RU2686745C9 - Восстановленный элемент конструкции из сплава на основе никеля и способ изготовления этого элемента - Google Patents

Восстановленный элемент конструкции из сплава на основе никеля и способ изготовления этого элемента Download PDF

Info

Publication number
RU2686745C9
RU2686745C9 RU2017141419A RU2017141419A RU2686745C9 RU 2686745 C9 RU2686745 C9 RU 2686745C9 RU 2017141419 A RU2017141419 A RU 2017141419A RU 2017141419 A RU2017141419 A RU 2017141419A RU 2686745 C9 RU2686745 C9 RU 2686745C9
Authority
RU
Russia
Prior art keywords
phase
heat treatment
creep
temperature
nickel
Prior art date
Application number
RU2017141419A
Other languages
English (en)
Other versions
RU2686745C1 (ru
Inventor
Сигеру ТАНАКА
Акира ЙОСИНАРИ
Такеси Изуми
Original Assignee
Мицубиси Хитачи Пауэр Системс, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мицубиси Хитачи Пауэр Системс, Лтд. filed Critical Мицубиси Хитачи Пауэр Системс, Лтд.
Application granted granted Critical
Publication of RU2686745C1 publication Critical patent/RU2686745C1/ru
Publication of RU2686745C9 publication Critical patent/RU2686745C9/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к области металлургии, а именно к восстановительной термической обработке бывшего в эксплуатации элемента конструкции турбины. Представлен способ восстановительной термической обработки бывшего в эксплуатации элемента конструкции турбины из сплава на основе никеля, представляющего собой литое изделие из сплава на основе никеля, содержащее γ-фазу в качестве матрицы и γ'-фазу в количестве 30 об.% или более, включающий термическую обработку для образования твердого раствора γ'-фазы в γ-фазе без рекристаллизации γ-фазы при температуре в интервале от температуры на 10°С выше температуры растворения γ'-фазы до температуры на 10°С ниже температуры плавления γ-фазы, и старящую термическую обработку. Значение отклонения ориентации координатных осей зерна (GROD) кристаллического зерна γ-фазы после указанной термической обработки для образования твердого раствора γ'-фазы в γ-фазе без рекристаллизации γ-фазы, измеренное методом анализа дифракции обратного рассеяния электронов, составляет от не менее 0,4° до не более 0,6°. Обеспечивается продление технического ресурса элемента конструкции, получившего повреждение при высокотемпературной ползучести. 2 н. и 6 з.п. ф-лы, 2 ил., 5 табл., 4 пр.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к элементам конструкции из сплава на основе никеля, упрочненного в результате выпадения, используемым в качестве высокотемпературных элементов конструкции в турбинах и т.д., и, в частности, к восстановленному элементу конструкции сплава на основе никеля и способу изготовления этого восстановленного элемента конструкции. Восстановление включает в себя продление полезного технического ресурса элемента конструкции из сплава, получившего повреждение при ползучести вследствие продолжительной работы в высокотемпературных средах.
ОПИСАНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
Высокотемпературные элементы конструкции, используемые на тепловых электростанциях и в турбинах летательных аппаратов, такие как лопатки турбин и роторы, для удовлетворения требуемым механическим свойствам в высокотемпературных средах зачастую изготавливают из сплавов на основе никеля (Ni), упрочненных в результате выпадения (также называемых суперсплавами на основе никеля).
Однако механические свойства даже таких элементов конструкции из сплава на основе Ni с высокой высокотемпературной прочностью постепенно ухудшаются в результате работы в режиме многократного воздействия центробежных сил и температурных напряжений во время операций пуска и останова при высокой температуре. В частности, наиболее сильному влиянию подвергается прочность таких элементов конструкции при ползучести, и технический ресурс этих элементов по прочности при ползучести расходуется по мере увеличения продолжительности работы. При этом любой расход технического ресурса по прочности при ползучести можно назвать повреждением при ползучести.
В настоящее время с точки зрения повышения коэффициента использования турбины (во избежание риска останова из-за неожиданного отказа) любой высокотемпературный элемент конструкции, проработавший в течение заданного периода времени, считается получившим до некоторой степени повреждение при ползучести и при проведении регулярного контроля, как правило, заменяется новым.
В то же время одной из тенденций технических решений в различных типах турбин является повышение температуры основной текучей среды, направленное на повышение теплоотдачи, и в последние годы активно изучаются и разрабатываются технические решения по повышению теплостойкости высокотемпературных элементов конструкции для турбин (например, технические решения по добавлению специальных элементов для повышения высокотемпературной прочности и по контролю за отверждением/ кристаллизацией). Однако при этом возникает проблема, заключающаяся в том, что высокотемпературные элементы конструкции, с использованием таких сложных технологий, являются дорогими, и в результате замены элементов конструкции при проведении регулярного контроля затраты на техническое обслуживание турбин становятся высокими.
Естественно, что существует высокий спрос на недорогие промышленные изделия, и возникает необходимость как снижения стоимости изготовления, так и достижения более высоких рабочих характеристик этих изделий. Поэтому одной из рассматриваемых задач является разработка технического решения по повышению точности оценки технического ресурса высокотемпературных элементов конструкции, получивших повреждение при ползучести, с целью снижения частоты замены и уменьшения затрат на техническое обслуживание высокотемпературных элементов конструкции.
Например, в патентном документе 1 (JP 2010-164430 А) раскрывается способ оценки повреждения металлического материала при ползучести, обеспечивающий оценку степени повреждения металлического материала, получившего повреждение при ползучести. Способ содержит: этап предварительного определения корреляции между величиной деформации испытуемого материала при ползучести и распределением ориентаций кристаллов в этом материале; этап измерения распределения ориентаций кристаллов в исследуемом материале, подлежащем оценке повреждения при ползучести; этап оценки величины деформации исследуемого материала при ползучести в результате применения распределения ориентаций кристаллов в исследуемом материале к корреляции между величиной деформации при ползучести и распределением ориентаций кристаллов; этап предварительного определения корреляции между величиной деформации испытуемого материала, достигаемой на стадии ускоренной ползучести, и напряжением при испытании на ползучесть в этом материале; этап оценки величины деформации исследуемого материала, достигаемой на стадии ускоренной ползучести, по корреляции между величиной деформации, достигаемой на стадии ускоренной ползучести, и напряжением при испытании на ползучесть и напряжению, приложенному к исследуемому материалу; и этап оценки степени повреждения исследуемого материала в результате сравнения величины деформации исследуемого материала при ползучести, полученной при оценке, и величины деформации исследуемого материала, достигаемой на стадии ускоренной ползучести, полученной при оценке.
В другом патентном документе - патентном документе 2 (JP 2014-126442 А) -раскрывается способ диагностики деструкции суперсплава на основе никеля. Способ заключается в проведении термической обработки суперсплава на основе никеля при условиях, удовлетворяющих соотношению между температурой термической обработки и длительностью термической обработки, определяемому заданной формулой, и последующем определении наличия или отсутствия кристаллов, образовавшихся за счет рекристаллизации суперсплава на основе никеля.
СПИСОК ЦИТИРОВАНИЯ
ПАТЕНТНЫЕ ДОКУМЕНТЫ
Патентный документ 1: JP 2010-164430 А
Патентный документ 2: JP 2014-126442 А
