вышеприведенном описании изобретения, достигается технический результат, заключающийся в повышении эффективности переработки мелкодисперсных металлосодержащих отходов за счет извлечения целевых продуктов при ликвидации гелевой составляющей и двойного электрического слоя в красном шламе и ликвидации двойного электрического слоя в золошлаковых отходах.
Claims (9)
1. Способ комплексной переработки мелкодисперсных металлосодержащих отходов, включающий этап смешивания металлосодержащих отходов с водой, активированной магнитным полем, до состояния пульпы и этап воздействия на пульпу в реакционной камере вращающимся магнитным полем, образованным вращающимися ферромагнитными элементами, отличающийся тем, что этап воздействия на пульпу вращающимся магнитным полем ведут в вихревом слое при скорости вращения ферромагнитных элементов не менее 2800 об/мин до возникновения эффекта магнитострикции и последующего восстановления оксидов металлов, после чего проводят этап их гидроциклонного разделения.
2. Способ по п.1, отличающийся тем, что в качестве мелкодисперсных металлосодержащих отходов используют красный шлам.
3. Способ по п.1, отличающийся тем, что в качестве мелкодисперсных металлосодержащих отходов используют золошлаковые отходы угольных тепловых электростанций.
4. Способ по п.1, отличающийся тем, что рН воды, активированной магнитным полем, составляет не менее 7 единиц.
5. Способ по п.1, отличающийся тем, что вязкость пульпы не превышает 1,48 Па·с.
6. Способ по п.1, отличающийся тем, что для образования вращающегося магнитного поля используют индуктор со статором асинхронного двигателя мощностью не менее 3 кВт с двумя обмотками трехфазного тока.
7. Способ по п.1, отличающийся тем, что ферромагнитные элементы выполнены из никеля и покрыты пластмассой.
8. Способ по п.1, отличающийся тем, что ферромагнитные элементы выполнены из сплава неодим-железо-бор и покрыты пластмассой.
9. Способ п.1, отличающийся тем, что этап гидроциклонного разделения проводят в герметичных емкостях в среде инертных газов.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019110441A RU2697539C1 (ru) | 2019-04-09 | 2019-04-09 | Способ комплексной переработки мелкодисперсных металлосодержащих отходов |
PCT/RU2020/050018 WO2020209761A1 (en) | 2019-04-09 | 2020-02-10 | A method for integrated processing of finely dispersed metal-containing waste |
US17/602,515 US11911776B2 (en) | 2019-04-09 | 2020-02-10 | Method for integrated processing of finely dispersed metal-containing waste |
EP20718847.5A EP3953074B1 (en) | 2019-04-09 | 2020-02-10 | A method for integrated processing of finely dispersed metal-containing waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019110441A RU2697539C1 (ru) | 2019-04-09 | 2019-04-09 | Способ комплексной переработки мелкодисперсных металлосодержащих отходов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2697539C1 true RU2697539C1 (ru) | 2019-08-15 |
Family
ID=67640445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019110441A RU2697539C1 (ru) | 2019-04-09 | 2019-04-09 | Способ комплексной переработки мелкодисперсных металлосодержащих отходов |
Country Status (4)
Country | Link |
---|---|
US (1) | US11911776B2 (ru) |
EP (1) | EP3953074B1 (ru) |
RU (1) | RU2697539C1 (ru) |
WO (1) | WO2020209761A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2769857C1 (ru) * | 2021-07-29 | 2022-04-07 | Михаил Аркадьевич Карт | Установка для получения железоокисных пигментов из отходов газоочистки металлургического производства |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210331134A1 (en) * | 2020-04-27 | 2021-10-28 | Joseph Brifman | Micro-Pulse Micro-Arc Processing in Rotating Electromagnetic Fields |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2198943C2 (ru) * | 2001-04-09 | 2003-02-20 | Общество с ограниченной ответственностью "ЭКОТЕХ" | Способ комплексной переработки красного шлама и технологическая линия для его реализации |
US20090255371A1 (en) * | 2006-05-04 | 2009-10-15 | Krause-Rohm-Systeme Ag | Method for obtaining valuable products |
CN102994756A (zh) * | 2012-09-29 | 2013-03-27 | 贵州绿水青山环保科技有限公司 | 一种赤泥中富集稀土元素的方法 |
WO2013070121A1 (ru) * | 2011-11-07 | 2013-05-16 | Общество С Ограниченной Ответственностью Промышленная Компания "Технология Металлов" | Способ пирометаллугрической переработки красных шламов |
RU2528918C1 (ru) * | 2013-07-04 | 2014-09-20 | Открытое акционерное общество "Научно-исследовательский и проектный институт обогащения и механической обработки полезных ископаемых "Уралмеханобр" (ОАО "Уралмеханобр") | Способ комплексной переработки красных шламов |
RU2588910C1 (ru) * | 2015-05-07 | 2016-07-10 | Владимир Григорьевич Оленников | Способ переработки мелкодисперсного красного шлама |
