RU2689486C2 - Четырёхтактный двигатель внутреннего сгорания с укороченным процессом впуска - Google Patents

Четырёхтактный двигатель внутреннего сгорания с укороченным процессом впуска Download PDF

Info

Publication number
RU2689486C2
RU2689486C2 RU2017118515A RU2017118515A RU2689486C2 RU 2689486 C2 RU2689486 C2 RU 2689486C2 RU 2017118515 A RU2017118515 A RU 2017118515A RU 2017118515 A RU2017118515 A RU 2017118515A RU 2689486 C2 RU2689486 C2 RU 2689486C2
Authority
RU
Russia
Prior art keywords
cylinder
engine
volume
stroke
intake
Prior art date
Application number
RU2017118515A
Other languages
English (en)
Other versions
RU2017118515A3 (ru
RU2017118515A (ru
Inventor
Филип КРИСТАНИ
Original Assignee
Филип КРИСТАНИ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Филип КРИСТАНИ filed Critical Филип КРИСТАНИ
Publication of RU2017118515A3 publication Critical patent/RU2017118515A3/ru
Publication of RU2017118515A publication Critical patent/RU2017118515A/ru
Application granted granted Critical
Publication of RU2689486C2 publication Critical patent/RU2689486C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/04Engines with prolonged expansion in main cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • F02D33/02Controlling delivery of fuel or combustion-air, not otherwise provided for of combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Изобретение относится к области двигателестроения. Техническим результатом является повышение эффективности работы двигателя. Сущность изобретения заключается в том, что четырехтактный двигатель внутреннего сгорания с искровым зажиганием (SI) осуществляет процесс постоянно укороченного впуска, что позволяет температуре и давлению всасываемого воздуха в цилиндрах сгорания быть под жестким контролем, и обеспечивает возможность работы с очень маленькой камерой сгорания, так что гораздо более высокие степень сжатия и давление компрессии предварительного зажигания могут быть достигнуты без приближения к порогу самовоспламенения воздушно-топливной смеси. Максимальный порог объема сокращенного впуска составляет 68% от объема цилиндра двигателя, чтобы достичь степени сжатия СС, равной 22.1 или выше. Поскольку эта конструкция позволяет эффективно регулировать и устанавливать максимальную температуру предварительного зажигания воздушно-топливной смеси, то двигатель может работать на практически любом типе жидкого углеводородного топлива без стука. Этот четырехтактный двигатель, благодаря своей более высокой степени сжатия, генерирует энергию, равную или больше, чем стандартный четырехтактный двигатель, в более легком и маленьком корпусе и с гораздо большей эффективностью. 2 з.п. ф-лы, 6 ил.

