RU2685919C9 - Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеобразной эрозии - Google Patents

Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеобразной эрозии Download PDF

Info

Publication number
RU2685919C9
RU2685919C9 RU2018119653A RU2018119653A RU2685919C9 RU 2685919 C9 RU2685919 C9 RU 2685919C9 RU 2018119653 A RU2018119653 A RU 2018119653A RU 2018119653 A RU2018119653 A RU 2018119653A RU 2685919 C9 RU2685919 C9 RU 2685919C9
Authority
RU
Russia
Prior art keywords
titanium
blades
vanadium
coating
ion
Prior art date
Application number
RU2018119653A
Other languages
English (en)
Other versions
RU2685919C1 (ru
Inventor
Аскар Джамилевич Мингажев
Николай Константинович Криони
Илья Тагирович Якупов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority to RU2018119653A priority Critical patent/RU2685919C9/ru
Application granted granted Critical
Publication of RU2685919C1 publication Critical patent/RU2685919C1/ru
Publication of RU2685919C9 publication Critical patent/RU2685919C9/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к способу получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеабразивной эрозии и может быть использовано в авиационном двигателестроении и энергетическом турбостроению. Осуществляют упрочняющую и ионно-имплантационную обработку материала поверхностного слоя лопаток при энергии от 20 до 35 кэВ, дозой от 1,6⋅1017 до 2,0⋅1017 см-2. Затем наносят ионно-плазменное многослойное покрытие с заданным количеством пар слоев в виде слоя титана с ванадием толщиной от 0,15 до 0,25 мкм, и слоя соединений титана с ванадием и азотом толщиной от 1,2 до 2,3 мкм при общей толщине многослойного покрытия от 7,0 до 11,0 мкм. При нанесении покрытия на лопатки моноколесо вращают одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси, при этом обеспечивают ионно-имплантационную обработку всей поверхности лопатки и нанесение покрытия на всю поверхность лопаток. Нанесение титана и ванадия на лопатки производят одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия. 1 з.п. ф-лы.

