RU2604959C1 - Теплопеленгатор - Google Patents

Теплопеленгатор Download PDF

Info

Publication number
RU2604959C1
RU2604959C1 RU2016103563/07A RU2016103563A RU2604959C1 RU 2604959 C1 RU2604959 C1 RU 2604959C1 RU 2016103563/07 A RU2016103563/07 A RU 2016103563/07A RU 2016103563 A RU2016103563 A RU 2016103563A RU 2604959 C1 RU2604959 C1 RU 2604959C1
Authority
RU
Russia
Prior art keywords
optical system
prism
scanning element
drives
scanning
Prior art date
Application number
RU2016103563/07A
Other languages
English (en)
Inventor
Виллен Арнольдович Балоев
Маргарита Васильевна Дорофеева
Владимир Петрович Иванов
Владимир Самуилович Яцык
Original Assignee
Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") filed Critical Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО")
Priority to RU2016103563/07A priority Critical patent/RU2604959C1/ru
Application granted granted Critical
Publication of RU2604959C1 publication Critical patent/RU2604959C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

Изобретение относится к оптико-электронным приборам и может использоваться для поиска, обнаружения и определения координат теплоизлучающих объектов в полусферической зоне обзора. Технический результат заключается в создании компактного быстродействующего теплопеленгатора с уменьшенными габаритными размерами, массой и энергопотреблением. Указанный результат достигается за счет того, что устройство содержит сферический обтекатель, сканирующий элемент в виде прямоугольной призмы с приводами электродвигателей и датчиками углового положения, оптическую систему, содержащую входной и выходной компоненты, а также матричное фотоприемное устройство с охлаждаемой диафрагмой, подключенное к устройству вычисления и управления. Обзор требуемой зоны пространства осуществляется за счет вращения призмы с постоянной угловой скоростью вокруг вертикальной оси и колебательного движения относительно горизонтальной оси. Сущность изобретения состоит в том, что входной компонент оптической системы является фокусирующим объективом и размещен внутри полых роторов электродвигателей приводов сканирующего элемента, а выходной компонент оптической системы является проекционным объективом. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к приборостроению, а именно к оптико-электронным приборам - теплопеленгаторам (ТП), предназначенным для обнаружения и определения координат теплоизлучающих объектов в полусферической зоне обзора. Такие приборы находят применение в системах индивидуальной защиты летательных аппаратов (ЛА) от ракетных атак.
Один из путей просмотра полусферической зоны пространства заключается в использовании широкопольного объектива типа «рыбий глаз» с угловым полем 180°, в фокальной плоскости которого размещено матричное фотоприемное устройство (МФПУ) (см. Обзорно-панорамные оптико-электронные системы // Известия вузов, Приборостроение. 2002. Т. 45. №2. С. 37-45). Преимуществом «смотрящей» системы является отсутствие подвижных деталей, но вместе с тем она обладает пониженной разрешающей способностью и недостаточной дальностью обнаружения, что обусловлено ограниченными размерами матриц разработанных к настоящему времени фотоприемников.
Второй путь просмотра полусферы, позволяющий улучшить обнаружительные характеристики системы, состоит в использовании сканирующего элемента в сочетании с многоэлементным фотоприемником. Сканирующие ТП обеспечивают высокую разрешающую способность при определении направления на источник инфракрасного излучения и
Figure 00000001
чувствительность, чем смотрящие.
Известно сканирующее устройство кругового обзора (см. патент на изобретение РФ №2271553, МПК G01S 17/66, опубл. 10.03.2006 г.), позволяющее осуществлять просмотр полусферической зоны пространства. Устройство содержит два сканирующих зеркала, установленных на платформе, вращающейся вокруг вертикальной оси с помощью привода. Кроме того, первое по ходу лучей зеркало может поворачиваться вокруг горизонтальной оси с помощью механической передачи от второго привода. За счет вращения обоих зеркал вокруг вертикальной оси и одного - вокруг горизонтальной оси осуществляется сканирование полусферической зоны пространства. Одним из недостатков устройства применительно к его использованию в ТП для защиты ЛА являются увеличенные размеры головной части, выступающей в воздушный поток. Второй недостаток заключается в невозможности применения монолитного сферического обтекателя из-за недопустимых аберраций, возникающих вследствие децентрировки входящего пучка лучей относительно вертикальной оси вращения, на которой должен находиться центр обтекателя.
