RU2693331C1 - Порт чтения - Google Patents

Порт чтения Download PDF

Info

Publication number
RU2693331C1
RU2693331C1 RU2018104643A RU2018104643A RU2693331C1 RU 2693331 C1 RU2693331 C1 RU 2693331C1 RU 2018104643 A RU2018104643 A RU 2018104643A RU 2018104643 A RU2018104643 A RU 2018104643A RU 2693331 C1 RU2693331 C1 RU 2693331C1
Authority
RU
Russia
Prior art keywords
channel transistor
dynamic
transistors
channel
dynamic circuit
Prior art date
Application number
RU2018104643A
Other languages
English (en)
Inventor
Юрий Лаврентьевич Погребной
Original Assignee
Акционерное общество "МЦСТ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "МЦСТ" filed Critical Акционерное общество "МЦСТ"
Priority to RU2018104643A priority Critical patent/RU2693331C1/ru
Application granted granted Critical
Publication of RU2693331C1 publication Critical patent/RU2693331C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

Изобретение относится к устройствам цифровой вычислительной техники и может быть использовано в качестве базового элемента при построении многопортовых запоминающих устройств. Техническим результатом является расширение функциональных возможностей порта за счет его использования при построении многопортовых запоминающих устройств. Порт чтения содержит две динамические схемы, две локальные битовые шины, глобальную битовую шину, элемент И-НЕ, шесть адресных шин, n-канальный транзистор и р-канальный транзистор, а каждая i-я динамическая схема, где i=1,2, содержит четыре пары последовательно соединенных n-канальных транзисторов, р-канальный транзистор, n-канальный транзистор и выходы ячеек памяти порта. 2 ил.