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
ЗАДАЧИ, РЕШАЕМЫЕ С ПОМОЩЬЮ ИЗОБРЕТЕНИЯ
В соответствии с патентным документом JP 2010-164430 А предлагается способ оценки повреждения металлического материала при ползучести, позволяющий с высокой степенью точности оценить возможность или невозможность продолжения стабильного использования металлического материала, а также устройство для оценки повреждения при ползучести. В соответствии с другим патентным документом - в соответствии с патентным документом JP 2014-126442 А, в котором использована возможность рекристаллизации суперсплава на основе никеля, достигшего предела своего технического ресурса, за счет выполнения заданной термической обработки, предлагается простой и точный способ диагностики деструкции этого суперсплава.
Для дополнительного уменьшения затрат на техническое обслуживание турбины более целесообразным является не только диагностика технического ресурса, но и возможность продления технического ресурса/восстановления элементов конструкции, получивших повреждение при ползучести, и повторного использования этих элементов в качестве восстановленных элементов конструкции. Технические решения, раскрытые в патентных документах 1 и 2, предполагают упрощение и повышение точности диагностики технического ресурса высокотемпературного элемента конструкции из сплава на основе Ni, однако ни в одном из этих документов не описывается техническое решение по продлению технического ресурса/восстановлению элементов конструкции, получивших повреждение при ползучести.
Поэтому задачей настоящего изобретения является создание восстановленного элемента конструкции из сплава на основе Ni в результате продления полезного технического ресурса элемента конструкции из сплава на основе Ni, получившего повреждение при ползучести, и способа изготовления этого восстановленного элемента конструкции.
РЕШЕНИЕ ЗАДАЧ
(I) В соответствии с одним из аспектов настоящего изобретения предлагается способ изготовления восстановленного элемента конструкции из сплава на основе никеля для использования в турбине. Элемент конструкции из сплава на основе никеля представляет собой литое изделие из сплава на основе никеля, содержащее γ-фазу в качестве матрицы и γ'-фазу, выпадающую в условиях эксплуатации турбины в γ-фазе в объемной доле, составляющей 30 об. % или более. Способ включает в себя: этап термической обработки с образованием твердого раствора/без рекристаллизации, заключающийся в том, что использованный элемент конструкции, представляющий собой элемент конструкции из сплава на основе никеля, отработавший в течение заданного периода времени в турбине, подвергают термической обработке с образованием твердого раствора/без рекристаллизации; и этап старящей термической обработки, заключающийся в том, что использованный элемент конструкции после термической обработки с образованием твердого раствора/без рекристаллизации подвергают старящей термической обработке, при которой γ'-фаза выпадает в γ-фазе. На этапе термической обработки с образованием твердого раствора/без рекристаллизации использованный элемент конструкции выдерживают при температуре, не ниже, чем на 10°С выше температуры растворения γ'-фазы и не выше, чем на 10°С ниже температуры плавления γ-фазы в течение временного интервала, во время которого образования рекристаллизованных зерен γ-фазы не происходит. Значение GROD (значение отклонения ориентации координатных осей зерен) кристаллических зерен γ-фазы использованного элемента конструкции после указанной термической обработки с образованием твердого раствора/без рекристаллизации, измеренное методом анализа дифракции обратного рассеяния электронов, составляет не менее 0,4° и не более 0,6°.
При этом в настоящем изобретении в качестве температуры растворения γ'-фазы и температуры плавления (температуры солидуса) γ-фазы могут быть использованы температуры, полученные в результате термодинамических вычислений по химическому составу сплава на основе Ni.
В описанный выше способ изготовления восстановленного элемента конструкции из сплава на основе никеля для использования в турбине согласно аспекту (I) могут быть внесены следующие изменения и дополнения.
(i) Длительность выдержки на этапе термической обработки с образованием твердого раствора/без рекристаллизации может составлять не менее, чем 15 минут и не более, чем 2 часа.
(ii) Литое изделие может представлять собой твердотельное изделие с однонаправленной структурой или твердотельное изделие с монокристаллической структурой.
(iii) Элемент конструкции из сплава на основе никеля может представлять собой лопатку турбины.
(II) В соответствии с другим аспектом изобретения предлагается восстановленный после использования элемент конструкции из сплава на основе никеля для использования в турбине. Этот восстановленный элемент конструкции представляет собой литое изделие из сплава на основе никеля, содержащее γ-фазу в качестве матрицы и γ'-фазу, выпадающую в условиях эксплуатации турбины в γ-фазе в объемной доле, составляющей 30 об. % или более. В микроструктуре восстановленного элемента конструкции никаких рекристаллизованных зерен γ-фазы не образуется, и значение GROD кристаллических зерен γ-фазы восстановленного элемента конструкции, измеренное методом анализа дифракции обратного рассеяния электронов, составляет не менее 0,4° и не более 0,6°.
В описанный выше восстановленный элемент конструкции из сплава на основе никеля для использования в турбине согласно аспекту (II) могут быть внесены следующие изменения и дополнения.
(iv) Если принять технический ресурс нового элемента конструкции из сплава на основе никеля за 1, то технический ресурс восстановленного элемента конструкции при ползучести может составлять не менее 0,95.
(v) Литое изделие может представлять собой твердотельное изделие с однонаправленной структурой или твердотельное изделие с монокристаллической структурой.
(vi) Элемент конструкции из сплава на основе никеля может представлять собой лопатку турбины.
ПРЕИМУЩЕСТВА ИЗОБРЕТЕНИЯ
В соответствии с настоящим изобретением предлагается восстановленный элемент конструкции из сплава на основе Ni, полученный в результате продления полезного технического ресурса элемента конструкции из сплава на основе Ni, получившего повреждение при ползучести, и способ изготовления этого восстановленного элемента конструкции. Использование восстановленного элемента конструкции в качестве высокотемпературного элемента конструкции для применения в турбинах позволяет обеспечить снижение затрат на техническое обслуживание (в частности, на величину стоимости приобретения новых высокотемпературных элементов конструкции).
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 - блок-схема последовательности операций, иллюстрирующая пример способа изготовления восстановленного элемента конструкции из сплава на основе Ni в соответствии с вариантом осуществления настоящего изобретения.
Фиг. 2 - схематический вид в перспективе, иллюстрирующий лопатку ротора турбины в качестве примера восстановленного элемента конструкции из сплава на основе Ni в соответствии с вариантом осуществления настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Основная идея изобретения
Настоящее изобретение относится к литым изделиям для элементов конструкции из сплава на основе никеля, упрочненного в результате выпадения, используемым в качестве высокотемпературных элементов конструкции в турбинах и, в частности, к элементам конструкции из сплава на основе Ni, имеющим химический состав, включающий в себя γ-фазу в качестве матрицы и γ'-фазу в качестве выпадающей фазы упрочнения (например, фазу Ni3Al), выпадающую в условиях эксплуатации турбины в γ-фазе в объемной доле, составляющей 30 об. % или более (в предпочтительном варианте осуществления 40-70 об. %), и представляющим собой твердотельное изделие с однонаправленной структурой или твердотельное изделие с монокристаллической структурой.
