RU2697218C1 - Использование сигнальных пептидов митохондриальной локализации для увеличения уровня гетерологической экспрессии белков в P.pastoris и S.cerevisiae - Google Patents

Использование сигнальных пептидов митохондриальной локализации для увеличения уровня гетерологической экспрессии белков в P.pastoris и S.cerevisiae Download PDF

Info

Publication number
RU2697218C1
RU2697218C1 RU2018125360A RU2018125360A RU2697218C1 RU 2697218 C1 RU2697218 C1 RU 2697218C1 RU 2018125360 A RU2018125360 A RU 2018125360A RU 2018125360 A RU2018125360 A RU 2018125360A RU 2697218 C1 RU2697218 C1 RU 2697218C1
Authority
RU
Russia
Prior art keywords
seq
proteins
signal peptides
pichia pastoris
saccharomyces cerevisiae
Prior art date
Application number
RU2018125360A
Other languages
English (en)
Inventor
Иван Станиславович Охрименко
Герман Геннадьевич Легкун
Георг Дитрих Бюльдт
Валентин Иванович Горделий
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)"
Priority to RU2018125360A priority Critical patent/RU2697218C1/ru
Application granted granted Critical
Publication of RU2697218C1 publication Critical patent/RU2697218C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Настоящее изобретение относится к области биотехнологии и молекулярной биологии. Описаны сигнальные пептиды митохондриальной локализации (последовательности представлены в табл. 1: SEQ ID 1, SEQ ID 2, SEQ ID 3, SEQ ID 4, SEQ ID 5, SEQ ID 6, SEQ ID 7, SEQ ID 8, SEQ ID 9, SEQ ID 10). При использовании указанных пептидов в слитной полипептидной цепи с целевыми рекомбинантными белками увеличивается уровень выхода целевых рекомбинантных белков, изменяется качество их фолдинга при их экспрессии с использованием штаммов-продуцентов на основе дрожжей, в частности P.pastoris и S.cerevisiae. Изобретение может быть использовано для увеличения уровня выхода рекомбинантных белков и изменения качества их фолдинга при их экспрессии с использованием штаммов-продуцентов на основе дрожжей, в частности P.pastoris и S.cerevisiae. 2 табл.