Description

Изобретение относится к устройствам цифровой вычислительной техники, и может быть использовано в качестве базового элемента при построении многопортовых запоминающих устройств.
Известно «Многопортовое запоминающее устройство» [SU №1718270 A1, G11C 7/00, 07.03.1992], содержащее бистабильный элемент 1 хранения, N портов 2 записи, буферный дифференциальный усилитель 3, М портов 4 считывания, дешифраторы 5-1…5-N записи строк, дешифраторы 6-1…6-N записи столбцов, дешифраторы 7-1…7-М считывания строк, дешифраторы 8-1…8-М считывания столбцов.
Недостатком данного устройства является его довольно сложная конструкция.
Наиболее близким к заявляемому является «Многовходовый логический элемент И на КМДП транзисторах» [RU №2319299 С1, H03K 19/094, 10.03.2008], содержащий элемент И-НЕ, инвертирующий элемент, тактовый транзистор n-типа и тактовый транзистор p-типа, элемент И-НЕ содержит предзарядовый транзистор p-типа, включенный между шиной питания и выходом данного элемента, и ключевую цепь, состоящую из последовательно соединенных транзисторов n-типа, затворы которых подключены к входам устройства, первый вывод ключевой цепи подключен к выходу элемента И-НЕ, а второй вывод через тактовый транзистор n-типа соединен с нулевой шиной, тактовый транзистор p-типа включен между шиной питания и вторым выводом ключевой цепи элемента И-НЕ, инвертирующий элемент содержит логический транзистор р-типа, включенный между шиной питания и выходом устройства, и предзарядовый транзистор n-типа, включенный между выходом устройства и нулевой шиной, затворы тактовых транзисторов и предзарядового транзистора р-типа подключены к тактовой шине, затворы логического транзистора р-типа и предзарядового транзистора n-типа инвертирующего элемента подключены соответственно к выходу элемента И-НЕ и ко второму выводу ключевой цепи элемента И-НЕ, так же содержит дополнительный транзистор n-типа, который включен между выходом элемента И-НЕ и вторым выводом ключевой цепи того же элемента и затвор которого соединен с выходом устройства, причем устройство содержит не менее 8 входов.
Недостатком данного элемента является отсутствие возможности его использования при построении многопортовых запоминающих устройств.
Техническим результатом является расширение функциональных возможностей порта за счет его использования при построении многопортовых запоминающих устройств.
Технический результат достигается тем, в порт чтения, содержащий элемент И-НЕ, n-канальный транзистор и p-канальный транзистор, представляющий собой две динамические схемы, дополнительно введены две локальных битовых шины, глобальная битовая шина и шесть адресных шин, каждая i-я динамическая схема, где i=1, 2, содержит четыре пары последовательно соединенных n-канальных транзисторов, p-канальный транзистор, n-канальный транзистор и выходы ячеек памяти порта, локальные битовые шины динамических схем соединены с первым и вторым входами элемента И-НЕ, выход которого соединен с затвором n-канального транзистора 6, сток которого соединен с корпусом, а исток с динамической глобальной битовой шиной, выход элемента И-НЕ соединен с затвором p-канального транзистора, сток и исток которого соединены соответственно с локальными битовыми шинами динамических схем, первые четыре адресные шины первого уровня выборки соединены с затворами соответственно с первого по четвертый n-канальных транзисторов первой динамической схемы и с затворами с первого по четвертый n-канальных транзисторов второй динамической схемы, пятая адресная шина второго уровня выборки соединена с затворами соответственно р-канального транзистора и n-канального транзистора второй динамической схемы, шестая адресная шина второго уровня выборки соединена с затворами соответственно р-канального транзистора и n-канального транзистора первой динамической схемы, стоки р-канальных транзисторов и n-канальных транзисторов первой и второй динамических схем соединены с корпусом, стоки верхних из каждой пары транзисторов первой динамической схемы и второй динамической схемы соединены со стоками соответственно р-канальных транзисторов, истоки нижних из каждой пары транзисторов первой динамической схемы второй динамической схемы соединены со стоками соответственно n-канальных транзисторов, затворы нижних из каждой пары транзисторов первой динамической схемы второй динамической схемы соединены с соответствующими выходами ячеек памяти порта.
На фиг. 1 представлена схема порта чтения.
На фиг. 2 представлена временная диаграмма работы порта чтения.
Порт чтения (фиг. 1) содержит две динамические схемы 1.1 и 1.2, две локальных битовых шины 2.1 и 2.2, глобальную битовую шину 3, элемент И-НЕ 4, шесть адресных шин 5.1, 5.2, …, 5.6, n-канальный транзистор 6 и р-канальный транзистор 7, а каждая i-я, где i=1, 2, каждая динамическая схема 1.i содержит четыре пары последовательно соединенных n-канальных транзисторов 8.i.j и 8.i.j+4, где j=1, 2, 3, 4, р-канальный транзистор 9.i, и n-канальный транзистор 10.i и выходы ячеек памяти порта 11.1, 11.2 …, 11.8.