RU2634106C1 (ru) * | 2016-12-22 | 2017-10-23 | Вячеслав Константинович Селиверстов | Способ переработки красного шлама |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006020840B4 (de) | 2006-05-04 | 2010-08-12 | Krause-Röhm-Systeme Ag | Verfahren zur Gewinnung von Magnetit |
RU2363885C1 (ru) | 2008-01-11 | 2009-08-10 | Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" | Способ и технологическая линия для переработки золошлаковых отходов из отвалов системы гидрозолоудаления тепловых электростанций |
US8845906B2 (en) * | 2011-12-23 | 2014-09-30 | Don E. Henley And Associates, Llc | Process for single system electrocoagulation, magnetic, cavitation and flocculation (EMC/F) treatment of water and wastewater |
CN106311718B (zh) | 2016-04-18 | 2018-09-25 | 李大伦 | 一种含重金属废弃物的无害化处置和资源化利用方法 |
CN108686828B (zh) * | 2018-05-29 | 2021-03-19 | 湖南埃铝环保科技有限公司 | 一种从赤泥中分选提铁除钠的方法 |
CN109265029B (zh) | 2018-10-11 | 2020-10-09 | 清华大学 | 一种制备合金铁和水泥材料的方法 |
US20210079488A1 (en) * | 2019-08-06 | 2021-03-18 | Red Mud Enterprises Llc | System for processing red mud and method of processing red mud |
-
2019
- 2019-04-09 RU RU2019110441A patent/RU2697539C1/ru active
-
2020
- 2020-02-10 EP EP20718847.5A patent/EP3953074B1/en active Active
- 2020-02-10 WO PCT/RU2020/050018 patent/WO2020209761A1/en unknown
- 2020-02-10 US US17/602,515 patent/US11911776B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2198943C2 (ru) * | 2001-04-09 | 2003-02-20 | Общество с ограниченной ответственностью "ЭКОТЕХ" | Способ комплексной переработки красного шлама и технологическая линия для его реализации |
US20090255371A1 (en) * | 2006-05-04 | 2009-10-15 | Krause-Rohm-Systeme Ag | Method for obtaining valuable products |
WO2013070121A1 (ru) * | 2011-11-07 | 2013-05-16 | Общество С Ограниченной Ответственностью Промышленная Компания "Технология Металлов" | Способ пирометаллугрической переработки красных шламов |
CN102994756A (zh) * | 2012-09-29 | 2013-03-27 | 贵州绿水青山环保科技有限公司 | 一种赤泥中富集稀土元素的方法 |
RU2528918C1 (ru) * | 2013-07-04 | 2014-09-20 | Открытое акционерное общество "Научно-исследовательский и проектный институт обогащения и механической обработки полезных ископаемых "Уралмеханобр" (ОАО "Уралмеханобр") | Способ комплексной переработки красных шламов |
RU2588910C1 (ru) * | 2015-05-07 | 2016-07-10 | Владимир Григорьевич Оленников | Способ переработки мелкодисперсного красного шлама |
RU2634106C1 (ru) * | 2016-12-22 | 2017-10-23 | Вячеслав Константинович Селиверстов | Способ переработки красного шлама |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2769857C1 (ru) * | 2021-07-29 | 2022-04-07 | Михаил Аркадьевич Карт | Установка для получения железоокисных пигментов из отходов газоочистки металлургического производства |
Also Published As
Publication number | Publication date |
---|---|
WO2020209761A1 (en) | 2020-10-15 |
EP3953074B1 (en) | 2024-07-31 |
EP3953074C0 (en) | 2024-07-31 |
EP3953074A1 (en) | 2022-02-16 |
US20220161271A1 (en) | 2022-05-26 |
US11911776B2 (en) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6358519B1 (ja) | 土壌浄化システム | |
RU2697539C1 (ru) | Способ комплексной переработки мелкодисперсных металлосодержащих отходов | |
US6269952B1 (en) | Methods and apparatus for use in processing and treating particulate material | |
JP3241374B2 (ja) | 高密度スラッジの改良した再循環を用いる廃水処理方法 | |
JP6399325B1 (ja) | 土壌浄化システム | |
MX2014001276A (es) | Beneficio de mineral. | |
WO2008144838A1 (en) | Method for treating residue from a bayer process | |
RU2634106C1 (ru) | Способ переработки красного шлама | |
CN109502834B (zh) | 一种含十二烷基磺酸钠的选矿废水的处理方法 | |
CN112657671B (zh) | 磁分离装置、在线反冲洗方法和磁分离的方法 | |
JP2012232253A (ja) | 多段階海水浄化システム | |
RU2626363C1 (ru) | Способ получения магнитного композиционного сорбента для очистки сточных вод от ионов тяжелых металлов и нефтепродуктов | |
CN112619883A (zh) | 一种提纯细粒石英砂岩制备超白玻璃用料的方法 | |
WO2015105472A1 (ru) | Способ комплексной переработки шламов металлургических и горно-обогатительных предприятий | |
RU2706907C1 (ru) | Способ переработки бокситов | |
JP5832183B2 (ja) | 高炉発生物中の湿ダストの再活用方法 | |
JP5832184B2 (ja) | 高炉発生物中の湿ダストの再活用方法 | |
WO1992010427A1 (fr) | Procede de purification d'eau | |
RU2077390C1 (ru) | Способ дообогащения магнетитового концентрата | |
Pandey et al. | Reducing alumina, silica and phosphorous in iron ore by high intensity power ultrasound | |
RU2566706C2 (ru) | Способ комплексной переработки шламов металлургических и горно-обогатительных предприятий | |
KR900008927B1 (ko) | 비금속광물 선광장치 및 선광방법 | |
Franko et al. | Application of ultrasonics to enhance wet-drum magnetic separator performance | |
RU2123885C1 (ru) | Способ обогащения сульфидных сидеритсодержащих руд | |
RU2827381C1 (ru) | Способ обогащения низкокачественных бокситов |