Description

Настоящее изобретение относится к области биотехнологии и молекулярной биологии и может быть использовано для увеличения уровня выхода рекомбинантных белков и изменения качества их фолдинга при их экспрессии с использованием штаммов-продуцентов на основе дрожжей, в частности P. pastoris и S. cerevisiae.
Штаммы-продуценты на основе прокариотического организма бактерии E. coli часто не пригодны для гетерологической экспрессии белков, которым требуются посттрансляционные модификации, эукариотические шапероны и процессинг для образования биологически активного состояния. Белки эукариотических организмов как правило имеют более сложную структуру, чем у прокариотических. Правильный фолдинг и процессинг является необходимым условием для их функционирования. Для синтеза сложных белков используют системы экспрессии, созданные на основе многоклеточных эукариотических организмов (культуры клеток млекопитающих, трансгенные растения и животные), которые позволяют получать гетерологичные белки. Существенным недостатком этих систем является достаточная сложность работы с такими культурами клеток, особенные требования к стерильности, аэрации биомассы, механическая непрочность клеток, дороговизна и трудоемкость получения трансгенных растений и животных, при недостаточном выходе целевых белков. Для рекомбинантного синтеза некоторых белков достаточно использовать штаммы-продуценты на основе дрожжей, такие как S. cerevisiae и P. pastoris. Данные штаммы-продуценты имеют ряд преимуществ. У дрожжей так же подробно как у E. coli изучены процессы метаболизма, при работе с ними используются стандартные методы генетической инженерии, дрожжи легко культивировать на относительно дешевых субстратах, все это делает возможным масштабирование процесса культивирования штаммов-продуцентов на основе дрожжей. Применение данной системы экспрессии позволяет сочетать простоту бактериальных систем экспрессии и возможности пострансляционных модификаций и фолдинга рекомбинантных белков [1]. Еще одни достоинством этой системы гетерологичной экспрессии является возможность осуществления процессинга целевого рекомбинантного белка. Использование лидерных пептидов в слитной полипептидной цепи с целевыми белками позволяет задать их направления их транспорта и процессинга внутри клетки штамма продуцента [2]. Например, данный подход необходим для белков со сложной структурой, а также для различных ферментов, обладающих токсичностью внутри клетки, в последнем случае используются секреторные лидерные пептиды направляющие рекомбинантные белки из цитоплазмы в культуральную жидкость. Культуральная жидкость после культивирования P. pastoris, содержит относительно небольшое количество собственных белков штамма-продуцента, поэтому секретированный целевой белок можно достаточно легко очистить от примесных белков и компонентов питательной среды. Так же возможно использовать для экспрессии не секреторные сигнальные пептиды, а сигналы внутриклеточной локализации. В значительной степени изучены сигнальные пептиды митохондриальной локализации. На данный момент известно 3 варианта встраивания белков во внутреннюю мембрану митохондрий [3]: 1) путь через белковый комплекс TIM22 («TIM22 pathway»): используется для некоторых белков, имеющих мотивы распознавания внутри своей структуры или последовательности иминокислотных остатков. Этот путь не задействует лидерные пептиды. 2) Путь остановки транспорта («Stop transfer pathway»): присущ белкам с одной трансмембранной спиралью. Данные белки экспрессируются с лидерной последовательностью, которая удаляется комплексом протеаз сразу после встраивания во внутреннюю мембрану митохондрий. 3) Консервативная сортировка («Conservative sorting))): белки транслируются с лидерным сигнальным пептидом, транспортируются в митохондриальный матрикс, затем сигнальный пептид отщепляется митондриальной пептидазой [4] и белок претерпевает фолдинг и, если это мембранный белок, встраивается в мембрану при помощи фермента Oxa1 [6]. Данный способ используется преимущественно для белков, кодируемых митохондриальной ДНК, а также для белков, кодируемых ядерными генами, но имеющих прокариотические аналоги [6], например, субъединица 9 F0F1 ATPase N. crassa, Oxa1, Сох18/Оха2, Mrs2.
Решение задачи увеличения уровня экспрессии генов рекомбинантных белков при использовании штаммов-продуцентов на основе дрожжей актуально с момента разработки технологии их культивирования. Предлагаемый нами способ увеличения уровня экспрессии генов целевых рекомбинантных белков заключается в добавлении на 5"-конец генов, кодирующих данные рекомбинантные белки, - генов, кодирующих последовательности лидерных пептидов митохондриальной локализации (при сохранении рамки считывания). Аминокислотные последовательности данных лидерных пептидов представлены в таблице 1. Таким образом, при экспрессии генов целевых рекомбинантных белков с генами, кодирующими лидерные пептиды, целевые рекомбинантные белки будут нести на своем N-конце пептиды митохондриальной локализации в слитной полипептидной цепи. Данные сигнальные пептиды будут приводить к транспорту целевых полипептидов (белков) в митохондрии (в некоторых случаях через эндоплазматический ретикулум, в зависимости от выбранного сигнального пептида), что приведет: 1) к задействованию митохондриальных пептидаз в специфическом гидролизе слитной последовательности аминокислотных остатков после сигнальных пептидов, 2) процессингу целевых полипептидов в соответствии с выбранным сигнальным пептидом, при этом отличном от процессинга, которому подвергается целевой полипептид без сигнального пептида, 3) участию в фолдинге целевых полипептидов шаперонов (митохондриальных и эндоплазматического ретикулума) соответствующих данному сигнальному пептиду. Процессы 2 и 3, вызванные использованием сигнальных пептидов, для некоторых рекомбинантных белков приводят к увеличению общего уровня их экспрессии, то есть приводят к увеличению их количества содержащегося в цитоплазме и мембранах клеток штамма-продуцента. Это вероятно обусловлено изменениями в процессах внутриклеточного процессинга полипептидов (2) и фолдинга (3) происходящими при наличии пептидов митохондриальной локализации на N-конце белков.
Figure 00000001
Figure 00000002
При осуществлении изобретения, помимо методов, подробно раскрытых в нижеследующем примере, используются хорошо известные специалистам методики, описанные в руководствах по молекулярной биологии и генетической инженерии [7].
Пример 1. Выбор сигнальных лидерных пептидов.
Были проанализированы аминокислотные последовательности белков, имеющих митохондриальную локализацию, а также для белков, кодируемых ядерными генами, но имеющих прокариотические аналоги. Их последовательности и идентификационные номера в базе данных белков приведены в Таблица 2. Данные последовательности аминокислотных остатков построены автоматически по кДНК белков, соответствуют последовательности мРНК белков, согласно принципам формирования базы данных. Таким образом, последовательности аминокислотных остатков белков содержат полную последовательность незрелых белков до их посттрансляционного процессинга и модификаций. В частности, данные последовательности аминокислотных остатков включают в себя последовательности лидерных сигнальных пептидов. Данные лидерные пептиды и были выбраны для использования.
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Источники информации.
1. J.M. Cregg, Higgins D.R. 1995. Production of foreign proteins in the yeast Pichia pastoris. // Canadian J. Botany Supp.73, 5981-5987.
2. Герасимов A.C., Шульга A.A., Зейналов O.A., Скрябин К.Г. Синтез гетерологичных рецепторов, связанных с G-белком, в клетках метилотрофных дрожжей P. pastoris. Доклады Академии Наук. Т.441 (5), с. 1-4, 2011. Pichia pastoris. Nat Biotechnol. 27: 561-566, 2009
3. Mossmann, D., Meisinger, C,
Figure 00000007
F. N. 2012. Processing of mitochondrial presequences. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(9), 1098-1106.
4.
Figure 00000008
F.N., Wortelkamp, S., Zahedi, R.P., Becker, D., Leidhold, C., Gevaert, K., … & Meisinger, C. 2009. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell, 139(2), 428-439.
5. Stuart, Rosemary A. 2002. Insertion of proteins into the inner membrane of mitochondria: the role of the Oxal complex. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1592.1: 79-87.
6. Rojo, E.E., Stuart, R.A., & Neupert, W. (1995). Conservative sorting of F0-ATPase subunit 9: export from matrix requires delta pH across inner membrane and matrix ATP. The EMBO journal, 14(14), 3445.
7. Ausubel F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (1997) Current Protocols in Molecular Biology, John Wiley and Sons, New York.