Description

Ссылка на сопутствующие заявки
Настоящая заявка испрашивает приоритет даты подачи обычной заявки США №14/788,905, заполненной 1 июля 2015 года, которая является частично продолжающей заявкой обычной заявки США №14/530,704, заполненной 1 ноября 2014 года.
Область техники
Настоящее изобретение относится к области двигателей внутреннего сгорания, а точнее к области четырехтактных двигателей внутреннего сгорания с импульсным зажиганием (англ. Spark Ignition - Internal Combustion Engines).
Уровень техники
Эффективность стандартного четырехтактного бензинового двигателя внутреннего сгорания без наддува ограничивается взаимоотношением степени сжатия и температур высокого давления компрессии при предварительном зажигании. Это связано с необходимостью избегать температур предварительного зажигания, близких к порогу температуры самовоспламенения топлива, при превышении этих температур эффект стука будет ухудшать эффективность и сократит срок службы двигателя. Из-за этих температур предварительного зажигания стандартные четырехтактные двигатели, как правило, ограничиваются низкой степенью сжатия (СС) - это параметр, который представляет собой отношение общего объема цилиндра двигателя к объему его камеры сгорания. Для Стандартных Двигателей, использующих стандартное бензиновое топливо, СС обычно не превышает 11, что ограничивает компрессию двигателей с предварительным зажиганием до 22 баров максимум.
Из-за температур самовоспламенения топлива производители двигателей придерживаются, как правило, степеней сжатия в пределах между СС=9.5 и СС=11.8 для двигателей без наддува. Эти показатели могут меняться, но они всегда меньше СС=15.
Такие ограничения температуры и давления в стандартных четырехтактных конструкциях двигателей не только снижают их эффективность, но и приводят к тому, что двигатели выпускаются большими и тяжелыми, и, более того, они могут использовать лишь небольшое количество типов топлива, которое позволит им работать без стука.
Настоящее изобретение предлагает четырехтактный двигатель внутреннего сгорания с постоянно укороченным процессом впуска, для обозначения которого мы будем использовать сокращение «УПВ» (двигатель с «Укороченным Процессом Впуска»), и, следовательно, он также имеет укороченный процесс сжатия. Как будет объясняться далее, эта конструкция позволяет регулировать температуру и давление всасываемого воздуха в цилиндрах сгорания, так что могут быть достигнуты намного более высокая степень сжатия СС и компрессионное давление предварительного зажигания без приближения к порогу самовоспламенения. Кроме того, поскольку эта новая конструкция может эффективно регулировать и устанавливать максимальную температуру предварительного зажигания топливовоздушной смеси, она может сжигать практически любой тип жидкого углеводородного топлива без опасности возникновения стука, если двигатель спроектирован для самого низкого уровня самовоспламенения.
Четырехтактный двигатель настоящего изобретения, благодаря значительно более высокой степени сжатия, генерирует энергию, эквивалентную или превышающую показатели стандартного четырехтактного двигателя в более легком и маленьком корпусе и в среде, где все основные параметры двигателя находятся под контролем для достижения его максимальной мощности и эффективности.
Раскрытие сущности изобретения
Рабочий цикл стандартного бензинового четырехтактного двигателя внутреннего сгорания без наддува состоит из тактов впуска, сжатия, рабочего хода и выхлопа. Во время такта впуска поршень перемещается вниз и воздушно-топливная смесь всасывается в цилиндр. За этим следует такт сжатия, при котором поршень движется вверх и сжимает воздушно-топливную смесь до нужного давления для предварительного зажигания. Такт сжатия достигает кульминации при импульсном зажигании воздушно-топливной смеси, которая двигает поршень вниз в такте рабочего хода. В такте выхлопа поршень снова перемещается вверх для отвода выхлопного газа из цилиндра в процессе подготовки к следующему такту впуска. Каждый из этих процессов, как правило, совершается за приблизительно половину вращения коленчатого вала или за оборот в 180 градусов, плюс/минус отклонение в зависимости от такта двигателя и нагрузки.
Мощность генерируется в четырехтактном процессе сгорания во время такта рабочего хода, когда зажженная воздушно-топливная смесь расширяется в цилиндре, в результате чего давление внутри падает. В соответствии с Комбинированным Законом Газа, величина PV/T во время этого расширения остается постоянной (где Ρ представляет собой давление газа в барах, V является объемом газа в литрах, а Τ - температурой газа в кельвинах). Следовательно, при заданной степени сжатия падение давления должно сопровождаться непропорциональным уменьшением абсолютной температуры. Так как уменьшение абсолютной температуры определяет механическую энергию, доступную для передачи коленчатому валу через поршень во время такта рабочего хода, коэффициент полезного действия двигателя оптимизируется за счет максимального перепада давления во время такта рабочего хода. Это, в свою очередь, требует, чтобы давление при предварительном зажигании максимизировалось за счет устранения негативного воздействия высоких температур.
В стандартном четырехтактном двигателе внутреннего сгорания без наддува всасываемый воздух поступает в цилиндр сгорания, обладая температурой окружающей среды и атмосферным давлением (примерно в 1 бар).
