RU2692059C1 - Теплопеленгатор - Google Patents

Теплопеленгатор Download PDF

Info

Publication number
RU2692059C1
RU2692059C1 RU2018130941A RU2018130941A RU2692059C1 RU 2692059 C1 RU2692059 C1 RU 2692059C1 RU 2018130941 A RU2018130941 A RU 2018130941A RU 2018130941 A RU2018130941 A RU 2018130941A RU 2692059 C1 RU2692059 C1 RU 2692059C1
Authority
RU
Russia
Prior art keywords
spectral filters
spectral
control
heat
aircraft
Prior art date
Application number
RU2018130941A
Other languages
English (en)
Inventor
Виллен Арнольдович Балоев
Маргарита Васильевна Дорофеева
Владимир Петрович Иванов
Владимир Вячеславович Сунцов
Владимир Самуилович Яцык
Original Assignee
Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") filed Critical Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО")
Priority to RU2018130941A priority Critical patent/RU2692059C1/ru
Application granted granted Critical
Publication of RU2692059C1 publication Critical patent/RU2692059C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/784Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using a mosaic of detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/789Systems for determining direction or deviation from predetermined direction using rotating or oscillating beam systems, e.g. using mirrors, prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Studio Devices (AREA)

Abstract

Изобретение относится к оптико-электронному приборостроению, а именно к теплопеленгаторам (ТП), устанавливаемым на подвижном основании, например на летательном аппарате (ЛА), и предназначенным для обнаружения и определения координат теплоизлучающих объектов. Достигаемый технический результат - повышение надежности обнаружения теплоизлучающих объектов за счет использования информации о текущем положении ЛА в пространстве. Указанный результат достигается за счет того, что ТП содержит объектив, устройство фильтрации оптического излучения, матричное фотоприемное устройство (МФПУ) и устройство управления и обработки информации, при этом устройство фильтрации оптического излучения выполнено в виде диска из оптического материала с нанесенными на его поверхность спектральными фильтрами, пропускающими излучение в различных диапазонах спектра, диск снабжен приводом вращения и датчиком положения спектральных фильтров, на корпусе ТП установлены датчики угловой скорости (ДУС), измеряющие угловую скорость поворота корпуса ЛА в трех взаимно перпендикулярных направлениях, причем выходы МФПУ, датчика положения спектральных фильтров и ДУС подключены к устройству управления и обработки информации. 2 ил.

