RU2690474C1 - Устройство ультразвукового диспергирования - Google Patents

Устройство ультразвукового диспергирования Download PDF

Info

Publication number
RU2690474C1
RU2690474C1 RU2018130568A RU2018130568A RU2690474C1 RU 2690474 C1 RU2690474 C1 RU 2690474C1 RU 2018130568 A RU2018130568 A RU 2018130568A RU 2018130568 A RU2018130568 A RU 2018130568A RU 2690474 C1 RU2690474 C1 RU 2690474C1
Authority
RU
Russia
Prior art keywords
output
inlet
input
unions
cross
Prior art date
Application number
RU2018130568A
Other languages
English (en)
Inventor
Владимир Федорович Тележкин
Дмитрий Владимирович Нефедов
Юрий Александрович Панасенко
Андрей Сергеевич Шикин
Тимерхан Мусагитович Хакимов
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2018130568A priority Critical patent/RU2690474C1/ru
Application granted granted Critical
Publication of RU2690474C1 publication Critical patent/RU2690474C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к области сверхтонкого измельчения в жидких средах мелкодисперсных материалов и может найти применение в различных технологических процессах медицинской, пищевой, химической промышленности, в частности при изготовлении лакокрасочных материалов. Устройство ультразвукового диспергирования состоит из корпуса с закрытыми торцами, образующего камеру измельчения, в центре которой установлен ультразвуковой вибратор. На открытых торцах корпуса установлены выходные и входные штуцеры. Выходные штуцеры установлены вдоль продольной оси корпуса. Входные штуцеры - вдоль поперечной оси. Ультразвуковой вибратор снабжен двумя высокоамплитудными концентраторами, установленными симметрично друг к другу по обе его стороны. Высокоамплитудные концентраторы закреплены к корпусу мембраной, а их концы образуют зазоры с торцом соответствующего выходного патрубка со стороны его входа. Входные штуцеры выполнены с возможностью регулирования площади их сечения и снабжены механизмом ее регулирования. На каждом выходе устройства дополнительно введены последовательно соединенные датчик температуры, установленный на каждом из выходных штуцеров, и схема сравнения, второй вход которой является технологическим, а выход соединен со входом механизма регулирования площади сечения штуцера. Обеспечивается повышение дисперсности получаемого материала. 1 ил.