Порт чтения (фиг. 1) содержит две динамические схемы 1.1 и 1.2, две локальных битовых шины 2.1 и 2.2, глобальную битовую шину 3, элемент И-НЕ 4, шесть адресных шин 5.1, 5.2, …, 5.6, n-канальный транзистор 6 и р-канальный транзистор 7, а каждая i-я динамическая схема 1.i, где i=1, 2, содержит четыре пары последовательно соединенных n-канальных транзисторов 8.i.j и 8.i.j+4, где j=1, 2, 3, 4, р-канальный транзистор 9.i, и n-канальный транзистор 10.i и выходы ячеек памяти порта 11.1, 11.2 …, 11.8, локальные битовые шины 2.1 и 2.2 динамических схем 1.1 и 1.2 соединены с первым и вторым входами элемента И-НЕ 4, выход которого соединен с затвором n-канального транзистора 6, сток которого соединен с корпусом, а исток с динамической глобальной битовой шиной 3, выход элемента И-НЕ 4 соединен с затвором р-канального транзистора 7, сток и исток которого соединены соответственно с локальными битовыми шинами 2.1 и 2.2 динамических схем 1.1 и 1.2, первые четыре адресные шины 5.1, 5.2, … 5.4 первого уровня выборки соединены с затворами соответственно с первого по четвертый 8.1.1, 8.1.2, 8.1.3 и 8.1.4 n-канальных транзисторов первой динамической схемы 1.1 и с первого по четвертый 8.2.1, 8.2.2, 8.2.3, 8.2.4 второй динамической схемы 1.2, пятая адресная шина 5.5 второго уровня выборки соединена с затворами соответственно р-канального транзистора 9.2 и n-канального транзистор 10.2 второй динамической схемы 1.2, шестая адресная шина 5.6 второго уровня выборки соединена с затворами соответственно р-канального транзистора 9.1 и n-канального транзистор 10.1 первой динамической схемы 1.1, стоки р-канальных транзисторов 9.1 и 9.2 соединены с шиной питания, стоки n-канальных транзисторов 10.1 и 10.2 первой и второй динамических схем 1.1 и 1.2 соединены с корпусом. Стоки верхних из каждой пары транзисторов 8.1.1, 8.1.2, 8.1.3 и 8.1.4 первой динамической схемы 1.1 и 8.2.1, 8.2.2, 8.2.3, 8.2.4 второй динамической схемы 1.2 соединены со стоками соответственно р-канальных транзисторов 9.1 и 9.2, истоки нижних из каждой пары транзисторов 8.1.5, 8.1.6, 8.1.7 и 8.1.8 первой динамической схемы 1.1 и 8.2.5, 8.2.6, 8.2.7 и 8.2.8 второй динамической схемы 1.2 соединены со стоками соответственно n-канальных транзисторов 10.1 и 10.2. Затворы нижних из каждой пары транзисторов 8.1.5, 8.1.6, 8.1.7 и 8.1.8 первой динамической схемы 1.1 и 8.2.5, 8.2.6, 8.2.7 и 8.2.8 второй динамической схемы 1.2 соединены с соответствующими выходами ячеек памяти порта 11.1, 11.2 …, 11.8.
Схема удержания высокого уровня на локальных битовых шинах 2.1 и 2.2 реализована на р-канальном транзисторе 7, который включен стоком и истоком между локальными битовыми шинами 2.1 и 2.2, а затвором подключен к выходу элемента И-НЕ 4 для обеспечения положительной обратной связи во время считывания информации.
Предзаряд локальных битовых шин 2.1 и 2.2 в динамических схемах 1.1 и 1.2 происходит через р-канальные транзисторы 9.1 и 9.2 соответственно, при отсутствии положительных сигналов на входах 5.5 и 5.6. Это исключает возможность появления помех от перераспределения заряда между локальными битовыми шинами 2.1 и 2.2 и не требует применения отдельного синхронизируемого сигнала управления предзарядом.
Порт чтения (фиг. 1) работает следующим образом. В исходном состоянии, при отсутствии положительных сигналов выборки на адресных шинах 5.1, 5.2, …, 5.6, n-канальные транзисторы 8.1.1-8.1.4, 8.2.1-8.2.4, 10.1 и 10.2 закрыты, р-канальные транзисторы 9.1, 9.2 открыты, локальные битовые шины 2.1 и 2.2 имеют потенциал питания, выход элемента И-НЕ 4 имеет потенциал корпуса, n-канальный транзистор 6 закрыт, глобальная битовая шина 3 предзаряжена к потенциалу питания.
Работа рассматривается на примере считывания из запоминающей ячейки, выход которой подается на шину 11.1. Схема активируется сигналами выборки. На адресные шины 5.1 и 5.6 подается потенциал питания. При этом закрывается р-канальный транзистор 9.1 предзаряда локальной битовой шины 2.1 схемы 1.1, и открываются n-канальные транзисторы 10.1, 8.1.1. Если на выходе 11.1 первой ячейки памяти порта имеется потенциал питания, то локальная битовая шина 2.1 начинает разряжаться через 3 последовательно включенных n-канальных транзистора 8.1.1, 8.1.5 и 10.1 до потенциала корпуса (фиг. 2.).
Выход элемента И-НЕ 4 получает потенциал питания, и открывается n-канальный транзистор 6, через который глобальная битовая шина 3 разряжается до потенциала корпуса.
В случае, когда на выходе первой ячейки памяти порта 11.1 имеется потенциал корпуса, то n-канальный транзистор 8.1.5 остается закрытым, и локальная битовая шина 2.1 сохраняет потенциал питания, который поддерживается через открытые последовательно соединенные р-канальные транзисторы 9.2 и 7. Выход элемента И-НЕ 4 имеет при этом потенциал корпуса, n-канальный транзистор 6 закрыт, глобальная битовая шина 3 сохраняет потенциал питания.
Таким образом, порт чтения обеспечивает возможность использования его при построении многопортовых запоминающих устройств.