Description

Изобретение относится к приборостроению, а именно к оптико-электронным приборам - теплопеленгаторам (ТП), предназначенным для обнаружения и определения координат теплоизлучающих объектов. Такие приборы находят применение в системах индивидуальной защиты летательных аппаратов (ЛА) (см. патент РФ №2601241 МКИ F41G 7/00, опубл. 27.10.2016).
В настоящее время в системах защиты ЛА отдается предпочтение датчикам мгновенного (несканирующего) обзора, осуществляющим практически одновременный просмотр пространства в секторе более 90° (см. Авиационные станции предупреждения о ракетной атаке // Зарубежное военное обозрение. 2016. №10. С.67-72). Комбинация из четырех или шести подобных датчиков обеспечивает обзор соответственно либо круговой зоны пространства, либо полной сферы. С увеличением зоны обзора возрастает количество целеподобных объектов, из которых должен быть выделен объект с характерными признаками. Одним из таких признаков является отношение сигналов, создаваемых излучением объекта в двух или более узких диапазонах оптического спектра. На использовании этого признака основана спектральная селекция объектов, позволяющая выделять теплоизлучающие объекты на фоне отличающихся по спектру помех. Применение спектральной селекции в ТП способствует повышению вероятности правильного обнаружения объектов.
Известно пассивное оптико-электронное следящее устройство (см. патент США №8280113 МКИ G06К 9/00, G06F 19/00, опубл. 02.10.2012), содержащее единый входной оптический компонент и спектроделитель, разделяющий излучение на два канала, в каждом из которых установлен фотоприемник. Наличие двух фотоприемников ухудшает возможность правильного обнаружения объекта из-за сложности обеспечения одинакового размера и формата изображений. Кроме того, в схеме с двумя каналами увеличивается количество оптических компонентов, возрастают габариты и стоимость устройства, снижается его надежность.
Наиболее близким к предполагаемому изобретению является устройство, принятое за прототип и содержащее объектив, устройство фильтрации оптического излучения, матричное фотоприемное устройство (МФПУ) и блок обработки информации (см. патент Франции №2885224 МКИ G01S 3/781, опубл. 03.11.2006). Объектив создает изображение пространства объектов в ИК области спектра, которое фокусируется в плоскости чувствительных элементов МФПУ. Устройство фильтрации оптического излучения содержит три спектральных фильтра, переключаемых с помощью привода, и снабжено датчиком положения фильтров. Спектральные фильтры, каждый из которых пропускает излучение в соответствующем диапазоне спектра, последовательно вводятся в оптический тракт между объективом и МФПУ. В результате воздействия оптического изучения, прошедшего через объектив и спектральные фильтры, в элементах МФПУ вырабатываются электрические сигналы, моменты съема которых синхронизированы с положением спектральных фильтров. Сигналы с МФПУ поступают в блок обработки информации, в котором сначала осуществляется пространственная селекция объектов, находящихся в поле зрения объектива, т.е. происходит выделение объектов, соответствующих по своим пространственным признакам заданным критериям. Затем сигналы от выделенных объектов классифицируются по спектральному признаку, в результате чего при наличии объекта, представляющего угрозу, выдается информация о его угловых координатах.
При размещении устройства-прототипа на подвижном основании, например на ЛА, совершающем эволюции, происходит смещение изображения пространства объектов на матрице МФПУ из-за временной задержки при переходе от одного спектрального диапазона к другому, т.е. нарушается соответствие пиксельных координат выделенных объектов в последовательных кадрах. Недостатком прототипа является то, что спектральная селекция осуществляется путем сравнения сигналов, полученных в различных спектральных диапазонах с идентичных пикселов МФПУ, и при этом не учитывается смещение изображения, что приводит к погрешностям при выделении полезных сигналов на фоне помех.
Задачей, на решение которой направлено изобретение, является создание ТП, устанавливаемого на подвижном основании и обладающего повышенной надежностью обнаружения объектов по их тепловому излучению за счет использования информации о текущем положении подвижного основания, например ЛА, в пространстве.
Указанная задача решается тем, что ТП, содержащий последовательно установленные объектив, устройство фильтрации оптического излучения, содержащее спектральные фильтры и снабженное приводом вращения и датчиком углового положения спектральных фильтров, матричное фотоприемное устройство, подключенное к устройству управления и обработки информации, при этом теплопеленгатор выполнен с возможностью установки на подвижном основании, снабжен установленными ортогонально и закрепленными на неподвижном корпусе теплопеленгатора датчиками угловой скорости, при этом выходы датчика углового положения спектральных фильтров и датчиков угловой скорости подключены к соответствующим входам устройства управления и обработки информации, соответствующие управляющие выходы которого подключены к управляющим входам матричного фотоприемного устройства и привода вращения устройства фильтрации оптического излучения, при этом спектральные фильтры выполнены в виде покрытий, нанесенных на поверхность диска из оптического материала в виде секторов одинакового размера.
На фиг. 1 приведена блок-схема ТП.
На фиг. 2 показаны спектральные фильтры.
ТП содержит последовательно установленные объектив 1, устройство фильтрации оптического излучения 2, МФПУ 3, устройство управления и обработки информации 4, включающее контроллер управления и связи 5 и вычислитель 6. Датчики угловой скорости (ДУС) 7, 8, 9 установлены 4