Авторами изобретения были проведены глубокие научные исследования в области технических решений по оценке степени повреждения при ползучести и влияния термической обработки на элементы конструкции, получившие повреждение при ползучести, с целью создания восстановленного элемента конструкции из сплава на основе Ni в результате продления полезного технического ресурса элемента конструкции из сплава на основе Ni, получившего повреждение при ползучести. В результате проведенных исследований авторами было установлено прямое соотношение между степенью повреждения при ползучести, степенью внутренней деформации кристаллических зерен γ-фазы и образованием рекристаллизованных зерен γ-фазы при термической обработке элемента конструкции, получившего повреждение. Была также установлена возможность восстановления технического ресурса при ползучести до уровня, составляющего 95% или более от технического ресурса нового элемента конструкции, за счет релаксации внутренней деформации кристаллических зерен γ-фазы без образования рекристаллизованных зерен γ-фазы. Настоящее изобретение было создано на основе результатов этих исследований.
ПРИМЕРЫ
Ниже приводится описание предпочтительных вариантов осуществления настоящего изобретения, сопровождаемое ссылками на прилагаемые чертежи. При этом изобретение не ограничивается частными вариантами осуществления, описываемыми ниже, и может быть использовано в сочетании с известными техническими решениями или усовершенствовано на основе известных технических решений в пределах существа и объема изобретения.
Эксперимент 1
Изготовление элемента 1 конструкции из сплава
Был изготовлен образец, имитирующий высокотемпературный элемент конструкции для турбины согласно варианту осуществления изобретения. Сначала исходный слиток сплава 1, имеющего номинальный химический состав, представленный в Таблице 1, был подвергнут высокочастотному плавлению. Затем способом однонаправленной кристаллизации была изготовлена литая пластина (длиной 200 мм, шириной 200 мм и толщиной 10 мм). Температура растворения γ'-фазы в сплаве 1 составляет приблизительно 1190°С.
Figure 00000001
Для получения образца, имитирующего высокотемпературный элемент конструкции для турбины, изготовленная вышеуказанным способом литая пластина была подвергнута термической обработке с образованием твердого раствора (выдержке при 1210°С в течение двух часов и последующему быстрому охлаждению в вакууме), первой старящей термической обработке (выдержке при 1100°С в течение четырех часов и последующему быстрому охлаждению в вакууме) и второй старящей термической обработке (выдержке при 850°С в течение десяти часов и последующему быстрому охлаждению в вакууме).
Эксперимент 2
Приготовление образца использованного элемента конструкции и оценка степени повреждения при ползучести и внутренней деформации кристаллических зерен γ-фазы
Из элемента 1 из сплава было взято множество образцов для испытания на ползучесть (диаметром 9 мм и длиной 100 мм) с продольным направлением однонаправленной кристаллизации. Затем каждый из образцов для испытания на ползучесть был подвергнут испытанию на ползучесть (900°С, 245 МПа).
При этом в одном из испытаний значение технического ресурса (tv) при ползучести элемента для испытания на ползучесть, взятого в качестве образца нового элемента конструкции, составило приблизительно 950 часов. В других испытаниях в качестве образцов использованных элементов конструкции были взяты элементы для испытания на ползучесть с заданной величиной деформации при ползучести (составившей 0,8-3%). Степень повреждения при ползучести при каждой заданной величине деформации была рассчитана из отношения (tc/tv) времени (tc) для достижения заданной величины деформации при ползучести и вышеуказанного tv. В каждом испытании было использовано множество образцов для испытания на ползучесть.
Для оценки внутренней деформации кристаллических зерен γ-фазы на каждом из приготовленных новых и использованных элементов конструкции были произведены измерения значений отклонения ориентации координатных осей (значений GROD) кристаллических зерен γ-фазы методом анализа дифракции обратного рассеяния электронов (EBSD).
Соотношение между величиной деформации при ползучести, степенью повреждения при ползучести и внутренней деформацией кристаллических зерен γ-фазы для каждого из образцов в данном испытании представлено в Таблице 2.
Figure 00000002
Как показано в Таблице 2, между величиной деформации при ползучести и степенью повреждения при ползучести наблюдается хорошая корреляция. Кроме того, с увеличением величины деформации при ползучести и степени повреждения при ползучести наблюдается и увеличение значения GROD. Однако вследствие относительно больших колебаний измеренных значений GROD однозначно оценить степень повреждения при ползучести представляется затруднительным.
Эксперимент 3
Изготовление образца восстановленного элемента конструкции, исследование процесса образования рекристаллизованных зерен γ-фазы и исследование технического ресурса при ползучести восстановленного элемента конструкции
Для имитации обработки по продлению технического ресурса/восстановлению каждый из образцов использованных элементов конструкции, приготовленных в Эксперименте 2, был подвергнут термической обработке с образованием твердого раствора (выдержке при 1210°С в течение двух часов и последующему быстрому охлаждению в вакууме). Затем было проведено изучение металлографической структуры (микроструктуры) каждого образца.
В результате в образцах с величиной деформации при ползучести, составившей 1,2% или менее, никаких особых изменений в микроструктуре обнаружено не было. В то же время в образцах с величиной деформации при ползучести, составившей 1,3-1,5%, было обнаружено образование рекристаллизованных зерен γ-фазы, и наблюдалось увеличение числа и размера рекристаллизованных зерен γ-фазы с увеличением величины деформации при ползучести. Образование рекристаллизованных зерен γ-фазы наблюдалось также и в образцах с величиной деформации при ползучести, составившей более, чем 1,5%, однако относительное количество этих зерен было примерно таким же, что и в образцах с величиной деформации при ползучести, составившей 1,5%, что делает затруднительным отличать одни образцы от других.
Затем каждый из образцов, подвергшихся термической обработке с образованием твердого раствора, по такой же методике, как и в Эксперименте 1, был подвергнут первой старящей термической обработке и второй старящей термической обработке, в результате которых были изготовлены образцы восстановленных элементов конструкции. Для измерения значения технического ресурса (tr) при ползучести каждого образца восстановленного элемента конструкции каждый из полученных образцов восстановленных элементов конструкции, по такой же методике, как и в Эксперименте 2, был подвергнут испытанию на ползучесть. Кроме того, в качестве степени восстановления определялось отношение (tr/tv) технического ресурса (tr) при ползучести образца восстановленного элемента конструкции и технического ресурса (tv) при ползучести образца нового элемента конструкции. Полученные результаты представлены в Таблице 3.
Figure 00000003
Как показано в таблице 3, образцы с величиной деформации, составившей 1,2% или менее, в микроструктуре которых после термической обработки с образованием твердого раствора никаких особых изменений обнаружено не было, продемонстрировали возможность продления своего технического ресурса при ползучести в результате описанной выше термической обработки до степени восстановления, составившей 0,95 или более. В то же время степень восстановления образцов с величиной деформации, составившей 1,3% или более (то есть образцов с образовавшимися в результате термической обработки с образованием твердого раствора рекристаллизованными зернами γ-фазы), оказалась недостаточной. В частности, образцы с величиной деформации, составившей 1,4% или более, продемонстрировали уменьшение технического ресурса tr при ползучести восстановленного элемента конструкции до более низкого значения, чем первоначальный остаточный технический ресурс (tv - tc) при ползучести. То есть было установлено сокращение технического ресурса при ползучести вследствие термической обработки с образованием твердого раствора.