Claims (1)

  1. Порт чтения, содержащий элемент И-НЕ, n-канальный транзистор и р-канальный транзистор, представляющий собой две динамические схемы, отличающийся тем, что в него дополнительно введены две локальные битовые шины, глобальная битовая шина и шесть адресных шин, каждая i-я динамическая схема, где i=1, 2, содержит четыре пары последовательно соединенных n-канальных транзисторов, р-канальный транзистор, n-канальный транзистор и выходы ячеек памяти порта, локальные битовые шины динамических схем соединены с первым и вторым входами элемента И-НЕ, выход которого соединен с затвором n-канального транзистора 6, сток которого соединен с корпусом, а исток - с динамической глобальной битовой шиной, выход элемента И-НЕ соединен с затвором р-канального транзистора, сток и исток которого соединены соответственно с локальными битовыми шинами динамических схем, первые четыре адресные шины первого уровня выборки соединены с затворами соответственно с первого по четвертый n-канальных транзисторов первой динамической схемы и с затворами с первого по четвертый n-канальных транзисторов второй динамической схемы, пятая адресная шина второго уровня выборки соединена с затворами соответственно р-канального транзистора и n-канального транзистора второй динамической схемы, шестая адресная шина второго уровня выборки соединена с затворами соответственно р-канального транзистора и n-канального транзистора первой динамической схемы, стоки р-канальных транзисторов и n-канальных транзисторов первой и второй динамических схем соединены с корпусом, стоки верхних из каждой пары транзисторов первой динамической схемы и второй динамической схемы соединены со стоками соответственно р-канальных транзисторов, истоки нижних из каждой пары транзисторов первой динамической схемы второй динамической схемы соединены со стоками соответственно n-канальных транзисторов, затворы нижних из каждой пары транзисторов первой динамической схемы и второй динамической схемы соединены с соответствующими выходами ячеек памяти порта.
RU2018104643A 2018-02-07 2018-02-07 Порт чтения RU2693331C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018104643A RU2693331C1 (ru) 2018-02-07 2018-02-07 Порт чтения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018104643A RU2693331C1 (ru) 2018-02-07 2018-02-07 Порт чтения

Publications (1)

Publication Number Publication Date
RU2693331C1 true RU2693331C1 (ru) 2019-07-02

Family

ID=67252160

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018104643A RU2693331C1 (ru) 2018-02-07 2018-02-07 Порт чтения

Country Status (1)