Description

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера лопаток моноколеса компрессора ГТД из титановых сплавов от эрозионного разрушения при одновременном повышении их выносливости и циклической долговечности.
Известен способ ионно-плазменного нанесения защитных покрытий на детали турбомашин (патент США №9,765,635. МПК F01D 5/14. Erosion and corrosion resistant protective coatings for turbomachinery. Опубл. 2017 г). Покрытие образуется путем конденсации материала при ионной бомбардировке из металло-газообразного плазменного потока. Причем кинетическая энергия ионов осажденных металлов превышает 5 эВ.
Известен также способ вакуумного ионно-плазменного нанесения покрытий на подложку в среде инертного газа, включающий создание разности электрических потенциалов между подложкой и катодом и очистку поверхности подложки потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, причем ионный поток и поток испаряемого материала, идущий от катода к подложке, экранируют, очистку проводят ионами инертного газа, после очистки экраны отводят и покрытие наносят в несколько этапов до получения требуемой толщины (Патент РФ 2192501, С23С 14/34, опубл. 10.11.2002).
Известен также способ нанесения ионно-плазменных покрытий на лопатки турбин, включающий последовательное осаждение в вакууме первого слоя из титана толщиной от 0,5 до 5,0 мкм, затем нанесение второго слоя нитрида титана толщиной 6 мкм (Патент РФ 2165475, МПК С23С 14/16, 30/00, С22С 19/05, 21/04, опубл. 20.04.2001).
Известен также способ нанесения ионно-плазменных покрытий на лопатки турбин, из титановых сплавов (патент РФ №2234556 МПК С23С 14/06, 2004.08.20), включающий последовательное упрочнение поверхности изделия путем ионной имплантации азота и проведение стабилизирующего отжига, и проведение, после ионной имплантации ионно-плазменное нанесение покрытия нитрида титана при токе разряда от 90 до 110 А, напряжении разряда от 50 до 60 В и давлении азота от 10-1 до 4⋅10-1 Па, при этом ионную имплантацию, нанесение покрытия и стабилизирующий отжиг осуществляют в одном вакуумном объеме.
Основным недостатком этих способов является недостаточно высокая эрозионной стойкости поверхности лопатки. Кроме того, при увеличении толщины покрытия (или каждого из слоев покрытия) происходит снижение адгезионной и усталостной прочности деталей с покрытиями, что ухудшает их ресурс и надежность.
Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ нанесения эрозионно-стойких покрытий на лопатки блиска газотурбинного двигателя из титановых сплавов, включающий упрочняющую обработку пера лопатки с последующим нанесением ионно-плазменного многослойного покрытия в виде заданного количества пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом (Патент РФ 2226227, МПК С23С 14/48, опубл. 27.03.2004).
Основным недостатком аналогов и прототипа является невозможность их использования для ионно-имплантационной обработки и нанесения покрытий на лопатки моноколеса в результате образования «мертвых» зон, возникающих из-за затенения лопатками моноколеса друг друга, особенно в случае моноколес с широкохордными лопатками, что не обеспечивает для лопаток моноколес защиту от эрозии при одновременном повышении их выносливости и циклической прочности.
Задачей настоящего изобретения является создание такого многослойного покрытия, которое было бы способно эффективно защищать лопатки моноколес ГТД из титановых сплавов от эрозионного износа в условиях воздействия газовых потоков, содержащих абразивные частицы при одновременном обеспечении их высокой выносливости и циклической прочности.
Техническим результатом заявляемого способа является повышение стойкости лопаток моноколеса компрессора ГТД к эрозионному разрушению при одновременном обеспечении их высокой выносливости и циклической прочности за счет равномерной ионно-имплантационной обработки поверхности поверхности лопатки и равномерного нанесения на них эрозионно-стойкого покрытия.
Технический результат достигается за счет того, что в способе получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пыле абразивной эрозии, включающем упрочняющую и ионно-имплантационную обработку материала поверхностного слоя лопаток с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом, в отличие от прототипа, в процессе нанесения покрытия на лопатки моноколесо вращают одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси с обеспечением ионно-имплантационной обработки всей поверхности лопаток и нанесения покрытия на всю поверхность лопаток моноколеса, причем ионно-имплантационную обработку лопаток моноколеса осуществляют ионами азота энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2, причем в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом используют ванадий, при этом нанесение титана и ванадия на лопатки моноколеса осуществляют одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия, причем слой титана с ванадием наносят толщиной от 0,15 мкм до 0,25 мкм, а слой соединений титана с ванадием и азотом наносят толщиной от 1,2 мкм до 2,3 мкм при общей толщине многослойного покрытия от 7,0 мкм до 11,0 мкм. Кроме того возможно также осуществлять нанесение слоев соединений титана с ванадием осуществляют в режиме ассистирования ионами аргона.
