RU2688011C1 - Способ поверхностного упрочнения детали из стали - Google Patents

Способ поверхностного упрочнения детали из стали Download PDF

Info

Publication number
RU2688011C1
RU2688011C1 RU2018134704A RU2018134704A RU2688011C1 RU 2688011 C1 RU2688011 C1 RU 2688011C1 RU 2018134704 A RU2018134704 A RU 2018134704A RU 2018134704 A RU2018134704 A RU 2018134704A RU 2688011 C1 RU2688011 C1 RU 2688011C1
Authority
RU
Russia
Prior art keywords
cooling
heating
coating
temperature
steel
Prior art date
Application number
RU2018134704A
Other languages
English (en)
Inventor
Эътибар Юсиф Оглы Балаев
Артем Евгеньевич Литвинов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority to RU2018134704A priority Critical patent/RU2688011C1/ru
Application granted granted Critical
Publication of RU2688011C1 publication Critical patent/RU2688011C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/58Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • C23C8/66Carburising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к области металлургии и машиностроения, а именно к комбинированным способам упрочнения детали, и может быть использовано при изготовлении режущего инструмента для ленточнопильного металлорежущего станка, работающего в условиях изнашивания и знакопеременных нагрузок. Способ поверхностного упрочнения стальных деталей включает предварительное поверхностное локальное легирование из нанесенной на ее поверхность обмазки с использованием лазерного нагрева, термодиффузионное насыщение поверхности детали легирующими элементами из упомянутой обмазки путем нагрева, выдержку и охлаждение. Упомянутая обмазка содержит легирующие компоненты хром и марганец в соотношении 1:1. Указанное термодиффузионное насыщение проводят при температуре 760-850°С с выдержкой в течение 2-2,5 часов. После охлаждения осуществляют цементацию стальной детали при нагреве токами высокой частоты (ТВЧ) при температуре 1200-1250°С в течение 20-30 минут. Обеспечивается повышение износостойкости и устойчивости к ударным и знакопеременным нагрузкам. 1 табл., 3 пр.