Description

Изобретение относится к устройствам сверхтонкого измельчения в жидких средах мелкодисперсных материалов и может найти применение в различных технологических процессах в медицинской, пищевой, химической промышленности, в частности, при изготовлении лакокрасочных материалов.
Известно устройство потокового ультразвукового диспергирования [см., например, патент RU 2081705, С1, МПК В02С 19/18 (1995.01), опубл. 20.06.1997], состоящее из корпуса с закрытыми торцами, образующего камеру измельчения, в центре которой установлен ультразвуковой вибратор, на открытых торцах корпуса установлены выходные и входные штуцера, причем выходные штуцера установлены вдоль продольной оси корпуса, а входные штуцера - вдоль поперечной оси, ультразвуковой вибратор снабжен двумя высокоамплитудными концентраторами, установленными симметрично друг другу по обе стороны от ультразвукового вибратора, при этом высокоамплитудные концентраторы закреплены к корпусу мембраной, а конец образует зазор с торцом соответствующего выходного патрубка со стороны его входа, а также последовательно, соединенные смеситель, дисольвер и насос.
Недостатком известного устройства является низкая технологичность процесса диспергирования и дисперсность получаемого после ультразвуковой обработки материала.
Техническим результатом изобретения является повышение процесса диспергирования и дисперсности получаемого после ультразвуковой обработки материала.
Указанный технический результат достигается тем, что в известном устройстве ультразвукового диспергирования, состоящего из корпуса с закрытыми торцами, образующего камеру измельчения, в центре которой установлен ультразвуковой вибратор, на открытых торцах корпуса установлены выходные и входные штуцера, причем выходные штуцера установлены вдоль продольной оси корпуса, а входные штуцера - вдоль поперечной оси, ультразвуковой вибратор снабжен двумя высокоамплитудными концентраторами, установленными симметрично друг другу по обе стороны от ультразвуковоговибратора, при этом высокоамплитудные концентраторы закреплены к корпусу мембраной, а конец образует зазор с торцом соответствующего выходного штуцера со стороны его входа, согласно изобретению, входные штуцера выполнены с возможностью регулирования площади их сечения и снабжены механизмом ее регулирования, на каждом выходе устройства дополнительно введены последовательно соединенные датчик температуры, установленный на каждом из выходных штуцеров, схема сравнения, второй вход которой является технологическим, а выход соединен со входом механизма регулирования площадью сечения штуцера.
Сущность изобретения заключается в том, что входные штуцера выполнены с возможностью регулирования площади их сечения и снабжены механизмом ее регулирования, на каждом выходе устройства дополнительно введены последовательно соединенные датчик температуры, установленный на каждом из выходных штуцеров, схема сравнения, второй вход которой является технологическим, а выход соединен со входом механизма регулирования площадью сечения штуцера.
Известно [см., например, Лузгин В.И., Шестовских А.Е., Петров, Коптяков А.С. Ультразвуковые резонансные излучатели для технологий получения нанодисперсных эмульсий и суспензий. http://elar.urfu.ru/bitstream/10995/36339/1/aptee-2014-14.pdf. Дата обращ. 31.05.2018 г.], что при разрушении поверхности твердых тел под действием кавитации (кавитационная эрозия) происходит нагревание обрабатываемой жидкости и, как следствие, снижается эрозионная активность жидкости. Этим обусловлено снижение эффективности диспергирования. Согласно [см., например, Ультразвук. Маленькая энциклопедия / Глав. ред. И.П. Голямина. - М. : «Советская энциклопедия», 1979. с. 154-155] эрозионная активность жидкости характеризуется безразмерным коэффициентом, зависящим от параметров звукового поля, физико-химических свойств жидкости и избыточного давления в объеме жидкости, а управление кавитационной эрозией можно осуществить путем изменения соотношений между звуковым и статическим давлением. Изменение этого соотношения может быть достигнутопутем изменения площади сечения входного штуцера или зазора между концом высокоамплитудного конца концентратора и торцом выходного штуцера со стороны его входа [см., например, патент RU 2081705, С1, МПК В02С 19/18 (1995.01). Опубл. 20.06.1997].
Поэтому, согласно изобретению, входные штуцера выполнены с возможностью регулирования площади их сечения и снабжены механизмом ее регулирования, а на выходных штуцерах установлены датчики температуры. Датчики температуры измеряют температуру обработанного сырья, что соответствует температуре жидкости. При превышении температуры жидкости заданной температуры увеличивают площадь сечения входного штуцера, что приводит к уменьшению избыточного давления в камере. Как известно [см., например, Ультразвук. Маленькая энциклопедия / Глав. ред. И.П. Голямина. - М. : «Советская энциклопедия», 1979. с. 157] при понижении избыточного давления, особенно при температуре жидкости близкой точке кипения, доминирующий вклад в образование пузырька вносит испарение жидкости и пузырек-зародыш начинает расширяться под действием разности давлений внутри и вне его. Испарение жидкости с поверхности пузырька приводит к охлаждению прилегающих слоев жидкости и пара в пузырьке. Разность температур вызывает поток тепла от жидкости к пузырьку, идущий на испарение жидкости, что обеспечивает рост пузырька и его захлопывание.
В противном случае уменьшают площадь сечения входного штуцера, что приводит к увеличению избыточного давления в камере. При этом конденсация пара на поверхности пузырька приводит к повышению температуры и выравниванию давлений в пузырьке и жидкости, а процесс захлопывания пузырька происходит вследствие отвода тепла из пузырька в жидкость. Этим обеспечивается указанный в изобретении технический результат.
Возможность регулирования площади сечения штуцера может быть осуществлена, например, с помощью диафрагмы, выполненной в соответствии с ГОСТ 8.586.2-2005. Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 2. Диафрагмы. Технические требования[см., например, http://docs.cntd.ru/document/1200047567. Дата обращ. 05.06.2018 г.] и установленной в патрубок входного штуцера.
Регулирование площади сечения штуцера может быть осуществлено, например, с помощью реверсивного двигателя [см., например, https://cable.ru/articles/id-1106.php. Дата обращ. 05.06.2018 г.], взаимодействующего с диафрагмой и управляемого по сигналам, формируемым по разности температуры жидкости и заданной температуры.
В качестве датчика температуры может быть использован, например, датчик температуры охлаждаемой жидкости [см., например, https://motorsguide.ru/system/zamena-datchika-temperatury-ohlazhdayushhej-zhidkosti. Дата обращ. 05.06.2018 г.].
На фигуре приведен вариант построения ультразвукового диспергирования с использованием диафрагмы, где обозначено: 1 - корпус, 2 - ультразвуковой вибратор, 3 - высокоамплитудный концентратор, 4 - выходной штуцер, 5 - входной штуцер, 6 - диафрагма, 7 - датчик температуры, 8 - схема сравнения, 9 - механизм управления площадью сечения входного штуцера, 10 - мембрана. Назначение элементов ясны из их названия.
Устройство работает аналогично известному устройству с некоторыми отличиями, которые заключаются в следующем. Датчиками температуры 7, установленными на входных штуцерах, измеряется температура обработанного сырья. Результат измерения поступает на схему сравнения, на второй вход которого поступает заданное значение температуры, в качестве которого может быть использовано, например, значение температуры кипения жидкости, используемой в устройстве. Их можно найти, например, на сайте [см., например, http://infotables.ru/khimiya/12-tablitsa-temperatura-kipeniya-zhidkostej. Дата обращ. 05.06.2018 г.]. В зависимости от результата сравнения механизм управления 9 взаимодействуя с диафрагмой 6 обеспечивает либо увеличение, либо уменьшение площади сечения входного штуцера 5, что приводит соответственно к уменьшению или к увеличению избыточного давления. Этим достигается повышение процесса диспергирования и дисперсности получаемого после ультразвуковой обработки материала.