Для оценки эрозионной стойкости лопаток блиска были проведены следующие испытания. На образцы из титановых сплавов марок ВТ6, ВТ8, ВТ8 м, ВТ41, ВТ18у, ВТ31, ВТ9, ВТ22, ВТ25у были нанесены покрытия как по способу-прототипу (патент РФ 2226227, МПК С23С 14/48, опубл. 27.03.2004), согласно приведенным в способе-прототипе условиям и режимам нанесения, так и покрытия по предлагаемому способу.
Режимы нанесения покрытия по предлагаемому способу. Нанесение слоев соединений титана с ванадием осуществляли: с двух, одновременно работающих, протяженных электродуговых испарителей одного для ванадия, другого для титана. Расположение испарителей - периферийное, на цилиндрической стенке камеры установки, напротив друг друга, в зоне расположения лопаток моноколеса. Размеры испарителей 300×800 мм. Моноколесо, при ионно-имплантационной обработке и нанесения покрытия вращалось одновременно вокруг собственной продольной оси и поперечной оси, совпадающей с продольной, вертикально расположенной осью цилиндрической камеры установки, с одновременным совершением колебательных движений. Скорость вращения блиска относительно собственной оси составляла от 6 до 12 об/мин. Колебательные движения составляли по 45° по обе стороны от вертикали. Нанесение слоев соединений титана с ванадием осуществляли в режиме ассистирования ионами аргона, а слоев соединений титана с ванадием и азотом осуществляют в режиме ассистирования ионами азота. Ионно-имплантационную обработку проводили ионами азота. Для ионно-имплантационной обработки использовали протяженный генератор газовой плазмы, выполненный с возможностью обеспечения работы с азотом и имеющим размеры выходной апертуры 100×600 мм. В качестве упрочняющей обработки лопаток применялась обработка микрошариками.
Толщина слоя титана с ванадием: 0,1 мкм - неудовлетворительный результат (Н.Р.); 0,15 мкм - удовлетворительный результат (У.Р.); 0,25 мкм (У.Р.); 0,35 мкм (Н.Р.).
Толщина слоя соединений титана с ванадия и азотом: 0,9 мкм (Н.Р.); 1,2 мкм (У.Р.); 1,5 мкм (У.Р.); 2,3 мкм (У.Р.); 2,6 мкм (Н.Р.).
Общая толщина покрытия: 5,5 мкм (Н.Р.); 7,0 мкм (У.Р.); 9,0 мкм (У.Р.); 11,0 мкм (У.Р.); 13,0 мкм (Н.Р.).
Толщина покрытия, нанесенного по предлагаемому способу составляла от 7,0 мкм до 11,0 мкм, покрытия-прототипа от 0 мкм (в затененных зонах) до 11,0 мкм.
Ионно-имплантационная обработка азотом:
энергия - 18 кэВ (Н.Р.); 20 кэВ (У.Р.); 22 кэВ (У.Р.); 23 кэВ (У.Р.); 25 кэВ (У.Р.); 35 кэВ (У.Р.); 40 кэВ (Н.Р.);
доза - 1,4⋅1017 см-2(Н.Р.); 1,6⋅1017 см-2(У.Р.); 1,8⋅1017 см-2(У.Р.); 2,0⋅1017 см-2 (У.Р.); 2.4⋅1017 см-2 (Н.Р.);
Эрозионная стойкость поверхности образцов исследовалась по методике ЦИАМ (Технический отчет ЦИАМ Экспериментальное исследование износостойкости вакуумных ионно-плазменных покрытий в запыленном потоке воздуха 10790, 1987. - 37 с.) на пескоструйной установке 12Г-53 струйно-эжекторного типа. Для обдува использовался молотый кварцевый песок с плотностью р=2650 кг/м3, твердость HV=12000 МПа. Обдув производился при скорости воздушно-абразивного потока 195-210 м/с, температура потока 265-311 К, давление в приемной камере 0,115-0,122 МПа, время воздействия - 120 с, концентрация абразива в потоке до 2-3 г/м3. Результаты испытания показали, что эрозионная стойкость покрытий, полученных по предлагаемому способу, увеличилась по сравнению с покрытием-прототипом приблизительно в 5…6 раз.
Кроме того, были проведены испытания на выносливость и циклическую долговечность образцов - лопаток, вырезанных из моноколеса после его ионно-плазменной обработки и нанесения покрытий. Испытывались образцы из следующих марок титановых сплавов (ВТ6, ВТ8, ВТ8 м, ВТ41, ВТ18у, ВТ31, ВТ9, ВТ22, ВТ25у) на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (-1) образцов в исходном состоянии (без покрытия) составляет 430-440 МПа, у образцов, упрочненных по способу-прототипу - 430-445 МПа, а по предлагаемому способу - 460-480 МПа.
Таким образом, проведенные сравнительные испытания показали, что применение в способе получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеабразивной эрозии следующих приемов: упрочняющую и ионно-имплантационную обработку материала поверхностного слоя лопаток моноколеса с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом; при нанесении покрытия на лопатки вращение моноколеса одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси, обеспечивающих ионно-имплантационную обработку всей поверхности лопаток и нанесение покрытия на всю поверхность лопаток моноколеса; ионно-имплантационную обработку лопаток моноколеса ионами азота при энергии от 20 кэВ до 35 кэВ, дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2; использование в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом ванадия; нанесение титана и ванадия на лопатки моноколеса одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия; нанесение слоя титана с ванадием толщиной от 0,15 мкм до 0,25 мкм; нанесение слоя соединений титана с ванадием и азотом толщиной от 1,2 мкм до 2,3 мкм; обеспечение общей толщины многослойного покрытия от 7,0 мкм до 11,0 мкм, позволяют достичь технического результата заявляемого изобретения - повысить стойкость лопаток моноколеса компрессора ГТД к эрозионному разрушению при одновременном обеспечении их высокой выносливости и циклической прочности за счет равномерной ионно-имплантационной обработки поверхности поверхности лопатки и равномерного нанесения на них эрозионно-стойкого покрытия.