Затем были исследованы предпочтительные условия термической обработки с образованием твердого раствора на образцах с величиной деформации при ползучести, составившей 1,5% или более (со степенью повреждения при ползучести, составившей 0,5 или более). В частности, было проведено исследование степени восстановления на образцах восстановленных элементов конструкции, приготовленных по описанной выше методике, за исключением длительности выдержки. Полученные результаты представлены в Таблице 4.
Figure 00000004
Прочерк "-" означает отсутствие измерений.
Результаты, приведенные в Таблице 4, являются неожиданными. Даже образцы с величиной деформации при ползучести, составившей 1,5% или более, в которых продление технического ресурса/восстановление в результате описанной выше термической обработки с образованием твердого раствора (выдержки при 1210°С в течение двух часов и последующего быстрого охлаждения в вакууме) было затруднительным, продемонстрировали возможность продления технического ресурса/восстановления до степени восстановления, составившей 0,95 или более, за счет сокращения длительности выдержки при термической обработке с образованием твердого раствора.
В частности, продемонстрировали возможность продления технического ресурса/восстановления до степени восстановления, составившей 0,95 или более, образцы с величиной деформации при ползучести, составившей 1,5% (образцы со степенью повреждения при ползучести, составившей 0,5 или более), в случае длительности выдержки, составившей 1 час, образцы с величиной деформации при ползучести, составившей 2% (образцы со степенью повреждения при ползучести, составившей 0,65), в случае длительности выдержки, составившей 30 минут, и образцы с величиной деформации при ползучести, составившей 2,5% (образцы со степенью повреждения при ползучести, составившей 0,7), в случае длительности выдержки, составившей 15 минут. Однако в образцах с величиной деформации при ползучести, составившей более, чем 2,5% (в образцах со степенью повреждения при ползучести, составившей более, чем 0,7), продление технического ресурса/восстановление даже за счет сокращения длительности выдержки при термической обработке с образованием твердого раствора оказалось затруднительным.
Изучение микроструктуры образцов, восстановленных до степени восстановления, составившей 0,95 или более, показало, что никаких рекристаллизованных зерен γ-фазы не образуется. Кроме того, измерение значений GROD кристаллических зерен γ-фазы в образцах, восстановленных до степени восстановления, составившей 0,95 или более, методом анализа EBSD показало, что значение GROD любого из образцов находится в пределах 0,4-0,6°, что указывает на частичную релаксацию внутренней деформации кристаллических зерен γ-фазы.
При этом измерение значений GROD кристаллических зерен γ-фазы в образцах, в которых в результате термической обработки с образованием твердого раствора образовались рекристаллизованные зерна, показало изменение значений GROD в пределах 0,2-0,4°, что говорит о наличии кристаллических зерен γ-фазы с полной релаксацией внутренней деформации.
Механизм получения результатов, представленных в Таблицах 3 и 4, в настоящее время неясен, но, например, возможны следующие модели.
Можно сказать, что деформация при ползучести накапливается в качестве внутренней деформации кристаллических зерен. В процессе термической обработки с образованием твердого раствора внутренняя деформация кристаллических зерен подвергается релаксации (то есть работает в качестве движущей силы, направленной на образование рекристаллизации). Однако образование рекристаллизации в данном случае рассматривается как своего рода гомогенное образование центров кристаллизации, и поэтому можно считать, что гомогенное образование центров кристаллизации имеет более высокий потенциальный барьер, чем гетерогенное образование центров кристаллизации, и требуется более большая движущая сила (т.е. частота образования центров кристаллизации является низкой).
Представленные в Таблицах 3 и 4 результаты показывают, что больше рекристаллизованных зерен образуется в образцах с более большой деформацией при ползучести и при более короткой длительности термической обработки, что можно примерно объяснить этой моделью. Кроме того, считается, что в твердотельном изделии с однонаправленной структурой или в твердотельном изделии с монокристаллической структурой образование рекристаллизованных зерен, приводящее к образованию новых границ кристаллических зерен, с точки зрения характеристик ползучести является нежелательным, и поэтому технический ресурс при ползучести образцов восстановленного элемента конструкции с рекристаллизованными зернами сокращается.
В результате серии экспериментов было сделано важное техническое открытие, заключающееся в том, что для восстановления элемента конструкции из сплава на основе Ni, получившего повреждение при ползучести, при термической обработке с образованием твердого раствора для обеспечения растворения γ'-фазы элемента конструкции, получившего повреждение при ползучести, в твердом растворе требуется проведение термической обработки с образованием твердого раствора/без рекристаллизации, обеспечивающей частичную релаксацию внутренней деформации кристаллических зерен γ-фазы при предотвращении образования рекристаллизованных зерен γ-фазы. С точки зрения релаксации внутренней деформации кристаллических зерен γ-фазы считается, что предпочтительной является как можно более длительная термическая обработка, не приводящая к образованию рекристаллизованных зерен.
Кроме того, результаты, приведенные в Таблице 4, позволяют сделать вывод о том, что даже для элементов конструкции из сплава с ожидаемой степенью повреждения при ползучести, составляющей 0,5 или более, но с затруднительным непосредственным измерением величины деформации (например, для элементов конструкции сложной формы и элементов конструкции с разной величиной деформации при ползучести на разных участках), по длительности выдержки при термической обработке с образованием твердого раствора элемента конструкции, получившего повреждение при ползучести, при которой начинается образование рекристаллизованных зерен γ-фазы, можно определить степень повреждения при ползучести, составляющую 0,5 или более, более точно, чем с помощью технических решений, известных из уровня техники. Этот вывод может быть положен в основу технического решения/метода для оценки степени повреждения при ползучести.
Эксперимент 4
Эксперимент по подтверждению воспроизводимости на элементах конструкции из сплава с использованием сплавов 2 и 3
Были изготовлены элементы 2 и 3 конструкции из сплавов 2 и 3, имеющих номинальный химический состав, представленный в Таблице 5, которые были подвергнуты тем же самым испытаниям, что и в Экспериментах 2 и 3, за исключением того, что температура термической обработки с образованием твердого раствора для восстановления составила 1250°С. При этом были получены результаты, подобные приведенным выше.
То есть, было подтверждено, что для восстановления элемента конструкции из сплава на основе Ni, получившего повреждение при ползучести, при термической обработке с образованием твердого раствора для обеспечения растворения γ'-фазы элемента конструкции, получившего повреждение при ползучести, в твердом растворе требуется проведение термической обработки с образованием твердого раствора/без рекристаллизации, обеспечивающей частичную релаксацию внутренней деформации кристаллических зерен γ-фазы при предотвращении образования рекристаллизованных зерен γ-фазы.
Figure 00000005
При этом Эксперименты 1-4 проводились на твердотельных изделиях с однонаправленной структурой, однако настоящее изобретение может быть использовано и применительно к твердотельным изделиям с монокристаллической структурой.