Country Link
RU (1) RU2693331C1 (ru)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833648A (en) * 1987-07-02 1989-05-23 Texas Instruments Incorporated Multiport ram hybrid memory cell with fast write
SU1635214A1 (ru) * 1989-05-05 1991-03-15 Предприятие П/Я Х-5737 Элемент пам ти
SU1718270A1 (ru) * 1990-03-29 1992-03-07 Институт Точной Механики И Вычислительной Техники Им.С.А.Лебедева Многопортовое запоминающее устройство
RU2006967C1 (ru) * 1991-03-13 1994-01-30 Московский институт электронной техники Элемент памяти
US6469328B2 (en) * 1998-10-27 2002-10-22 Fujitsu Limited Semiconductor memory device
RU2319299C1 (ru) * 2006-11-13 2008-03-10 Институт проблем управления им. В.А. Трапезникова РАН Многовходовый логический элемент и на кмдп транзисторах
RU2507611C1 (ru) * 2012-09-20 2014-02-20 федеральное государственное бюджетное учреждение "Научно-производственный комплекс "Технологический центр "МИЭТ" Ячейка памяти статического оперативного запоминающего устройства
US8971096B2 (en) * 2013-07-29 2015-03-03 Qualcomm Incorporated Wide range multiport bitcell
US20160351252A1 (en) * 2014-02-28 2016-12-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-port memory cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833648A (en) * 1987-07-02 1989-05-23 Texas Instruments Incorporated Multiport ram hybrid memory cell with fast write
SU1635214A1 (ru) * 1989-05-05 1991-03-15 Предприятие П/Я Х-5737 Элемент пам ти
SU1718270A1 (ru) * 1990-03-29 1992-03-07 Институт Точной Механики И Вычислительной Техники Им.С.А.Лебедева Многопортовое запоминающее устройство
RU2006967C1 (ru) * 1991-03-13 1994-01-30 Московский институт электронной техники Элемент памяти
US6469328B2 (en) * 1998-10-27 2002-10-22 Fujitsu Limited Semiconductor memory device
RU2319299C1 (ru) * 2006-11-13 2008-03-10 Институт проблем управления им. В.А. Трапезникова РАН Многовходовый логический элемент и на кмдп транзисторах
RU2507611C1 (ru) * 2012-09-20 2014-02-20 федеральное государственное бюджетное учреждение "Научно-производственный комплекс "Технологический центр "МИЭТ" Ячейка памяти статического оперативного запоминающего устройства
US8971096B2 (en) * 2013-07-29 2015-03-03 Qualcomm Incorporated Wide range multiport bitcell
US20160351252A1 (en) * 2014-02-28 2016-12-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-port memory cell

Similar Documents

Publication Publication Date Title
KR930004625B1 (ko) 감지회로
US9269423B2 (en) Latch-based memory array
US7859921B2 (en) Apparatus and method for low power sensing in a multi-port SRAM using pre-discharged bit lines
US8570784B2 (en) Differential ROM
JPS613390A (ja) 記憶装置
US9058858B2 (en) Method and apparatus for dual rail SRAM level shifter with latching
US11539367B2 (en) Level shifter enable
US8665658B2 (en) Tracking cell and method for semiconductor memories
US20120230130A1 (en) Memory Cell System and Method
US8488401B2 (en) Semiconductor storage device
JP2003223788A5 (ru)
RU2693331C1 (ru) Порт чтения
US6108256A (en) NFET/PFET RAM precharge circuitry to minimize read sense amp operational range
US8441885B2 (en) Methods and apparatus for memory word line driver
US11990181B2 (en) Low-power static random access memory
Hemaprabha et al. Comparative analysis of sense amplifiers for memories
US6898135B2 (en) Latch type sense amplifier method and apparatus
KR100318464B1 (ko) 재쓰기회로를갖는스태틱램디바이스
US8873314B2 (en) Circuits and methods for providing data to and from arrays of memory cells
US5491661A (en) Semiconductor static random access memory device having previously equalizable memory cells
RU2680870C1 (ru) Способ сравнения данных в ячейке ассоциативного запоминающего устройства и модуль сравнения данных в ячейке ассоциативного запоминающего устройства
SU1014030A1 (ru) Параллельный дешифратор
US20230223054A1 (en) Latch array with mask-write functionality
RU2665248C1 (ru) Многопортовая ячейка оперативного запоминающего устройства
US20190189198A1 (en) Partitioned memory circuit capable of implementing