Claims (1)

  1. Использование одного из сигнальных пептидов SEQ ID 1, SEQ ID 2, SEQ ID 3, SEQ ID 4, SEQ ID 5, SEQ ID 6, SEQ ID 7, SEQ ID 8, SEQ ID 9, SEQ ID 10 для гетерологической экспрессии в слитной полипептидной цепи с рекомбинантным белком в штаммах-продуцентах на основе P.pastoris и S. cerevisiae для увеличения уровня экспрессии рекомбинантных белков.
RU2018125360A 2018-07-11 2018-07-11 Использование сигнальных пептидов митохондриальной локализации для увеличения уровня гетерологической экспрессии белков в P.pastoris и S.cerevisiae RU2697218C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018125360A RU2697218C1 (ru) 2018-07-11 2018-07-11 Использование сигнальных пептидов митохондриальной локализации для увеличения уровня гетерологической экспрессии белков в P.pastoris и S.cerevisiae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018125360A RU2697218C1 (ru) 2018-07-11 2018-07-11 Использование сигнальных пептидов митохондриальной локализации для увеличения уровня гетерологической экспрессии белков в P.pastoris и S.cerevisiae

Publications (1)

Publication Number Publication Date
RU2697218C1 true RU2697218C1 (ru) 2019-08-13

Family

ID=67640535

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018125360A RU2697218C1 (ru) 2018-07-11 2018-07-11 Использование сигнальных пептидов митохондриальной локализации для увеличения уровня гетерологической экспрессии белков в P.pastoris и S.cerevisiae

Country Status (1)

Country Link
RU (1) RU2697218C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2157847C2 (ru) * 1995-05-24 2000-10-20 Астра Актиеболаг (пабл) Молекула днк для экспрессии, стимулируемой солями желчи липазы (bssl)
EA022946B1 (ru) * 2009-07-15 2016-03-31 ЛАБОРАТОРИОС БЕТА Эс.Эй. Способ получения инсулина аспарт при помощи штамма дрожжей pichia pastoris

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2157847C2 (ru) * 1995-05-24 2000-10-20 Астра Актиеболаг (пабл) Молекула днк для экспрессии, стимулируемой солями желчи липазы (bssl)
EA022946B1 (ru) * 2009-07-15 2016-03-31 ЛАБОРАТОРИОС БЕТА Эс.Эй. Способ получения инсулина аспарт при помощи штамма дрожжей pichia pastoris

Similar Documents

Publication Publication Date Title
Borst How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes)
RU2429243C2 (ru) Производство белков
US8119369B2 (en) Human SUMO-3 for enhancing protein expression
Schnell Protein targeting to the thylakoid membrane
Braun et al. The protein-import apparatus of plant mitochondria
Barone et al. Industrial production of proteins with Pichia pastoris—Komagataella phaffii
US10174304B2 (en) Expression vector and method for producing protein
CN103819546A (zh) 一种以水蛭素为融合伴侣制备重组小分子蛋白或多肽的方法
Gandier et al. Pichia pastoris is a suitable host for the heterologous expression of predicted class I and class II hydrophobins for discovery, study, and application in biotechnology
RU2697218C1 (ru) Использование сигнальных пептидов митохондриальной локализации для увеличения уровня гетерологической экспрессии белков в P.pastoris и S.cerevisiae
CN104195157A (zh) 生物活性肽在原核细胞中的高效率重组表达和纯化方法
Razzak et al. Expression of seven carbonic anhydrases in red alga Gracilariopsis chorda and their subcellular localization in a heterologous system, Arabidopsis thaliana
CN109439643A (zh) 一种新型赖氨酸特异性内切酶及其制备方法
Liu et al. Scale high-cell-density fermentation of Pichia pastoris
CN111378047A (zh) 一种提高蛋白表达的融合标签蛋白及其应用
CN109055339A (zh) Tev蛋白酶突变体、基因、生物材料、制备方法、试剂或试剂盒和应用
Altamura et al. Systems for production of proteins for biomimetic membrane devices
WO2021104482A1 (zh) 一种多肽标签及其在体外蛋白合成中的应用
KR20070029630A (ko) 단리된 광단백질 엠티클리틴 및 그의 용도
Reyes-Ruiz et al. Proteins in a DNA world: expression systems for their study
Huang et al. Expression of recombinant human octamer-binding transcription factor 4 in rice suspension cells
CN113249352A (zh) 一种n糖基转移酶突变体p1及其应用
CN110577958A (zh) 核酸、重组质粒、转化株、乙酰胆碱酯酶及其制备方法
CN102654504A (zh) 一种快速检测重组蛋白表达量的方法
Sullivan et al. Cell-Free Production of Protein Biologics Within 24 H