Способ изготовления восстановленного элемента конструкции
На основании рассмотренных выше результатов Экспериментов 1-4 ниже приводится описание способа изготовления восстановленного элемента конструкции из сплава на основе Ni в соответствии с вариантом осуществления изобретения.
На фиг. 1 представлена блок-схема последовательности операций, иллюстрирующая пример способа изготовления восстановленного элемента конструкции из сплава на основе Ni в соответствии с вариантом осуществления настоящего изобретения. Как показано на фиг. 1, сначала выполняется этап предварительной подготовки (этап 1: S1), на котором проводится визуальный контроль элемента конструкции из сплава на основе Ni, проработавшего в турбине в течение заданного периода времени, на наличие или отсутствие дефектов, которые не могут быть восстановлены с использованием способа согласно изобретению (например, трещин и сколов). В настоящем изобретении в случае обнаружения таких дефектов элемента конструкции этот элемент конструкции выбраковывается и не подвергается обработке, соответствующей последующим этапам. Кроме того, в случае наличия теплозащитного покрытия (ТВС) на использованном элементе конструкции на этапе предварительной подготовки осуществляется также операция по удалению ТВС. Операция по удалению ТВС не является обязательной, но в предпочтительном варианте осуществления изобретения выполняется.
Затем выполняется этап термической обработки с образованием твердого раствора/без рекристаллизации (этап 2: S2). На этом этапе использованные элементы конструкции после этапа S1 предварительной подготовки подвергают термической обработке с образованием твердого раствора/без рекристаллизации. При этой термической обработке с образованием твердого раствора/без рекристаллизации использованные элементы конструкции выдерживают при температуре, не ниже, чем на 10°С выше температуры растворения γ'-фазы и не выше, чем на 10°С ниже температуры плавления γ-фазы в течение временного интервала, во время которого образования рекристаллизованных зерен γ-фазы не происходит. Как было указано выше, этот этап S2 термической обработки с образованием твердого раствора/без рекристаллизации представляет собой наиболее существенный признак настоящего изобретения.
Температура термической обработки с образованием твердого раствора/без рекристаллизации задается не ниже, чем на 10°С выше температуры растворения γ'-фазы для обеспечения полного растворения γ'-фазы у в твердом растворе в γ-фазе. Кроме того, температура термической обработки с образованием твердого раствора/без рекристаллизации задается не выше, чем на 10°С ниже температуры плавления γ-фазы для предотвращения нежелательной деформации использованного элемента конструкции в процессе термической обработки. В предпочтительном варианте с точки зрения предотвращения образования рекристаллизованных зерен γ-фазы верхняя предельная температура термической обработки задается не выше, чем на 20°С ниже температуры плавления γ-фазы. Аргументы в пользу задания длительности выдержки при термической обработке в пределах временного интервала, во время которого образования рекристаллизованных зерен γ-фазы не происходит, приведены при описании рассмотренного выше Эксперимента 3.
Ниже приводится краткое описание способа определения длительности выдержки, при которой образования рекристаллизованных зерен γ-фазы не происходит. В случае, когда элемент конструкции из сплава на основе Ni для применения в турбинах представляет собой, например, лопатку турбины, то считается, что при регулярном контроле появляется множество использованных элементов конструкции, то есть использованных лопаток турбины, и каждый из этих элементов конструкции представляет собой элемент конструкции, подвергшийся практически одинаковому повреждению при ползучести.
В таком случае из одного из использованных элементов конструкции отбирают множество образцов для испытания на термическую обработку с образованием твердого раствора/без рекристаллизации. Затем на этих образцах для испытания проводят термическую обработку с образованием твердого раствора/без рекристаллизации с длительностью выдержки в качестве параметра. Соответствующая длительность выдержки может быть определена по результатам изучения микроструктуры образцов для испытания.
Кроме того, в предпочтительном варианте осуществления значения GROD кристаллических зерен γ-фазы в образцах для испытания, подвергшихся термической обработке с образованием твердого раствора/без рекристаллизации, измеряют методом анализа EBSD. Измерение значений GROD позволяет подтвердить частичную релаксацию внутренней деформации кристаллических зерен γ-фазы и, таким образом, обеспечивает возможность предварительного контроля качества восстановленного элемента конструкции. При этом измерение значений GROD (то есть подтверждение частичной релаксации внутренней деформации кристаллических зерен γ-фазы) может быть проведено после старящей термической обработки, описываемой ниже.
После определения соответствующей длительности выдержки при термической обработке с образованием твердого раствора/без рекристаллизации выполняют термическую обработку с образованием твердого раствора/без рекристаллизации на других использованных элементах конструкции.
Затем выполняется этап старящей термической обработки (этап 3: S3). На этом этапе использованные элементы конструкции после этапа S2 термической обработки с образованием твердого раствора/без рекристаллизации подвергают термической старящей обработке, выполняемой для обеспечения выпадения γ'-фазы в γ-фазе. В предпочтительном варианте осуществления в качестве этой старящей термической обработки может быть использована та же старящая термическая обработка, что и при изготовлении нового элемента конструкции из сплава.
Затем выполняется этап отделки/контроля (этап 4: S4). На этом этапе использованные элементы конструкции после этапа S3 старящей термической обработки подвергают отделке/контролю, что проводится для завершения процесса изготовления восстановленных элементов конструкции. Операции по отделке/контролю не являются обязательными, но в предпочтительном варианте осуществления изобретения выполняются. При необходимости операция отделки должна включать в себя коррекцию формы элемента конструкции и нанесение ТВС.
Выполнение описанных выше этапов позволяет получить восстановленные элементы конструкции из сплава на основе Ni.
Восстановленный элемент конструкции из сплава на основе Ni
На фиг. 2 представлен схематический вид в перспективе, иллюстрирующий лопатку ротора турбины в качестве примера восстановленного элемента конструкции из сплава на основе Ni в соответствии с вариантом осуществления настоящего изобретения. Как показано на фиг. 2, лопатка 100 ротора турбины в основном включает в себя перо 110 лопатки, хвостовик 120 и основание 130 (именуемое также ласточкиным хвостом). Хвостовик 120 снабжен полкой 121 и радиальным ребром 122. В случае газовой турбины размер лопатки 100 ротора турбины (длина на фигуре в продольном направлении), как правило, составляет 5-50 см.
Изобретение не ограничивается описанными выше вариантами осуществления, и в него могут быть внесены различные изменения и дополнения. Кроме того, рассмотренные выше варианты осуществления носят исключительно иллюстративный характер и предназначены для облегчения понимания признаков изобретения, и настоящее изобретение не ограничивается только конкретной рассмотренной конструкцией. Например, часть конструкции согласно вариантам осуществления может быть заменена или дополнена конструкцией, известной специалистам в данной области техники. То есть в настоящем изобретении часть конструкции согласно вариантам осуществления может быть удалена или заменена или дополнена другой конструкцией, известной специалистам в данной области техники.
СПИСОК ССЫЛОЧНЫХ ПОЗИЦИЙ
100 - лопатка ротора турбины;
110 - перо лопатки;
120 - хвостовик;
121 - полка;
122 - радиальное ребро;
130 - основание.