Description

Изобретение относится к области металлургии и машиностроения, а именно к комбинированным способам упрочнения деталей, и может быть использовано при изготовлении режущего инструмента для ленточнопильного металлорежущего станка, работающих в условиях изнашивания и знакопеременных нагрузок.
Аналогом изобретения является способ низкотемпературного азотирования стальных деталей (патент №2415964, МПК C23C 8/26, опубл. 10.04.2011, бюл. 10), включающий предварительное поверхностное локальное легирование нитридообразующими элементами при лазерном нагреве деталей с нанесенной на их поверхность обмазкой и последующем низкотемпературном азотировании, включающем нагрев до заданной температуры, выдержку и охлаждение, при этом перед азотированием проводят процесс термодиффузионного насыщения легирующими нитридообразующими элементами при нагреве до температуры T=690-710°C с выдержкой в течение 3-4 ч, а последующий процесс азотирования ведут при нагреве до температуры Т=570-590°C с выдержкой в течение 6-8 ч в среде аммиака.
Недостатком данного способа является низкая ударная стойкость и повышенная хрупкость получаемого изделия.
Прототипом изобретения является способ поверхностного легирования деталей из стали 40 (патент №2428503, МПК C23C 8/08, опубл. 10.09.2011, бюл. №13), включающий термодиффузионное насыщение поверхности деталей легирующими элементами из нанесенной на их поверхность обмазки путем нагрева, выдержки и охлаждения, при этом перед термодиффузионным насыщением проводят предварительное поверхностное локальное легирование с использованием лазерного нагрева из обмазки, содержащей один из следующих легирующих элементов: Cr, V, Ti, а термодиффузионное насыщение ведут при температуре 650-750°C с выдержкой в течение 3-4 ч с последующим охлаждением в печи.
Недостатком данного способа является низкая ударная стойкость и повышенная хрупкость получаемого изделия.
Задачей изобретения является усовершенствование способа поверхностного упрочнения детали из стали, обеспечивающее повышение эксплуатационных характеристик детали из стали.
Техническим результатом является повышение износостойкости, устойчивости к ударным и знакопеременным нагрузкам.
Технический результат достигается тем, что способ поверхностного упрочнения детали из стали включает предварительное поверхностное локальное легирование из обмазки с использованием лазерного нагрева, термодиффузионное насыщение поверхности детали легирующими элементами из нанесенной на ее поверхности обмазки путем нагрева, выдержку и охлаждение, при этом термодиффузионное насыщение ведут при температуре 760-850°C с выдержкой в течение 2-2,5 часов, после охлаждения дополнительно проводят цементацию детали токами высокой частоты (ТВЧ) при температуре 1200-1250°C в течение 20-30 минут, а обмазка содержит следующие легирующие компоненты хром, марганец взятые в соотношении 1:1.
Повышение температуры диффузионного насыщения до 760-850°C, при времени выдержки 2-2,5 часа, обеспечивает равномерное распределение легирующих элементов по всему объему легируемого участка детали на глубину до 0,5 мм за счет сообщения необходимого количества энергии для диффузионного передвижения атомов легирующих компонентов в материале детали.
Использование в качестве легирующих компонентов хрома и марганца, наносимых в качестве обмазки ускоряет процесс диффузионного насыщения, обеспечивая их равномерное распределения по всему сечению на заданной глубине, обладая хорошей растворимостью благодаря незначительному различию в атомарных радиусах у хрома и марганца вместе с железом, содержащемся в стали, а также повышает эффективность и скорость процесса цементации за счет снижения температуры фазового превращения α в γ железо (при нагревании), при этом гранецентрированная кристаллическая решетка, соответствующая γ-железу дает возможность повысить эффективность и скорость процесса цементации за счет лучшей растворимости углерода в сравнении α-железом. В свою очередь, при цементации ТВЧ происходит насыщение стали углеродом, который совместно с марганцем, хромом и железом образует карбидные фазы. Легирование стали обмазкой из хрома и марганца взятых с соотношении 1:1 с последующей цементацией позволяет получить CrC (карбид хрома) и MnC (карбид марганца), повышающих твердость и износостойкость рабочей поверхности детали, при этом марганец также позволяет повысить сопротивление ударным нагрузкам, обеспечить наклепываемость в холодном состоянии, что приводит к повышению износостойкости рабочей поверхности детали во время эксплуатации. Проведение цементации ТВЧ при температуре 1200-1250°C со временем выдержки в течение 20-30 минут обеспечивает нагрев поверхности детали, при котором атомы углерода проникают в цементируемую деталь на глубину до 0,5 мм с образованием карбидных фаз, как с легирующими компонентами, так и с материалом детали. При этом применением ТВЧ совместно с углеродной обмазкой при цементации позволяет проводить ее локально за счет направленного нагрева обрабатываемого участка, не воздействуя температурой на весь объем детали.
К тому же совокупность предлагаемых признаков позволяет избежать увеличение зернистости материала упрочняемой детали, которое приводит к ее охрупчиванию, снижению прочности по ударной вязкости, а также снижению износостойкости и устойчивости к знакопеременным нагрузкам.
Способ поверхностного упрочнения детали из стали реализуется следующим образом.
На упрочняемую поверхность детали из стали наносят слой обмазки, содержащей легирующие компоненты Cr и Mn взятых в соотношении 1:1, затем проводят лазерный нагрев поверхности с нанесенной обмазкой с образованием очагов легирования. После лазерного нагрева проводят термодиффузионное насыщение при температуре 760-850°C с выдержкой в течение 2-2,5 часов с последующим охлаждением в печи. После охлаждения проводят цементацию в ТВЧ при 1200-1250°C в течение 20-30 минут.
Способ поверхностного упрочнения детали из стали поясняется конкретными примерами.
Пример 1.
На режущую часть пилы, полотно которой изготовлено из рессорно-пружинной стали, наносят слой обмазки, содержащей легирующие компоненты Cr и Mn взятых в соотношении 1:1, затем проводят лазерный нагрев поверхности с нанесенной обмазкой с образованием очагов легирования. После лазерного нагрев проводят термодиффузионное насыщение при температуре 760°C с выдержкой в течение 2,5 часов с последующим охлаждением в печи. После охлаждения проводят цементацию в ТВЧ при 1250°C в течение 20 минут.
Пример 2.
На режущую часть пилы, полотно которой изготовлено из рессорно-пружинной стали, наносят слой обмазки, содержащей легирующие компоненты Cr и Mn взятых в соотношении 1:1, затем проводят лазерный нагрев поверхности с нанесенной обмазкой с образованием очагов легирования. После лазерного нагрева проводят термодиффузионное насыщение при температуре 800°C с выдержкой в течение 2,3 часов с последующим охлаждением в печи. После охлаждения проводят цементацию в ТВЧ при 1225°C в течение 25 минут.
Пример 3.
На режущую часть пилы, полотно которой изготовлено из рессорно-пружинной стали, наносят слой обмазки, содержащей легирующие компоненты Cr и Mn взятых в соотношении 1:1, затем проводят лазерный нагрев поверхности с нанесенной обмазкой с образованием очагов легирования. После лазерного нагрева проводят термодиффузионное насыщение при температуре 850°C с выдержкой в течение 2 часов с последующим охлаждением в печи. После охлаждения проводят цементацию в ТВЧ при 1200°C в течение 30 минут.
Результаты, приведенные в таблице 1 подтверждают, что деталь из стали полученная по заявляемому способу обладают повышенной износостойкостью, вследствие повышения микротвердости за счет наличия карбидных фаз (MnC и CrC) и устойчивостью к ударным и знакопеременным нагрузкам, вследствие повышения ударной вязкости, за счет легирования стали марганцем, чем деталь полученная по известному способу.
Figure 00000001
Таким образом, заявляемый способ упрочнения детали из стали позволяет получить изделия с повышенными эксплуатационными характеристиками, а именно высокими износостойкостью и устойчивостью к ударным и знакопеременным нагрузкам.