Настоящее изобретение имеет сокращенный или укороченный такт впуска, который значительно короче половины вращения коленчатого вала, или намного меньше 180°, чтобы обеспечить большее сжатие всасываемого воздуха в цилиндре двигателя с более высокой степенью сжатия. Этот укороченный такт впуска, в соответствии с настоящим изобретением, осуществляется совершенно другим методом и в иной форме, в отличие от системы «изменения фаз газораспределения» (англ. «Variable Valve Timing» или VVT), используемой сегодня или подобной ей, и, таким образом, описываемая система дает совершенно другой результат.
Система изменения фаз газораспределения, применяемая сегодня в двигателях без наддува, использует определенный механизм, прикрепленный к распределительному валу, для управления открытием впускных клапанов раньше или позже, чем когда поршень находится в ВМТ, и/или для управления закрытием впускных клапанов раньше или позже, чем когда поршень находится в НМТ, тем самым ограничивая объем всасываемого воздуха, который время от времени может быть меньше, чем общий объем цилиндра двигателя. Однако эта система применяется лишь, как упоминалось выше, время от времени, динамически изменяясь в соответствии с режимом работы двигателя для управления крутящим моментом и нагрузкой, в основном на разных скоростях. Это означает, что в процессе работы система изменения фаз газораспределения может периодически способствовать набору полного объема двигателя до точки, которая достигается, когда поршень находится в НМТ или близко к ней, и которая устанавливает и ограничивает максимально возможную степень сжатия.
Стандартные двигатели, используемые сегодня, в которых применяется такая система, не имеют степень сжатия СС выше 15, или в некоторых, очень экстремальных случаях, и только при очень высоком показателе количества оборотов в минуту (RPM), могут достичь коэффициента сжатия, близкого к СС=17.
Если в какой-то момент система изменения фаз газораспределения в существующих сегодня двигателях дала бы сбой (например, установила бы объем всасывания на определенной отметке, а затем забыла бы об этом), то двигатель перестал бы оптимально работать, в зависимости от того, на какой отметке застыл объем всасывания, после чего загорелся бы индикатор неисправности двигателя, так как двигатель стал бы работать хуже и хуже, потому что его степень сжатия все еще оставалась бы низкой, меньше 15, так как этот двигатель был изначально спроектирован и изготовлен с такой низкой степенью сжатия СС, а преимущества высокой степени сжатия в сочетании с укороченным впуском, который является существенным для настоящего изобретения, не реализуются при низких значениях СС, как описано здесь. Это означает, что такой двигатель с укороченным процессом впуска, который работает непрерывно и при низкой СС, будет работать с пониженной эффективностью, а это не то, что предлагается настоящим изобретением.
В некоторых других современных двигателях, которые используют систему изменения (или неизменности) фаз газораспределения, которые на самом деле работают с уменьшением объема впуска, и делают это в любое время, как мы и рекомендуем при использовании УПВ-двигателей, в той или иной форме, как, например, в цикле Миллера, когда Миллером используются или рекомендуются другие методы и/или компоненты для восполнения объема воздуха, теряемого при уменьшенном всасывании, такие как турбокомпрессоры и другие устройства, которые увеличивают давление воздуха и, следовательно, объем воздуха для восполнения потерь, рассчитывая, что эта потеря воздуха в результате уменьшения объема всасывания должна быть компенсирована, и, следовательно, использование более высоких степеней сжатия даже не рассматривается, поскольку при работе эти двигатели имеют даже более низкую степень сжатия - менее 8,5-10 (как двигатели с (турбо)наддувом).
Однако в настоящем изобретении конструкция двигателя, которая использует уменьшенный объем всасываемого воздуха при атмосферном давлении, противоречит положениям предшествующего уровня техники. Сокращенный или укороченный объем всасывания должен быть применен таким образом, чтобы, в случае необходимости, частичный объем цилиндра двигателя был доступен при впуске и заполнялся воздухом в любое время, как и в цикле Миллера, но на разных границах (Миллер рекомендует, чтобы в этом такте было доступно от 80% до 70% объема всасывания, а начальная точка УПВ находилась ниже, чем это описано далее) и в другом двигателе с применением другого метода. Это означает, что впускные клапаны в таком устройстве никогда не могут быть закрыты, пока поршень находится в НМТ или близко к НМТ, так как это будет представлять собой полный впускной объем цилиндра в том же размере, что и в стандартном двигателе с изменяемой фазой газораспределения. Кроме того, это устройство в УПВ-двигателе является таким, что не позволяет использовать какие-либо другие механизмы, такие как турбокомпрессоры или другие создающие давление приборы, чтобы компенсировать разницу в давлении воздуха, противоположную рекомендованной Миллером в двигателях с (турбо)наддувом для компенсации разницы в потере объема воздуха.
Укороченный процесс впуска, рекомендуемый в настоящем изобретении как таковом, позволяет, таким образом, обеспечить другой тип выгоды и достичь другой цели, а именно -получить более эффективный двигатель. Это связано с тем, что помимо укороченного впуска, как определенной требуемой процедуры настоящего изобретения, оно также требует сравнительно меньшего объема камеры сгорания для достижения предлагаемой цели, поэтому более сильное сжатие, как упомянуто выше, или более высокая степень сжатия СС и данная процедура уникальны только для двигателя с УПВ. Чем меньше объем всасывания, тем меньше размер камеры сгорания и, следовательно, тем выше степень сжатия, поскольку степень сжатия СС является отношением объема всего цилиндра к объему камеры сгорания. Этот двигатель может быть сконструирован таким образом, чтобы достичь степени сжатия 22,1 (СС=22,1 является самым низким, но не предпочтительным показателем) или выше и, следовательно, иметь гораздо более высокую эффективность.