Claims (1)

  1. Устройство ультразвукового диспергирования, состоящее из корпуса с закрытыми торцами, образующего камеру измельчения, в центре которой установлен ультразвуковой вибратор, на открытых торцах корпуса установлены выходные и входные штуцеры, причем выходные штуцеры установлены вдоль продольной оси корпуса, а входные штуцеры - вдоль поперечной оси, ультразвуковой вибратор снабжен двумя высокоамплитудными концентраторами, установленными симметрично друг к другу по обе стороны от ультразвукового вибратора, при этом высокоамплитудные концентраторы закреплены к корпусу мембраной, а конец образует зазор с торцом соответствующего выходного патрубка со стороны его входа, отличающееся тем, что входные штуцеры выполнены с возможностью регулирования площади их сечения и снабжены механизмом ее регулирования, на каждом выходе устройства дополнительно введены последовательно соединенные датчик температуры, установленный на каждом из выходных штуцеров, схема сравнения, второй вход которой является технологическим, а выход соединен со входом механизма регулирования площади сечения штуцера.
RU2018130568A 2018-08-22 2018-08-22 Устройство ультразвукового диспергирования RU2690474C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018130568A RU2690474C1 (ru) 2018-08-22 2018-08-22 Устройство ультразвукового диспергирования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018130568A RU2690474C1 (ru) 2018-08-22 2018-08-22 Устройство ультразвукового диспергирования

Publications (1)

Publication Number Publication Date
RU2690474C1 true RU2690474C1 (ru) 2019-06-03

Family

ID=67037358

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018130568A RU2690474C1 (ru) 2018-08-22 2018-08-22 Устройство ультразвукового диспергирования

Country Status (1)

Country Link
RU (1) RU2690474C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802201C1 (ru) * 2022-10-31 2023-08-22 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство для разделения разноразмерных порошков на фракции