Claims (11)

1. Способ восстановительной термической обработки бывшего в эксплуатации элемента конструкции турбины из сплава на основе никеля, представляющего собой литое изделие из сплава на основе никеля, содержащее γ-фазу в качестве матрицы и γ'-фазу в количестве 30 об.% или более, включающий в себя:
термическую обработку для образования твердого раствора γ'-фазы в γ-фазе без рекристаллизации γ-фазы при температуре в интервале от температуры на 10°С выше температуры растворения γ'-фазы до температуры на 10°С ниже температуры плавления γ-фазы, и
старящую термическую обработку,
причем значение отклонения ориентации координатных осей зерна (GROD) кристаллического зерна γ-фазы после указанной термической обработки для образования твердого раствора γ'-фазы в γ-фазе без рекристаллизации γ-фазы, измеренное методом анализа дифракции обратного рассеяния электронов, составляет от не менее 0,4° до не более 0,6°.
2. Способ по п. 1, отличающийся тем, что длительность выдержки на этапе термической обработки для образования твердого раствора γ'-фазы в γ-фазе без рекристаллизации γ-фазы составляет от 15 мин до 2 ч.
3. Способ по п. 1, отличающийся тем, что указанный элемент конструкции турбины из сплава на основе никеля имеет однонаправленную или монокристаллическую структуру.
4. Способ по п. 1, отличающийся тем, что указанный элемент конструкции турбины из сплава на основе никеля представляет собой лопатку турбины.
5. Восстановленный элемент конструкции турбины из сплава на основе никеля, бывший в эксплуатации, отличающийся тем, что он восстановлен способом термической обработки по любому из пп. 1-4.
6. Восстановленный элемент конструкции по п. 5, отличающийся тем, что он имеет технический ресурс при ползучести, составляющий не менее 95%.
7. Восстановленный элемент конструкции по п. 5, отличающийся тем, что он имеет однонаправленную или монокристаллическую структуру.
8. Восстановленный элемент конструкции по п. 5, отличающийся тем, что он представляет собой лопатку турбины.
RU2017141419A 2016-11-28 2017-11-28 Восстановленный элемент конструкции из сплава на основе никеля и способ изготовления этого элемента RU2686745C9 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-229893 2016-11-28
JP2016229893A JP6754682B2 (ja) 2016-11-28 2016-11-28 ニッケル基合金再生部材の製造方法