Фактическое давление воздуха/смеси в УПВ-двигателе, которое было определено оптимальным образом, может достигать к концу такта сжатия 37 баров, без опасности возникновения самовоспламенения. Это объясняется тем, что новая конструкция уменьшает объем остаточных выхлопных газов до минимума благодаря очень высокой расчетной степени сжатия СС=29,4 и, следовательно, требует камеры сгорания очень малого размера. В конце такта выхлопа остается меньше остаточных выхлопных газов, поэтому отрицательный эффект их выпуска устраняется.
С другой стороны, поскольку двигатели с УПВ имеют камеру сгорания, которая очень мала, по сравнению с камерой сгорания стандартного двигателя, сжатие и температура воздуха/смеси резко возрастают ближе к концу такта сжатия или у самого верхнего уровня, около ВМТ. Это позволяет УПВ-двигателю облегчать использование искры или неискрового процесса для инициирования управляемого или спонтанного процесса сгорания воздуха/смеси, так как самовоспламенение в результате повышения температуры за пределы порога самовоспламенения сжатой смеси неизбежно произойдет очень близко к ВМТ, где именно это и необходимо.
Предела уменьшенного объема впуска, который должен быть реализован в этом изобретении, нет, и, следовательно, камера сгорания может достигнуть наименьшего размера. Оптимальная степень сжатия для этих двигателей рассчитывается равной примерно СС=30, при этом уменьшенный объем всасывания устанавливается на отметке приблизительно в 0,55 объема цилиндра двигателя. Выхлопные газы вышеупомянутого двигателя с УПВ будут иметь давление около 1 бара к концу такта рабочего хода. Эти значения могут меняться и будут зависеть от конструкции двигателя.
Неразрешенная проблема современных двигателей заключается в том, что, будучи двигателями внутреннего сгорания, которые используют энергию тепла, они не извлекают из него стопроцентной выгоды. Работа в двигателе осуществляется благодаря энергии тепла, а горячие газы в конце такта рабочего хода, когда поршень находится в НМТ, а выпускные клапаны готовы к открытию и выпуску выхлопных газов, все еще находятся под высоким давлением (выше атмосферного давления) и их высокая температура может быть все еще полезна, если бы ее энергию можно было дополнительно извлечь, вместо того чтобы выпускать эти газы в окружающую среду.
Говоря простым языком, предлагаемый двигатель решает вышеуказанную проблему, так как УПВ-двигатель имеет более высокую эффективность, поскольку он использует уменьшенный объем воздуха в такте впуска и меньшую камеру сгорания благодаря более высокой степени сжатия СС, и поэтому ему требуется меньшее количество топлива для достижения равномерной температуры внутри камеры сгорания по сравнению со стандартным двигателем, который имеет более низкую СС и камеру сгорания большего размера. Однако настоящее изобретение по-прежнему будет использовать весь объем цилиндра во время такта рабочего хода, из-за чего горячие газы в конце этого такта будут иметь намного более низкое давление (очень близкое к атмосферному, или примерно 1 бар) и меньшую остаточную температуру, что обеспечит более высокую эффективность двигателя.
Максимальный сокращенный объем всасывания, который будет использоваться для повышения эффективности, в сравнении с современными двигателями, рассчитан приблизительно на 68% от общего объема цилиндра двигателя и/или менее этого показателя. Это означает, что в настоящем изобретении объем впуска должен быть всегда меньше или равен 68% от общего размера цилиндра. Он измеряется, когда впускные клапаны закрыты, а поршень приближается к точке в 110° или не успевает ее достичь, и/либо когда впускные клапаны закрыты, а поршень приближается к точке в 250° или уже проходит это положение коленчатого вала. Такой двигатель имеет также самую низкую степень сжатия, близко к СС=22 (в этом случае камера сгорания составляет около 4,5% от объема цилиндра двигателя), что является наименьшей эффективностью для этого типа УПВ-двигателя. Чем меньше объем всасывания, тем лучше, до тех пор, пока максимальная эффективность может быть достигнута путем создания оптимальной конструкции двигателя.
УПВ-двигатель может работать с дроссельной заслонкой или без нее.
Для уменьшения объема всасываемого воздуха в цилиндре двигателя могут быть использованы другие средства, например, клапаны управления воздушным потоком, узкие проходы и т.д. Их применение может приводить к практически аналогичным результатам, как и использование укороченного процесса впуска, и, следовательно, обеспечивать степень сжатия выше 22,1, как объяснено в данном тексте.
Такой двигатель спроектирован для работы с воздухом при атмосферном давлении, как и описывается в тексте, однако также может быть сконструирован УПВ-двигатель с (турбо)наддувом, который благодаря сочетанию определенного сокращения объема всасывания и более высокой степени сжатия, чем 22,1 (СС>22.1), может иметь аналогичную эффективность.
Краткое описание чертежей
Фиг. 1 представляет собой схему, иллюстрирующую четырехтактный процесс сгорания представленного изобретения для четырехтактного двигателя с предложенным укороченным процессом впуска.
Фиг. 2 представляет собой схему, иллюстрирующую четырехтактный процесс сгорания представленного изобретения для оптимального четырехтактного «УПВ» двигателя с укороченным процессом впуска в 55% и степенью сжатия 29.4.
Фиг. 3 является примером P-V (давление-объем) схем стандартного четырехтактного процесса сгорания в одном цилиндре двигателя без наддува со степенью сжатия СС=10 и объемом цилиндра двигателя Ve=1 литр.