Известно устройство с круговой зоной обзора (см. Оптико-электронная система кругового обзора // Оптический журнал. 2014. Т. 81. №9. С. 15-22, рис. 3), содержащая сферический обтекатель, двухкоординатный сканирующий элемент в виде прямоугольной призмы, снабженный приводами и датчиками углового положения, фокусирующую систему и МФПУ. Матрица чувствительных элементов фотоприемника и оптическая система в целом формируют в пространстве объектов поле зрения (кадр), перемещающийся в зоне обзора за счет непрерывного вращения прямоугольной призмы в азимутальном направлении и скачкообразного перехода с одной строки на другую по угломестной координате. Между фокусирующей системой, представляющей собой короткофокусный объектив, и сканирующей призмой размещены линзовый телескоп с ломающими зеркалами, компенсатор поворота изображения в виде призмы Дове и вращающиеся оптические клинья. Призма Дове и оптические клинья снабжены своими приводами и датчиками углового положения. Таким образом, устройство содержит пять приводов и пять датчиков углового положения, включая приводы и датчики сканирующей призмы. Встроенная в МФПУ охлаждаемая диафрагма служит апертурной диафрагмой оптической системы, и ее промежуточное изображение, создаваемое в обратном ходе лучей фокусирующей системой, находится вблизи ее входного объектива. Далее это промежуточное изображение переносится телескопом в плоскость оси качания сканирующего элемента. Такой перенос возможно выполнить при условии, если расстояние от телескопа до сканирующего элемента не менее фокусного расстояния его входного объектива. С учетом обеспечения прохождения наклонных пучков лучей это приводит к значительному возрастанию диаметра линз телескопа, следовательно, к увеличению размеров как оптической системы, так и всего устройства. Его недостатками являются увеличенные массогабаритные параметры, а также увеличенное энергопотребление, обусловленное наличием пяти приводов и пяти датчиков углового положения.
Наиболее близким к предлагаемому изобретению является теплопеленгатор (см. Оптико-электронная система кругового обзора // Оптический журнал. 2014. Т. 81. №9. С. 15-22, рис. 1), содержащий обтекатель, двухкоординатный сканирующий элемент, оптическую систему и МФПУ с охлаждаемой диафрагмой. Сканирующий элемент выполнен в виде призмы, установленной на горизонтальной платформе, вращающейся с помощью привода вокруг вертикальной оси и снабженной датчиком ее углового положения. На этой же платформе размещены второй привод, с помощью которого призма поворачивается вокруг горизонтальной оси, и второй датчик углового положения. Матрица чувствительных элементов фотоприемника и оптическая система в целом формируют в пространстве объектов поле зрения (кадр), перемещающийся в зоне обзора за счет непрерывного вращения призмы в азимутальном направлении и скачкообразного перехода с одной строки на другую по угломестной координате. Оптическая система содержит входной компонент в виде вращающегося телескопа со встроенным трехзеркальным компенсатором поворота изображения, снабженного приводом и датчиком углового положения, и выходной компонент в виде фокусирующего объектива. Кроме того, между телескопом и фокусирующим объективом размещена пара вращающихся оптических клиньев со своими приводами и датчиками углового положения. С помощью указанных элементов осуществляется покадровый просмотр круговой зоны пространства, при котором сохраняется постоянная ориентация кадра относительно азимутальной плоскости, что обеспечивает оператору удобство наблюдения изображения контролируемой зоны пространства. Если устройство работает в автоматическом режиме без оператора, и к нему не предъявляется требование визуализации видеоизображения, то нет необходимости в компенсаторе поворота изображения и в оптических клиньях. Рассматриваемое устройство имеет ряд недостатков. Трехзеркальный компенсатор экранирует центральную часть входного зрачка оптической системы, что возмещается увеличением его диаметра, следовательно, и размеров сканирующего элемента и обтекателя, защищающего его от внешних воздействий. Обтекатель представляет собой конструкцию, составленную из плоских пластин, обработанных с высокой точностью во избежание двоения изображения. Изготовление такого обтекателя является весьма трудоемким. В процессе сканирования зоны обзора изменяются углы падения пучков лучей на пластины обтекателя, и при больших углах возникают дополнительные потери энергии, поступающей в оптическую систему. Кроме того, размещение на горизонтальной платформе второго привода, а также датчика углового положения призмы приводит к увеличению размеров и массы головной части устройства, выступающей в воздушный поток ЛА. Еще один недостаток - медленный темп обновления информации, зависящий от азимутальной угловой скорости вращения сканирующего элемента. В свою очередь, эта скорость при покадровой съемке зоны обзора ограничивается максимально возможной угловой скоростью вращения оптических клиньев (6000 об/мин). При фокусном расстоянии оптической системы 60 мм угловые размеры кадра составляют 7,3°×9,1°. При кадровой частоте опроса МФПУ 100 Гц, постоянной азимутальной скорости вращения сканирующего элемента и отсутствии пропусков при сканировании время обзора полусферы составляет 5 с. Такая величина времени обзора не приемлема для ТП защиты ЛА.