Publications (2)

Publication Number Publication Date
RU2686745C1 RU2686745C1 (ru) 2019-04-30
RU2686745C9 true RU2686745C9 (ru) 2019-10-15

Family

ID=60452337

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017141419A RU2686745C9 (ru) 2016-11-28 2017-11-28 Восстановленный элемент конструкции из сплава на основе никеля и способ изготовления этого элемента

Country Status (6)

Country Link
US (1) US10619233B2 (ru)
EP (1) EP3326747B1 (ru)
JP (1) JP6754682B2 (ru)
KR (1) KR102033830B1 (ru)
CN (1) CN108118276A (ru)
RU (1) RU2686745C9 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172852A (ja) 2020-04-24 2021-11-01 三菱パワー株式会社 Ni基合金補修部材および該補修部材の製造方法
CN113084445A (zh) * 2021-03-03 2021-07-09 季华实验室 一种航空发动机叶片校型调节机构
CN113699347B (zh) * 2021-09-10 2022-06-07 北京航空航天大学 一种服役后涡轮叶片修复过程中的抗再结晶方法
CN113969341B (zh) * 2021-10-27 2022-10-14 北京航空航天大学 一种铸造涡轮叶片制备过程中的抗再结晶热处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1403652C (ru) * 1986-05-13 1994-06-30 ВНИИ авиационных материалов Способ восстановления дисков из сплава эи437бувд
SU1547355A1 (en) * 1988-04-18 1994-08-30 B S Lomberg Process for reducing treatment of heat resistant nickel alloy components
JPH11335802A (ja) * 1998-05-26 1999-12-07 Toshiba Corp ガスタービン部品の材料劣化・損傷回復処理方法及び本処理を施したガスタービン部品
EP1605074A1 (en) * 2004-06-11 2005-12-14 Kabushiki Kaisha Toshiba Thermal recovery treatment for a service-degraded component of a gas turbine
RU2459885C1 (ru) * 2011-07-15 2012-08-27 Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" Способ восстановительной термической обработки изделий из жаропрочных никелевых сплавов