Фиг. 3А является примером наложенных P-V (давление-объем) схем стандартного четырехтактного процесса сгорания в одном цилиндре двигателя без наддува со степенью сжатия СС=10 и объемом цилиндра двигателя Ve=1 литр.
Фиг. 4 является примером P-V (давление-объем) схем четырехтактного процесса сгорания в одном цилиндре «УПВ» двигателя со степенью сжатия СС=29.4, укороченным объемом впуска Vt=0.55 литра и объемом цилиндра двигателя Ve=1 литр.
Фиг. 4А является примером наложенных P-V (давление-объем) схем четырехтактного процесса сгорания в одном цилиндре «УПВ» двигателя со степенью сжатия СС=29.4, укороченным объемом впуска Vt=0.55 литра и объемом цилиндра двигателя Ve=1 литр.
Осуществление изобретения
Обратимся к Фиг. 1, которая показывает схему 1 четырехтактного процесса сгорания в одном цилиндре двигателя объемом 1 литр с укороченным процессом впуска, состоящего из сокращенного или укороченного процесса впуска с рекомендуемым максимальным угловым диапазоном коленчатого вала 4 (0°-<110°/>250°) для укороченного процесса впуска, который перетекает в укороченный процесс сжатия, максимально рекомендуемого укороченного процесса сжатия 7 (250°-360°), процесса расширения горячих газов 5 (приблизительно 360°-540°) и процесса выхлопа 6 (приблизительно 540°-0°) углового положения коленчатого вала, со степенью сжатия СС 3 рекомендуемого диапазона 22:1 или выше, и рекомендуемым объемом камеры сгорания 2, объем которой меньше чем 0.045 от объема цилиндра двигателя.
Обратимся к Фиг. 2., она показывает схему 1 оптимального рекомендованного четырехтактного процесса сгорания в одном цилиндре двигателя объемом 1 литр с укороченным процессом впуска, состоящего из сокращенного или укороченного процесса впуска 4 (0°-<94°/>266°), процесса сжатия 7 (266°-360°), процесса расширения горячих газов 5 (360°-540°) и процесса выхлопа 6 (540°-0°) углового положения коленчатого вала, со степенью сжатия СС 3 29.4:1 и объемом камеры сгорания 2, которая составляет 0.034 от объема цилиндра двигателя, и детальное описание каждого положения 8 процесса углового вращения.
Фиг. 3 и 3А иллюстрируют P-V (давление-объем) схемы 12 и наложенную P-V схему 13 стандартного двигателя без наддува с импульсным зажиганием объемом 1 литр со СС=10, где:
а - работа, затраченная двигателем на сжатие=2.30PV/такт,
b - работа, накопленная двигателем на рабочем ходе=8.52PV/такт,
с - работа, которая не может быть сохранена на выхлопе и теряется=5.66PV/такт (объем 1 литр),
d - тепло, подающееся двигателю сгорающим топливом, что увеличивает давление в 2.75 раза,
е - баланс работы, накопленный двигателем=6.22PV/такт.
Упрощенный КПД этого двигателя: Ε=6.22PV/11.88PV=52.4%
В то время как Фиг. 4 и 4А иллюстрирует P-V (давление-объем) схемы 14 и наложенную P-V схему 15 «УПВ» двигателя объемом 1 литр со СС=29.4, где:
а - работа, затраченная двигателем на сжатие=1.88PV/такт,
b - работа, накопленная двигателем на рабочем ходе=6.38PV/такт,
с - работа, которая не может быть сохранена на выхлопе и теряется=2.32PV/такт (объем 0.55 литра),
d - тепло, подающееся двигателю сгорающим топливом, что увеличивает давление в 2.75 раза,
е - баланс работы, накопленный двигателем=4.50PV/такт.
Упрощенный КПД этого двигателя: Ε=4.50PV/6.82PV=66%
Сравнение эффективности «Стандартного» и «УПВ» двигателей
Рассмотрим Фиг. 3 и 3А, они иллюстрируют P-V (давление-объем) схемы стандартного четырехтактного процесса сгорания 12 и 13 в одном цилиндре двигателя без наддува со степенью сжатия СС=10 и объемом цилиндра двигателя Ve=1 литр. Гипотетический объем расширения двигателя 2.18 литра представляет собой несуществующее расширение, показанное с целью оценить работу двигателя. Как видно из этой P-V схемы, температура стандартного двигателя в конце такта рабочего хода составляет около 1075°К или 802°С, а давление выхлопных газов равно приблизительно 2.75 бара.
Рассмотрим Фиг. 4 и Фиг 4А, они иллюстрируют P-V (давление-объем) схемы четырехтактного процесса сгорания 14 и 15 оптимального «УПВ» двигателя со степенью сжатия СС=29.4 и объемом цилиндра двигателя Ve=1 литр. Поскольку в этом УПВ-двигателе процесс впуска заканчивается на отметке 0,55 от общего объема, а сжатие начинается в этой же точке, из P-V схемы видно, что работа по сжатию для этого двигателя равна 1.88PV/такт, что при сравнении меньше, чем работа стандартного двигателя, который производит работу по сжатию, равную 2.30РV/такт для получения сопоставимого рабочего результата (е), 6.22PV/такт для стандартного двигателя и 4.50PV/такт для УПВ-двигателя. Температура УПВ-двигателя составляет 756°К или 483°С, а давление выхлопных газов в конце процесса расширения - 1.26 бара, что намного меньше, чем у стандартного двигателя.
Как видно из указанных P-V схем, КПД четырехтактного «УПВ» двигателя превышает КПД стандартного двигателя внутреннего сгорания с импульсным зажиганием (SI-ICE).
Хотя предпочтительные вариации настоящего изобретения были описаны для иллюстративных целей, специалисты в данной области техники оценят, что многие добавления, модификации и замены возможны без отклонения от сферы действия и сущности данного изобретения, как определено прилагаемой формулой изобретения.
Используемый выше и далее, в формуле изобретения, термин Высшая Мертвая Точка (ВМТ) означает, что поршень находится в точке, самой близкой к головке цилиндра, соответствующей положению коленчатого вала на 0° или 360°, а термин Нижняя Мертвая Точка (НМТ) означает, что поршень находится в самой дальней от головки цилиндра точке, соответствующей положению коленчатого вала на 180°. Общий объем цилиндра означает объем цилиндра, когда поршень находится в НМТ, а объем камеры сгорания означает объем цилиндра, когда поршень находится в ВМТ.