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035363A (en) * 1990-07-06 1991-07-30 Thiokol Corporation Ultrasonic grinding of explosives
WO1994004275A1 (en) * 1992-08-26 1994-03-03 Holl Richard A Methods and apparatus for high-shear material treatment
RU2081705C1 (ru) * 1995-04-20 1997-06-20 Некрасов Сергей Геннадьевич Устройство потокового ультразвукового диспергирования вязких лакокрасочных суспензий
RU44540U1 (ru) * 2004-11-05 2005-03-27 Общество с ограниченной ответственностью "Ультразвуковая техника-инлаб" Ультразвуковая установка для обработки жидких сред
CN101676036A (zh) * 2008-09-18 2010-03-24 任吉林 超声波脉冲射流超细粉碎装置
CN102189031A (zh) * 2010-03-15 2011-09-21 钦州鑫能源科技有限公司 浆体颗粒破碎装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035363A (en) * 1990-07-06 1991-07-30 Thiokol Corporation Ultrasonic grinding of explosives
WO1994004275A1 (en) * 1992-08-26 1994-03-03 Holl Richard A Methods and apparatus for high-shear material treatment
RU2081705C1 (ru) * 1995-04-20 1997-06-20 Некрасов Сергей Геннадьевич Устройство потокового ультразвукового диспергирования вязких лакокрасочных суспензий
RU44540U1 (ru) * 2004-11-05 2005-03-27 Общество с ограниченной ответственностью "Ультразвуковая техника-инлаб" Ультразвуковая установка для обработки жидких сред
CN101676036A (zh) * 2008-09-18 2010-03-24 任吉林 超声波脉冲射流超细粉碎装置
CN102189031A (zh) * 2010-03-15 2011-09-21 钦州鑫能源科技有限公司 浆体颗粒破碎装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802201C1 (ru) * 2022-10-31 2023-08-22 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство для разделения разноразмерных порошков на фракции
RU2808410C1 (ru) * 2022-11-07 2023-11-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ разделения разноразмерных порошков на фракции

Similar Documents

Publication Publication Date Title
US7712353B2 (en) Ultrasonic liquid treatment system
US7673516B2 (en) Ultrasonic liquid treatment system
DE60123773T2 (de) Vorrichtung und verfahren zur ultraschallbehandlung einer flüssigkeit
KR100845785B1 (ko) 미세기포 발생장치 및 미세기포 발생방법
RU2690474C1 (ru) Устройство ультразвукового диспергирования
EP2906340B1 (en) Method for physical and/or chemical processes
Cruz et al. The axial dispersion of liquid solutions and solid suspensions in planar oscillatory flow crystallizers
KR102557241B1 (ko) 울트라 파인 버블 제조기 및 울트라 파인 버블수 제조 장치
Ullah et al. Filtration of suspensions using slit pore membranes
EP2525901A1 (en) Apparatus and method for producing an emulsion of a fuel and an emulsifiable component
US20240189793A1 (en) Device and method for influencing the flow of a flowable medium through energy intensity zones
RU2626355C1 (ru) Способ смешивания жидких сред
EP2247178B1 (en) An inlet for a tank and a method of supplying liquid food product to a tank
JP5297395B2 (ja) 液滴径予測方法及び液滴径予測シミュレータ
RU2746392C1 (ru) Микрореактор-смеситель со встречными закрученными потоками
US1164413A (en) Apparatus for evaporating or concentrating liquids.
RU2810629C1 (ru) Регулятор расхода
CN116568393A (zh) 用于通过能量强度区影响可流动介质的流动的装置和方法
RU2393914C1 (ru) Смеситель
RU2372974C1 (ru) Кавитационный мембранный аппарат
RU2367507C1 (ru) Ультразвуковой мембранный элемент
CN207659142U (zh) 一种管形超声分离腔
RU2479343C2 (ru) Ультразвуковой диспергатор проточного типа
Ikonić et al. Fuzzy modeling of the permeate flux decline during microfiltration of starch suspensions
JP2018069135A (ja) 懸濁液送液分離装置