Claims (1)

  1. Способ поверхностного упрочнения стальных деталей, включающий предварительное поверхностное локальное легирование из нанесенной на ее поверхность обмазки с использованием лазерного нагрева, термодиффузионное насыщение поверхности детали легирующими элементами из упомянутой обмазки путем нагрева, выдержку и охлаждение, отличающийся тем, что упомянутая обмазка содержит легирующие компоненты хром и марганец в соотношении 1:1, а указанное термодиффузионное насыщение проводят при температуре 760-850°С с выдержкой в течение 2-2,5 часов, после охлаждения осуществляют цементацию стальной детали при нагреве токами высокой частоты (ТВЧ) при температуре 1200-1250°С в течение 20-30 минут.
RU2018134704A 2018-10-01 2018-10-01 Способ поверхностного упрочнения детали из стали RU2688011C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018134704A RU2688011C1 (ru) 2018-10-01 2018-10-01 Способ поверхностного упрочнения детали из стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018134704A RU2688011C1 (ru) 2018-10-01 2018-10-01 Способ поверхностного упрочнения детали из стали

Publications (1)

Publication Number Publication Date
RU2688011C1 true RU2688011C1 (ru) 2019-05-17

Family

ID=66578711

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018134704A RU2688011C1 (ru) 2018-10-01 2018-10-01 Способ поверхностного упрочнения детали из стали

Country Status (1)

Country Link
RU (1) RU2688011C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537793A (en) * 1982-07-02 1985-08-27 Siemens Aktiengesellschaft Method for generating hard, wear-proof surface layers on a metallic material
US5723535A (en) * 1993-09-13 1998-03-03 H.C. Starck Gmbh & Co., Kg Pastes for the coating of substrates, methods for manufacturing them and their use
RU2428503C2 (ru) * 2009-10-26 2011-09-10 Государственное образовательное учреждение высшего профессионального образования Московский автомобильно-дорожный институт (Государственный технический университет) Способ поверхностного легирования деталей из стали 40
RU2447194C1 (ru) * 2010-08-03 2012-04-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Алтайский государственный аграрный университет" (АГАУ) Способ химико-термической обработки режущей кромки стального рабочего органа почвообрабатывающего орудия

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537793A (en) * 1982-07-02 1985-08-27 Siemens Aktiengesellschaft Method for generating hard, wear-proof surface layers on a metallic material
US5723535A (en) * 1993-09-13 1998-03-03 H.C. Starck Gmbh & Co., Kg Pastes for the coating of substrates, methods for manufacturing them and their use
RU2428503C2 (ru) * 2009-10-26 2011-09-10 Государственное образовательное учреждение высшего профессионального образования Московский автомобильно-дорожный институт (Государственный технический университет) Способ поверхностного легирования деталей из стали 40
RU2447194C1 (ru) * 2010-08-03 2012-04-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Алтайский государственный аграрный университет" (АГАУ) Способ химико-термической обработки режущей кромки стального рабочего органа почвообрабатывающего орудия

Similar Documents

Publication Publication Date Title
JPWO2011122134A1 (ja) 高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品
KR101719560B1 (ko) 표면경화 합금강의 열처리 방법
RU2688009C1 (ru) Способ поверхностного упрочнения детали из стали
RU2688011C1 (ru) Способ поверхностного упрочнения детали из стали
JP2016528381A (ja) 耐摩耗性の、少なくとも部分的にコーティングされていない鋼部品
RU2428503C2 (ru) Способ поверхностного легирования деталей из стали 40
JP2019019396A (ja) 窒化部品および窒化処理方法
CN103774085A (zh) 一种在低碳合金钢表面制备的高氮奥氏体层及制备方法
RU2463380C1 (ru) Способ цементации со ступенчатыми изотермическими выдержками в области температур полиморфного превращения
JP6191357B2 (ja) 鋼の熱処理方法
KR101839166B1 (ko) B 첨가강의 침탄질화 열처리 방법
JP2741222B2 (ja) 窒化処理した鋼部材の製造方法
JP3745972B2 (ja) 鋼材料の製造方法
CN109923219A (zh) 用于对由高合金钢制成的工件进行热处理的方法
JP2549038B2 (ja) 歪の小さい高強度歯車の浸炭熱処理方法およびその歯車
JPH10259421A (ja) 機械部品の熱処理方法
JP5582296B2 (ja) 鉄系材料およびその製造方法
Skakov et al. Change of structure and wear resistance of P6M5 steel from processing in electrolyte plasma
JP7196707B2 (ja) 窒化用鍛造部材及びその製造方法、並びに表面硬化鍛造部材及びその製造方法
US7622009B2 (en) Steel material
JP5366571B2 (ja) 鉄系合金の表面改質材料、鉄系合金の表面改質方法および鋳造用金型
JP2008523250A (ja) 高強度高靭性合金を熱化学処理する方法および工程
JP4531448B2 (ja) 金型の窒化方法
SU584044A1 (ru) Способ термической обработки деталей из нержавеющих мартенситностареющих сталей
JPH11310824A (ja) 浸炭焼き入れ鋼部材及びその製造方法