Claims (6)

1. Четырехтактный двигатель внутреннего сгорания с искровым зажиганием и «Укороченным Процессом Впуска», включающий в себя:
один или несколько цилиндров сгорания, каждый цилиндр имеет общий объем цилиндра, верхнюю мертвую точку (ВМТ) и нижнюю мертвую точку (НМТ), каждый цилиндр содержит один или несколько впускных клапанов, каждый цилиндр имеет осевой поршень для возвратно-поступательного движения, который механически соединен с коленчатым валом и маховиком, где каждый цилиндр осуществляет четырехтактный процесс сгорания, состоящий из постоянно укороченного такта впуска, который требует минимизации объема камеры сгорания, соответствующей степени сжатия двигателя (СС), равной 22.1 или выше в конце такта сжатия, во время осуществления укороченного такта впуска один или несколько впускных клапанов остаются открытыми, а поршень движется по оси по направлению от ВМТ цилиндра через интервалы между сменами позиций коленчатого вала при такте впуска, и затягивает уменьшенный объем всасываемой воздушно-топливной смеси через впускные клапаны в цилиндр, затем следует такт сжатия, во время которого все впускные клапаны закрыты, а поршень движется по оси по направлению к ВМТ цилиндра и сжимает воздушно-топливную смесь до необходимого объема предварительного зажигания, который равен объему камеры сгорания, необходимого давления компрессии предварительного зажигания и необходимой температуры компрессии предварительного зажигания, затем следует искровое зажигание воздушно-топливной смеси, что приводит поршень к НМТ цилиндра в такте рабочего хода, затем следует такт выхлопа, во время которого поршень движется к ВМТ цилиндра и выводит выхлопной газ из цилиндра до начала следующего такта впуска, и где общий объем цилиндра каждого цилиндра сгорания - это объем цилиндра с поршнем в НМТ, и где объем камеры сгорания каждого цилиндра сгорания - это объем цилиндра с поршнем в ВМТ, и где отношение общего объема цилиндра к объему камеры сгорания определяет степень сжатия СС, и где СС составляет, по меньшей мере, 22.1, и где СС, равная 22.1, приводит к относительно низкому КПД двигателя, в то время как СС больше 22.1 приводит к относительно высокому КПД двигателя; и
где положение коленчатого вала при впуске выбрано так, чтобы минимизировать размер камеры сгорания, и тем самым максимизировать давление компрессии предварительного зажигания и степень сжатия СС, поддерживая температуру компрессии предварительного зажигания на уровне ниже температуры самовоспламенения выбранного топлива, и
где сочетание степени сжатия СС по меньшей мере 22.1 и укороченного такта впуска максимизирует КПД двигателя.
2. Двигатель по п. 1, в котором угловой интервал положения коленчатого вала при впуске равен значению, при котором отношение сокращенного объема впуска к общему объему цилиндра равно или меньше 0.68.
3. Двигатель по п. 2, в котором впускные клапаны сконструированы так, чтобы либо открываться при положении коленчатого вала в или близко к точке 0° и закрываться при положении коленчатого вала в точке 110° или меньше, либо закрываться при положении коленчатого вала в точке 250° или больше.
RU2017118515A 2014-11-01 2015-10-20 Четырёхтактный двигатель внутреннего сгорания с укороченным процессом впуска RU2689486C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201414530704A 2014-11-01 2014-11-01
US14/530,704 2014-11-01
US14/788,905 2015-07-01
US14/788,905 US9567900B2 (en) 2014-11-01 2015-07-01 Four-cycle internal combustion engine with curtailed intake process
PCT/IB2015/058084 WO2016067158A1 (en) 2014-11-01 2015-10-20 Four-cycle internal combustion engine with curtailed intake process