Задачей, на решение которой направлено изобретение, является создание компактного быстродействующего устройства для обнаружения теплоизлучающих объектов с уменьшенными габаритными размерами, массой и энергопотреблением.
Указанная задача решается тем, что в теплопеленгаторе, содержащем последовательно расположенные обтекатель, двухкоординатную сканирующую систему, включающую сканирующий элемент, снабженный приводами и датчиками углового положения, оптическую систему, содержащую входной и выходной компоненты, матричное фотоприемное устройство с охлаждаемой диафрагмой, подключенное к устройству вычисления и управления, при этом выходы датчиков углового положения подключены к соответствующим входам устройства вычисления и управления, управляющие выходы которого подключены к соответствующим входам приводов сканирующего элемента, входной компонент оптической системы является фокусирующим объективом и размещен в полости, образованной концентрически установленными пустотелыми подвижными блоками приводов, размещенными внутри полых роторов электродвигателей, установленных соосно, при этом роторы жестко связаны с соответствующими подвижными блоками приводов, а выходной компонент оптической системы является проекционным объективом.
А также тем, что в оптической системе между входным и выходным ее компонентами установлен элемент для излома оптической оси.
На фиг. 1 приведена блок-схема теплопеленгатора, содержащая сферический обтекатель 1, установленный на неподвижном корпусе (на схеме не показан), двухкоординатную сканирующую систему, включающую сканирующий элемент в виде прямоугольной призмы 2, оптическую систему, содержащую входной 3 и выходной 4 компоненты, и МФПУ 5 с охлаждаемой диафрагмой 6. Призма 2 установлена с возможностью вращения относительно двух взаимно перпендикулярных осей О-О и O1 с помощью приводов, в качестве которых служат два установленных соосно бесконтактных моментных электродвигателя, например 2ДБМ-70-0,16-3-2, с полыми роторами 7 и 8 соответственно, имеющими общую ось вращения, и пазовыми статорами 9 и 10 соответственно, закрепленными неподвижно на корпусе устройства. С роторами 7 и 8 жестко связаны пустотелые подвижные блоки 11 и 12 соответственно, расположенные внутри цилиндрических отверстий роторов (см. патент РФ №2470325 МПК G01S 17/66, опубл. 20.12.2012 г.). На блоке 11 закреплены опоры оси вращения О1, связанной с блоком 12 зубчатым сектором 13. На блоках 11 и 12 закреплены кольца датчиков углового положения 14 и 15, считывающие головки которых (на схеме не показаны) установлены неподвижно на корпусе устройства. Первый по ходу лучей от объекта входной компонент 3 оптической системы, являющийся фокусирующим объективом, размещен в полости, образованной концентрически установленными пустотелыми подвижными блоками 11, 12 приводов, и создает промежуточное изображение пространства объектов, которое затем переносится выходным компонентом 4, являющимся проекционным объективом, на фоточувствительную поверхность МФПУ 5. Охлаждаемая диафрагма 6, встроенная в МФПУ 5, является апертурной диафрагмой оптической системы. Ее изображение в обратном ходе лучей при определенных соотношениях фокусного расстояния входного 3 и увеличения выходного 4 компонентов оптической системы находится на одинаковых расстояниях от призмы 2 и входного компонента 3. Этим обеспечивается оптимальное соотношение между размерами призмы 2 и диаметрами линз компонента 3. Например, при фокусном расстоянии входного компонента 3 26,8 мм и увеличении выходного компонента 4 -0,7X диаметр линз компонента 3 составляет 20 мм, а размер катета призмы 2, обеспечивающей прохождение пучков лучей без виньетирования в пределах полусферической зоны обзора, составляет 26 мм. При этом наружный диаметр обтекателя 82 мм. Уменьшение размеров призмы 2, следовательно, и размеров обтекателя 1, выступающего в воздушный поток, благоприятно с точки зрения уменьшения аэродинамического сопротивления при установке устройства на борту ЛА. С другой стороны, от диаметров линз компонента 3 зависят размеры и масса выбранных