ортогонально и закреплены на неподвижном корпусе (на схеме не показан) ТП, выполненного с возможностью установки на подвижном основании (на схеме не показано). Устройство фильтрации оптического излучения 2 содержит диск 10 из оптического материала с нанесенными на его поверхность спектральными фильтрами 11 и 12 и снабжено приводом 13 вращения диска 10 и датчиком положения спектральных фильтров 14. На фиг. 2 показаны спектральные фильтры 11 и 12, выполненные в виде покрытий, нанесенных на диске 10 в виде секторов одинаковых размеров, а также световой диаметр пучка лучей 15 от объекта. При этом спектральный фильтр 11 пропускает излучение в диапазоне ЛА, а спектральный фильтр 12 - в диапазоне ЛА. Датчик положения спектральных фильтров 14 определяет, какой из спектральных фильтров (11 или 12) находится в оптическом тракте ТП. Количество спектральных фильтров зависит от количества рабочих спектральных диапазонов ТП. ДУС 7, 8, 9 измеряют угловую скорость поворота корпуса подвижного основания, например ЛА, в трех взаимно перпендикулярных направлениях, которая используется для определения положения изображения объекта на матрице МФПУ 3 в текущий момент времени. Выходы МФПУ 3, датчика положения спектральных фильтров 14 и ДУС 7, 8, 9 подключены к соответствующим входам устройства управления и обработки информации 4, которые являются входами контроллера управления и связи 5, осуществляющего предварительную обработку сигналов и дальнейшую их передачу по линии связи в вычислитель 6, выполненный на базе процессора и программируемой логической интегральной схемы (ПЛИС). Кроме того, вычислитель 6 содержит блок «Flach память», в котором записана априори известная информация о соотношении сигналов от объектов и помех в рабочих спектральных диапазонах Δλ1 и Δλ2. Управляющий выход вычислителя 6 по линии связи соединен с контроллером управления и связи 5, управляющие выходы которого являются управляющими выходами устройства управления и обработки информации 4 и подключены к управляющим входам МФПУ 3 и привода 13 вращения диска 10. Информация из вычислителя 6 устройства управления и обработки информации 4 передается в бортовое устройство 5
управления подвижного основания, например ЛА (на схеме не показано). Контроллер управления и связи 5 представляет собой набор микросхем, обеспечивающих взаимодействие отдельных компонентов ТП и устройства управления и обработки информации 4.
Работа устройства показана на примере ТП, установленного на ЛА. После поступления команды от бортового устройства управления ЛА, включения электрического питания ТП и выхода устройства управления и обработки информации 4 в рабочий режим через контроллер управления и связи 5 поступает команда на включение привода вращения 13 диска 10 со спектральными фильтрами 11 и 12, в результате чего диск 10 начинает непрерывно вращаться с заданной постоянной скоростью. При этом с датчика положения 14 спектральных фильтров И, 12 с определенной периодичностью, соответствующей угловой скорости вращения диска 10, в устройство управления и обработки информации 4 через контроллер управления и связи 5 поступают сигналы, свидетельствующие о том, какой спектральный фильтр (11 или 12) находится в оптическом тракте устройства в данный момент времени. Как только в поле зрения ТП появляется теплоизлучающий объект, излучение от него проходит через объектив 1, диск 10, затем через спектральный фильтр, находящийся на пути лучей в данный момент времени, и фокусируется в плоскости фоточувствительных элементов МФПУЗ. Под воздействием излучения в емкостях фоточувствительных элементов МФПУ 3 происходит процесс накопления заряда в течение заданного времени (времени накопления сигнала), а затем его считывание (опрос) и передача через контроллер управления и связи 5 устройства управления и обработки информации 4 в вычислитель 6. В следующий момент опроса МФПУ 3 на пути лучей находится другой спектральный фильтр, в результате чего возникает новый сигнал в МФПУ 3, который также передается в вычислитель 6 устройства управления и обработки информации 4. Таким образом, за один оборот диска 10 формируются два кадра с изображением одного и того же объекта (предмета, сцены). Одновременно с передачей сигналов с МФПУ 3, вызванных излучением от объекта, в устройство управления и обработки информации 4 поступает информация от ДУС 7, 8, 9. Из-за наличия временного интервала между моментами опроса МФПУ 3 и движения в пространстве ЛА, на котором установлен ТП, на матрице МФПУ 3 возникает рассогласование положений изображений объекта в различных спектральных диапазонах, поэтому в устройстве управления и обработки информации 4 принадлежность сигналов одному и тому же теплоизлучающему объекту определяется с учетом информации, полученной от ДУС 7, 8, 9. Затем в устройстве управления и обработки информации 4 измеряются амплитуды сигналов в спектральных диапазонах Δλ1 и Δλ2, вычисляется их отношение, которое сравнивается с заранее записанными в блоке «Flach память» отношениями сигналов, присущими определенным классам источников излучения. На основании этого сравнения обнаруженный источник излучения классифицируется как объект интереса или как помеха. Если признаки обнаруженного источника соответствуют объекту, представляющему угрозу ЛА, осуществляется процедура вычисления его угловых координат и передача информации в бортовое устройство управления ЛА.
В заявляемом устройстве спектральные фильтры выполнены в виде покрытий, нанесенных на одной подложке, в качестве которой служит диск 10. Преимуществом такого решения является то, что при переходе от одного спектрального диапазона к другому не происходит дополнительное смещение изображения объекта, возникающее при нанесении спектральных фильтров на разных подложках.
Таким образом, предлагаемое изобретение позволяет повысить надежность обнаружения объектов путем более корректного вычисления смещения изображения объекта при переходе от одного спектрального диапазона к другому с учетом использования информации о текущем положении подвижного основания, например ЛА, в пространстве.