Publications (3)

Publication Number Publication Date
RU2017118515A3 RU2017118515A3 (ru) 2018-12-03
RU2017118515A RU2017118515A (ru) 2018-12-03
RU2689486C2 true RU2689486C2 (ru) 2019-05-28

Family

ID=55852154

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017118515A RU2689486C2 (ru) 2014-11-01 2015-10-20 Четырёхтактный двигатель внутреннего сгорания с укороченным процессом впуска

Country Status (11)

Country Link
US (1) US9567900B2 (ru)
EP (1) EP3212908A4 (ru)
JP (1) JP2017533381A (ru)
KR (1) KR20170080621A (ru)
CN (1) CN107110002A (ru)
AU (1) AU2015338800B2 (ru)
BR (1) BR112017008894A2 (ru)
CA (1) CA2966098A1 (ru)
MX (1) MX2017005433A (ru)
RU (1) RU2689486C2 (ru)
WO (1) WO2016067158A1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2206775C1 (ru) * 2002-02-14 2003-06-20 Ибадуллаев Гаджикадир Алиярович Способ регулирования и работы бензинового двигателя внутреннего сгорания
RU2260136C1 (ru) * 2004-03-01 2005-09-10 Ибадуллаев Гаджикадир Алиярович Бензиновый двигатель внутреннего сгорания со степенью сжатия до 35
CN101769200A (zh) * 2008-12-31 2010-07-07 李幸福 超高(20:1)压缩比汽油机
RU2403410C2 (ru) * 2005-06-27 2010-11-10 Оттонова Аб Двигатель внутреннего сгорания
EP2505809A1 (de) * 2011-03-29 2012-10-03 Weigel, Doris Verbrennungsmotor mit großem Verdichtungsverhältnis und Verfahren zu dessen Betrieb