электродвигателей и датчиков углового положения 14, 15. Сферический обтекатель по сравнению с обтекателем, составленным из плоских пластин и имеющим вид усеченной пирамиды, обладает рядом преимуществ. Его размеры примерно на 30% меньше, чем у пирамидального обтекателя. Кроме того, он не вносит экранирование лучистого потока в местах стыка пластин, а его действие на проходящий пучок лучей одинаково в пределах всей зоны обзора. Предлагаемое компоновочное решение о размещении компонента 3 оптической системы в полости концентрических подвижных блоков 11, 12 приводов, расположенных внутри полых роторов 7, 8 установленных соосно электродвигателей сканирующей системы, а также выбор места положения изображения апертурной диафрагмы оптической системы позволяют уменьшить массогабаритные параметры устройства. Вместе с тем уменьшение размеров и массы подвижных частей позволяют сократить его энергопотребление и повысить быстродействие. Для обеспечения более компактной конструкции устройства между компонентами 3 и 4 оптической системы может быть установлен элемент для излома оптической оси, например призма 16.
Выход МФПУ 5 и выходы кольцевых датчиков углового положения 14 и 15 подключены к устройству вычисления и управления (УВУ) 17. Управляющие выходы УВУ 17 подключены к соответствующим входам статоров 9 и 10 приводов сканирования призмы 2. Один из входов и один из выходов УВУ 17 подключены к бортовому устройству управления ЛА. УВУ 17 выполнен на базе процессора с тактовой частотой 1 гГц с возможностью обработки сигналов МФПУ 5 и датчиков углового положения 14, 15, на основании которых осуществляются процедуры обнаружения цели и вычисления ее координат, а затем передача информации в бортовое устройство управления ЛА.
Теплопеленгатор работает в автоматическом режиме без визуализации видеоизображения. Процесс обзора требуемой зоны пространства начинается после подачи команд от УВУ 17 на статоры 9 и 10 электродвигателей. При этом блоки 11 и 12, жестко связанные с роторами 7 и 8 электродвигателей, вращаются вокруг общей оси О-О, причем блок 11 вращается с постоянной угловой скоростью, а блок 12 - с переменной скоростью в соответствии с командами, поступающими от УВУ 17. За счет разности угловых скоростей подвижных блоков 11 и 12 призма 2 совершает колебательное движение относительно оси O1. На матрице МФПУ 5 с периодичностью, соответствующей его кадровой частоте опроса, отображается область пространства - кадр. В результате сложения двух движений призмы 2 кадр перемещается в зоне обзора по винтовой линии и поворачивается относительно своего центра. Амплитуда колебаний призмы 2 вокруг оси вращения O1 и угловые размеры кадра определяют величину зоны обзора по углу места, которая может составлять 90° и даже более. После завершения однократного просмотра зоны обзора призма 2 возвращается в исходную точку. Считываемая с МФПУ 5 информация поступает в УВУ 17. Как только в процессе сканирования в кадр попадает цель - теплоизлучающий объект, и МФПУ 5 принимает от него достаточное количество энергии, вырабатывается сигнал, в соответствии с которым в УВУ 17 принимается решение, что цель обнаружена. По информации, поступающей от датчиков углового положения 14, 15 и от МФПУ 5 о положении засвеченного пиксела в координатах матрицы, в УВУ 17 однозначно определяются угловые координаты точечной цели по азимуту и углу места. Затем информация об обнаруженной цели и ее угловых координатах из УВУ 17 поступает в бортовое устройство управления ЛА.
При отсутствии пропусков в процессе просмотра зоны обзора и с учетом поворота кадров при сканировании по азимуту оптимальное соотношение между временем обзора зоны, величиной зоны обзора по углу места, угловым размером кадра и кадровой частотой опроса МФПУ выполняется при условии
Figure 00000002
, где
to - время обзора зоны,
β - величина зоны обзора по углу места,
Figure 00000003
- кадровая частота опроса МФПУ,
σ - угловой размер кадра.
При заданных величинах to и β, являющихся одними из основных параметров ТП, из приведенного соотношения могут быть определены такие параметры, как кадровая частота опроса
Figure 00000004
и минимальный угловой размер кадра σ. Так, например, при to=0,5 с и β=90°,
Figure 00000005
и σ=24°, что вполне реализуемо при использовании в качестве элементной базы электродвигателей 2ДБМ-70-0,16-3-2 и МФПУ формата 256×256 пикселов с шагом 30 мкм, диафрагменным числом f/2 и Δλ=3,7-4,8 мкм.
Таким образом, использование совокупности признаков заявляемого устройства позволяет достичь технического результата, заключающегося в создании компактного быстродействующего теплопеленгатора с уменьшенными габаритными размерами, массой и энергопотреблением.