Claims (1)

  1. Теплопеленгатор, содержащий последовательно установленные объектив, устройство фильтрации оптического излучения, содержащее спектральные фильтры и снабженное приводом вращения и датчиком углового положения спектральных фильтров, матричное фотоприемное устройство, подключенное к устройству управления и обработки информации, при этом теплопеленгатор выполнен с возможностью установки на подвижном основании, отличающийся тем, что снабжен установленными ортогонально и закрепленными на неподвижном корпусе теплопеленгатора датчиками угловой скорости поворота подвижного основания, при этом выходы датчика углового положения спектральных фильтров и датчиков угловой скорости подключены к соответствующим входам устройства управления и обработки информации, соответствующие управляющие выходы которого подключены к управляющим входам матричного фотоприемного устройства и привода вращения устройства фильтрации оптического излучения, при этом спектральные фильтры выполнены в виде покрытий, нанесенных на поверхность диска из оптического материала в виде секторов одинакового размера.
RU2018130941A 2018-08-27 2018-08-27 Теплопеленгатор RU2692059C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018130941A RU2692059C1 (ru) 2018-08-27 2018-08-27 Теплопеленгатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018130941A RU2692059C1 (ru) 2018-08-27 2018-08-27 Теплопеленгатор

Publications (1)

Publication Number Publication Date
RU2692059C1 true RU2692059C1 (ru) 2019-06-20

Family

ID=66947666

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018130941A RU2692059C1 (ru) 2018-08-27 2018-08-27 Теплопеленгатор

Country Status (1)

Country Link
RU (1) RU2692059C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285884A (ja) * 1985-10-11 1987-04-20 Toshiba Corp 画像識別装置
US4705946A (en) * 1985-09-05 1987-11-10 Hughes Aircraft Company Infrared sensor comprising improved feedback limited amplifier and associated method for amplifying electronic signals
EP1416312A1 (en) * 2002-10-23 2004-05-06 Raytheon Company Wide field of view scanning sensor
FR2885224A1 (fr) * 2005-04-28 2006-11-03 Sagem Procede et systeme de veille aeroportee par analyse d'images infrarouges
RU2335728C1 (ru) * 2007-01-09 2008-10-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение "Государственный институт прикладной оптики" (ФГУП "НПО "ГИПО") Оптико-электронная система поиска и сопровождения цели
RU2458356C1 (ru) * 2011-04-15 2012-08-10 Открытое акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (ОАО "НИИ ОЭП") Теплопеленгатор
RU2604959C1 (ru) * 2016-02-03 2016-12-20 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Теплопеленгатор

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705946A (en) * 1985-09-05 1987-11-10 Hughes Aircraft Company Infrared sensor comprising improved feedback limited amplifier and associated method for amplifying electronic signals
JPS6285884A (ja) * 1985-10-11 1987-04-20 Toshiba Corp 画像識別装置
EP1416312A1 (en) * 2002-10-23 2004-05-06 Raytheon Company Wide field of view scanning sensor
FR2885224A1 (fr) * 2005-04-28 2006-11-03 Sagem Procede et systeme de veille aeroportee par analyse d'images infrarouges
RU2335728C1 (ru) * 2007-01-09 2008-10-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение "Государственный институт прикладной оптики" (ФГУП "НПО "ГИПО") Оптико-электронная система поиска и сопровождения цели
RU2458356C1 (ru) * 2011-04-15 2012-08-10 Открытое акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (ОАО "НИИ ОЭП") Теплопеленгатор
RU2604959C1 (ru) * 2016-02-03 2016-12-20 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Теплопеленгатор

Similar Documents

Publication Publication Date Title
JP7515545B2 (ja) Lidarに基づく3次元撮像のための統合された照射及び検出
US10330780B2 (en) LIDAR based 3-D imaging with structured light and integrated illumination and detection
US11859976B2 (en) Automatic locating of target marks
US11703567B2 (en) Measuring device having scanning functionality and settable receiving ranges of the receiver
US7667598B2 (en) Method and apparatus for detecting presence and range of a target object using a common detector
US9528819B2 (en) Spatially selective detection using a dynamic mask in an image plane
US11808887B2 (en) Methods and systems for mapping retroreflectors
CA3062701A1 (en) Lidar data acquisition and control
US7450251B2 (en) Fanned laser beam metrology system
US9482756B2 (en) Tracker unit and method in a tracker unit
CN108957467B (zh) 用于旋转式LiDAR测光系统的模拟设备
US7495746B2 (en) Optical method and device for measuring a distance from an obstacle
RU2375724C1 (ru) Способ лазерной локации заданной области пространства и устройство для его осуществления
US11940568B2 (en) Enhanced multispectral sensor calibration
RU2692059C1 (ru) Теплопеленгатор
US4993830A (en) Depth and distance measuring system
RU2540154C2 (ru) Устройство обнаружения оптических и оптико-электронных приборов
RU187060U1 (ru) Теплопеленгатор
US10876828B2 (en) Tracking system and optical measuring system for determining at least one spatial position and orientation of at least one measurement object
RU2012115953A (ru) Способ сопровождения воздушной цели и оптический прицел со следящим дальномером для его осуществления
RU2774945C1 (ru) Способ обнаружения оптических и оптико-электронных приборов
CN219265226U (zh) 基于多目相机实现瞄准功能的坐标测量装置
EP3637044B1 (en) Multi-image projector and electronic device having the multi-image projector
Alant’ev et al. Optical-Electronic System for Detecting Light Reflecting Objects Based on Probing by Pulsed Laser Radiation
RU1841091C (ru) Система предупреждения столкновений