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551435B2 (ja) * 1992-09-29 2004-08-04 マツダ株式会社 過給機付エンジン
JPH08326548A (ja) * 1995-06-05 1996-12-10 Tokyo Gas Co Ltd 遅閉じミラーサイクルエンジン
EP0928369B1 (en) * 1996-08-23 2006-05-10 Cummins Inc. Premixed charge compression ignition engine with optimal combustion control
JP3669175B2 (ja) * 1998-09-24 2005-07-06 日産自動車株式会社 可変動弁エンジンのプレイグニッション防止装置
JP2002213244A (ja) * 2001-01-19 2002-07-31 Honda Motor Co Ltd 車両用自然吸気式内燃機関
JP4089408B2 (ja) * 2002-11-29 2008-05-28 三菱自動車工業株式会社 高圧縮比サイクルエンジン
US7438025B2 (en) * 2004-05-26 2008-10-21 Zengli Yang Ultra-expansion four-stroke internal combustion engine
JP2007332938A (ja) * 2006-06-19 2007-12-27 Toyota Motor Corp 内燃機関の制御装置
JP5041167B2 (ja) * 2008-07-24 2012-10-03 三菱自動車工業株式会社 エンジンの制御装置
US9835079B2 (en) * 2009-06-10 2017-12-05 Alvar Engine Ab Engine control method
RU2509908C2 (ru) * 2009-12-09 2014-03-20 Тойота Дзидося Кабусики Кайся Двигатель внутреннего сгорания с искровым зажиганием
US20120125276A1 (en) * 2010-11-22 2012-05-24 Caterpillar Inc. Four stroke internal combustion engine having variable valve timing and method
JP5834650B2 (ja) * 2011-09-07 2015-12-24 マツダ株式会社 火花点火式直噴エンジン
JP2013194730A (ja) * 2012-03-20 2013-09-30 Shuichi Kitamura 超高効率4サイクル内燃機関
GB2521530A (en) * 2012-05-02 2015-06-24 Matthew Cobb Improved structures, functions and methods regarding internal combustion engines
US9043122B2 (en) * 2012-06-29 2015-05-26 Ford Global Technologies, Llc Method and system for pre-ignition control
JP5658204B2 (ja) * 2012-07-17 2015-01-21 本田技研工業株式会社 車載内燃機関の制御装置
US9057339B2 (en) * 2012-07-19 2015-06-16 GM Global Technology Operations LLC Stochastic pre-ignition mitigation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2206775C1 (ru) * 2002-02-14 2003-06-20 Ибадуллаев Гаджикадир Алиярович Способ регулирования и работы бензинового двигателя внутреннего сгорания
RU2260136C1 (ru) * 2004-03-01 2005-09-10 Ибадуллаев Гаджикадир Алиярович Бензиновый двигатель внутреннего сгорания со степенью сжатия до 35
RU2403410C2 (ru) * 2005-06-27 2010-11-10 Оттонова Аб Двигатель внутреннего сгорания
CN101769200A (zh) * 2008-12-31 2010-07-07 李幸福 超高(20:1)压缩比汽油机
EP2505809A1 (de) * 2011-03-29 2012-10-03 Weigel, Doris Verbrennungsmotor mit großem Verdichtungsverhältnis und Verfahren zu dessen Betrieb

Also Published As

Publication number Publication date
US20160123220A1 (en) 2016-05-05
AU2015338800A1 (en) 2017-06-08
RU2017118515A3 (ru) 2018-12-03
RU2017118515A (ru) 2018-12-03
BR112017008894A2 (pt) 2018-06-19
KR20170080621A (ko) 2017-07-10
AU2015338800B2 (en) 2019-05-16
JP2017533381A (ja) 2017-11-09
EP3212908A4 (en) 2017-11-01
EP3212908A1 (en) 2017-09-06
WO2016067158A1 (en) 2016-05-06
MX2017005433A (es) 2017-07-04
CA2966098A1 (en) 2016-05-06
US9567900B2 (en) 2017-02-14
CN107110002A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
US20120227397A1 (en) Gaseous fuel-powered engine system having turbo-compounding
CA2598967A1 (en) Variable stroke premixed charge compression ignition engine
US9951679B2 (en) Reciprocating internal combustion engine
CA2802522A1 (en) Turbocharged downsized compression cylinder for a split-cycle engine
US20140360458A1 (en) Internal combustion engine with paired, parallel, offset pistons
RU2645888C1 (ru) &#34;двухтактный&#34; двигатель внутреннего сгорания с предварительно охлаждаемой компрессией
US20110197852A1 (en) Heat engine cycle and internal combustion engine for the same
US20210285360A1 (en) Homogeneous charge compression ignition (hcci-type) combustion system for an engine and powertrain using wet-alcohol as a fuel and including hot assist ignition
US9074527B2 (en) Counterpoise engine
Pugnali et al. Feasibility study of operating 2-stroke miller cycles on a 4-stroke platform through variable valve train
RU2689486C2 (ru) Четырёхтактный двигатель внутреннего сгорания с укороченным процессом впуска
JP2009062988A (ja) 内燃機関の運転方法、制御装置およびコンピュータ・プログラム
US20140326202A1 (en) Six Stroke Internal Combustion Engine and a Method of Operation
KR20160025648A (ko) 앳킨슨 사이클 구현을 위한 링크 구조
US8251041B2 (en) Accelerated compression ignition engine for HCCI
Deshwal et al. Optimizing internal combustion engine with the help of variable valve timing mechanism
Jangalwa et al. Scuderi Split Cycle Engine: A Review
US11225904B2 (en) Internal-combustion engine and drive system
Beak et al. Study on the performance factors of two stage turbo-charging system and maximization of the Miller cycle
JP2016125449A (ja) 可変ミラーサイクルエンジンの制御方法及び制御装置
Choi et al. Development and performance analysis of a Miller cycle in a modified using diesel engine
WO2016046449A1 (en) Method in operating an internal combustion piston engine
Kamalakannan et al. Variable Volume Engine with Combined Advantage of Supercharging and Variable Compression
CN104005846A (zh) 可选燃料活塞式二行程发动机
IE20130244A1 (en) Improvements to planetary gears reciprocating piston machines