Claims (2)

1. Теплопеленгатор, содержащий последовательно расположенные обтекатель, двухкоординатную сканирующую систему, включающую сканирующий элемент, снабженный приводами с электродвигателями и датчиками углового положения, оптическую систему, содержащую входной и выходной компоненты, матричное фотоприемное устройство с охлаждаемой диафрагмой, подключенное к устройству вычисления и управления, при этом выходы датчиков углового положения подключены к соответствующим входам устройства вычисления и управления, управляющие выходы которого подключены к соответствующим входам приводов сканирующего элемента, отличающийся тем, что входной компонент оптической системы является фокусирующим объективом и размещен в полости, образованной концентрически установленными пустотелыми подвижными блоками приводов, размещенными внутри полых роторов электродвигателей, установленных соосно, при этом роторы жестко связаны с соответствующими подвижными блоками приводов, а выходной компонент оптической системы является проекционным объективом.
2. Теплопеленгатор по п. 1, отличающийся тем, что в оптической системе между входным и выходным ее компонентами установлен элемент для излома оптической оси.
RU2016103563/07A 2016-02-03 2016-02-03 Теплопеленгатор RU2604959C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016103563/07A RU2604959C1 (ru) 2016-02-03 2016-02-03 Теплопеленгатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016103563/07A RU2604959C1 (ru) 2016-02-03 2016-02-03 Теплопеленгатор