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286503A (ja) * 1994-04-20 1995-10-31 Hitachi Ltd 高効率ガスタービン
JP3069580B2 (ja) * 1995-09-08 2000-07-24 科学技術庁金属材料技術研究所長 単結晶材料の再熱処理による余寿命延長方法
JP2000080455A (ja) * 1998-09-03 2000-03-21 Hitachi Ltd ガスタービン動翼及びその再生熱処理法
JP2004012377A (ja) * 2002-06-10 2004-01-15 Toshiba Corp ガスタービン高温部品の歪推定方法および歪推定装置
JP4483474B2 (ja) 2004-08-17 2010-06-16 株式会社Ihi Ni基単結晶超合金材の再生方法
JP4167242B2 (ja) * 2005-04-11 2008-10-15 三菱重工業株式会社 Ni基耐熱合金の性能回復処理方法
US20070267109A1 (en) * 2006-05-17 2007-11-22 General Electric Company High pressure turbine airfoil recovery device and method of heat treatment
JP2010164430A (ja) 2009-01-15 2010-07-29 Toshiba Corp 金属材料のクリープ損傷評価方法及びクリープ損傷評価装置
JP6093567B2 (ja) * 2012-12-26 2017-03-08 中部電力株式会社 ニッケル基超合金の劣化診断方法
CN104878329B (zh) 2015-06-12 2017-11-03 北京科技大学 一种修复dz125合金蠕变损伤的恢复热处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1403652C (ru) * 1986-05-13 1994-06-30 ВНИИ авиационных материалов Способ восстановления дисков из сплава эи437бувд
SU1547355A1 (en) * 1988-04-18 1994-08-30 B S Lomberg Process for reducing treatment of heat resistant nickel alloy components
JPH11335802A (ja) * 1998-05-26 1999-12-07 Toshiba Corp ガスタービン部品の材料劣化・損傷回復処理方法及び本処理を施したガスタービン部品
EP1605074A1 (en) * 2004-06-11 2005-12-14 Kabushiki Kaisha Toshiba Thermal recovery treatment for a service-degraded component of a gas turbine
RU2459885C1 (ru) * 2011-07-15 2012-08-27 Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" Способ восстановительной термической обработки изделий из жаропрочных никелевых сплавов

Also Published As

Publication number Publication date
JP6754682B2 (ja) 2020-09-16
EP3326747B1 (en) 2020-01-08
US20180148819A1 (en) 2018-05-31
CN108118276A (zh) 2018-06-05
KR20180060994A (ko) 2018-06-07
EP3326747A1 (en) 2018-05-30
JP2018087359A (ja) 2018-06-07
US10619233B2 (en) 2020-04-14
KR102033830B1 (ko) 2019-10-17
RU2686745C1 (ru) 2019-04-30

Similar Documents

Publication Publication Date Title
RU2686745C9 (ru) Восстановленный элемент конструкции из сплава на основе никеля и способ изготовления этого элемента
US20190194789A1 (en) Nickel-Based Alloy Regenerated Member and Method for Manufacturing Same
Huang et al. Evaluation of service-induced microstructural damage for directionally solidified turbine blade of aircraft engine
CN112525907B (zh) 一种用于服役燃气轮机高温静止部件材料剩余蠕变寿命评估的方法
EP3642455A2 (en) Life extension of power turbine disks exposed to in-service corrosion damage
CN112307646A (zh) 一种定向合金材料热机械疲劳剩余寿命评估方法
Moverare et al. Thermomechanical fatigue of single-crystal superalloys: influence of composition and microstructure
JP2005539139A (ja) ニッケル超合金のための性質回復方法
JP6093567B2 (ja) ニッケル基超合金の劣化診断方法
Morrissey et al. Fatigue variability of a single crystal superalloy at elevated temperature
JP6485905B2 (ja) 余寿命評価方法
JP2801741B2 (ja) ガスタービン高温部品の損傷診断法
JP2004012377A (ja) ガスタービン高温部品の歪推定方法および歪推定装置
Li et al. Experimental investigation on the creep and low cycle fatigue behaviors of a serviced turbine blade
JP6723174B2 (ja) 破断延性評価方法
JPH08262009A (ja) 高温部材の余寿命評価法
JP2001124763A (ja) ガスタービン高温部品の余寿命診断方法および余寿命診断システム
KR102161543B1 (ko) 초내열 합금 고온 부품의 재생열처리 방법
Gabb et al. Recrystallization of A Shot Peened Single Crystal Nickel-Base Superalloy
Vacchieri et al. Comparison of the Mechanical Behavior and Evaluation of Different Damage Mechanisms in an Equiaxed and a Single Crystal Superalloys Subjected to Creep, LCF and TMF
Kraemer et al. Towards a Better Understanding of Crack Growth in Nickel-Cast Alloys Under Creep-Fatigue and Thermo-Mechanical Fatigue Conditions
Nagumo et al. Creep crack initiation and growth behavior for Ni-base superalloys
Belan et al. The quality assurance of cast and wrought aero jet engine components made from Ni-base superalloys with using of quantitative metallography methods and alloys lifetime prediction
Kazanskii Development of reliability criteria for rotor blades and guide vanes of contemporary gas turbines
Sakaguchi et al. Crystal Plasticity Assessment to Crystallographic Stage I Cracking in a Ni-Based Single Crystal Superalloy

Legal Events

Date Code Title Description
TH4A Reissue of patent specification
TK49 Amendments to publication of information on inventions in english [patent]

Free format text: CORRECTION TO CHAPTER -FG4A- IN JOURNAL 13-2019 FOR INID CODE(S) (54)

PD4A Correction of name of patent owner