Publications (1)

Publication Number Publication Date
RU2604959C1 true RU2604959C1 (ru) 2016-12-20

Family

ID=58697386

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016103563/07A RU2604959C1 (ru) 2016-02-03 2016-02-03 Теплопеленгатор

Country Status (1)

Country Link
RU (1) RU2604959C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU187060U1 (ru) * 2018-08-27 2019-02-18 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Теплопеленгатор
RU2692059C1 (ru) * 2018-08-27 2019-06-20 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Теплопеленгатор
CN111463934A (zh) * 2017-03-29 2020-07-28 深圳市大疆创新科技有限公司 驱动装置及其操作方法、激光测量装置和移动平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075348A2 (en) * 2001-03-20 2002-09-26 Wave Group Ltd. Omni-directional radiation source and object locator
RU2292566C1 (ru) * 2005-09-15 2007-01-27 Российская Федерация, от имени которой выступает государственный заказчик-Министерство Обороны Российской Федерации Многофункциональная оптико-локационная система
GB2447264A (en) * 2007-03-05 2008-09-10 Sensl Technologies Ltd Optical position sensitive detector
WO2009153697A1 (en) * 2008-06-16 2009-12-23 Koninklijke Philips Electronics N. V. Spectral detector with angular resolution using refractive and reflective structures
RU2396574C2 (ru) * 2008-09-04 2010-08-10 Федеральное государственное унитарное предприятие "Производственное объединение "Уральский оптико-механический завод" имени Э.С. Яламова" Теплопеленгатор
RU2458356C1 (ru) * 2011-04-15 2012-08-10 Открытое акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (ОАО "НИИ ОЭП") Теплопеленгатор

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075348A2 (en) * 2001-03-20 2002-09-26 Wave Group Ltd. Omni-directional radiation source and object locator
RU2292566C1 (ru) * 2005-09-15 2007-01-27 Российская Федерация, от имени которой выступает государственный заказчик-Министерство Обороны Российской Федерации Многофункциональная оптико-локационная система
GB2447264A (en) * 2007-03-05 2008-09-10 Sensl Technologies Ltd Optical position sensitive detector
WO2009153697A1 (en) * 2008-06-16 2009-12-23 Koninklijke Philips Electronics N. V. Spectral detector with angular resolution using refractive and reflective structures
RU2396574C2 (ru) * 2008-09-04 2010-08-10 Федеральное государственное унитарное предприятие "Производственное объединение "Уральский оптико-механический завод" имени Э.С. Яламова" Теплопеленгатор
RU2458356C1 (ru) * 2011-04-15 2012-08-10 Открытое акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (ОАО "НИИ ОЭП") Теплопеленгатор

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Оптико-электронная система кругового обзора. Оптический журнал, 2014, Т.81, N9, с.15-22. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463934A (zh) * 2017-03-29 2020-07-28 深圳市大疆创新科技有限公司 驱动装置及其操作方法、激光测量装置和移动平台
CN111463934B (zh) * 2017-03-29 2021-08-24 深圳市大疆创新科技有限公司 驱动装置及其操作方法、激光测量装置和移动平台
RU187060U1 (ru) * 2018-08-27 2019-02-18 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Теплопеленгатор
RU2692059C1 (ru) * 2018-08-27 2019-06-20 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Теплопеленгатор

Similar Documents

Publication Publication Date Title
EP3457080B1 (en) Surveying instrument
US8760562B2 (en) Camera with pivotable prism
US4647761A (en) Airborne system for the electrooptical detection, location and omnidirectional tracking of a target
US10057509B2 (en) Multiple-sensor imaging system
JP2016151422A (ja) 測定装置及び3次元カメラ
CN113340279B (zh) 具有同轴射束偏转元件的勘测装置
US20130193315A1 (en) Line of sight stabilization system
US9549102B2 (en) Method and apparauts for implementing active imaging system
RU2604959C1 (ru) Теплопеленгатор
US20150268346A1 (en) Optical axis directing apparatus
KR100351018B1 (ko) 목표물 탐지용 배열체
RU2458356C1 (ru) Теплопеленгатор
US3554628A (en) Infrared optical system utilizing circular scanning
US20210231945A1 (en) Hybrid lidar system
RU162322U1 (ru) Теплопеленгатор
CN113885312A (zh) 光电跟踪系统及方法
RU2562391C1 (ru) Способ и устройство оптической локации
US4162124A (en) Passive optical rangefinder-sextant
RU2396574C2 (ru) Теплопеленгатор
JPH09133873A (ja) 固体物体の向きを決定するための光学装置
US3532410A (en) Theodolite arrangement,particularly for tracking flying objects
JP2009244192A (ja) 移動体位置測定装置、移動体位置測定方法、及び移動体位置測定プログラム
RU2554108C1 (ru) Способ оптической локации и устройство для его реализации
RU2622233C1 (ru) Аэрофотоаппарат
RU2457504C1 (ru) Способ обзора пространства оптико-электронной системой