Claims (2)

1. Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеабразивной эрозии, включающий упрочняющую и ионно-имплантационную обработку материала поверхностного слоя лопаток с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом, отличающийся тем, что в процессе нанесения покрытия на лопатки моноколесо вращают одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси с обеспечением ионно-имплантационной обработки всей поверхности лопаток и нанесения покрытия на всю поверхность лопаток моноколеса, причем ионно-имплантационную обработку лопаток моноколеса осуществляют ионами азота энергией от 20 до 35 кэВ и дозой от 1,6⋅1017 до 2,0⋅1017 см-2, причем в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом используют ванадий, при этом нанесение титана и ванадия на лопатки моноколеса осуществляют одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия, причем слой титана с ванадием наносят толщиной от 0,15 до 0,25 мкм, а слой соединений титана с ванадием и азотом наносят толщиной от 1,2 до 2,3 мкм при общей толщине многослойного покрытия от 7,0 до 11,0 мкм.
2. Способ по п. 1, отличающийся тем, что нанесение слоев соединений титана с ванадием осуществляют в режиме ассистирования ионами аргона, а нанесение слоев соединений титана с ванадием и азотом осуществляют в режиме ассистирования ионами азота.
RU2018119653A 2018-05-28 2018-05-28 Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеобразной эрозии RU2685919C9 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018119653A RU2685919C9 (ru) 2018-05-28 2018-05-28 Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеобразной эрозии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018119653A RU2685919C9 (ru) 2018-05-28 2018-05-28 Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеобразной эрозии

Publications (2)

Publication Number Publication Date
RU2685919C1 RU2685919C1 (ru) 2019-04-23
RU2685919C9 true RU2685919C9 (ru) 2019-07-05

Family

ID=66314427

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018119653A RU2685919C9 (ru) 2018-05-28 2018-05-28 Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеобразной эрозии

Country Status (1)

Country Link
RU (1) RU2685919C9 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2226227C1 (ru) * 2002-08-05 2004-03-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты стальных деталей машин от солевой коррозии, пылевой и капельно-ударной эрозии
US20090004364A1 (en) * 2004-01-21 2009-01-01 Terry Hollis Method For Protecting New/Used Engine Parts
WO2010044936A1 (en) * 2008-08-29 2010-04-22 General Electric Company Erosion-and impact-resistant coatings
RU2552202C2 (ru) * 2013-08-05 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2552201C2 (ru) * 2013-08-05 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2226227C1 (ru) * 2002-08-05 2004-03-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты стальных деталей машин от солевой коррозии, пылевой и капельно-ударной эрозии
US20090004364A1 (en) * 2004-01-21 2009-01-01 Terry Hollis Method For Protecting New/Used Engine Parts
WO2010044936A1 (en) * 2008-08-29 2010-04-22 General Electric Company Erosion-and impact-resistant coatings
RU2552202C2 (ru) * 2013-08-05 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2552201C2 (ru) * 2013-08-05 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов

Also Published As

Publication number Publication date
RU2685919C1 (ru) 2019-04-23

Similar Documents

Publication Publication Date Title
RU2161661C1 (ru) Способ нанесения износостойких покрытий и повышения долговечности деталей
RU2390578C2 (ru) Способ получения эрозионно стойкого покрытия, содержащего нанослои, для лопаток турбомашин из титановых сплавов
RU2552202C2 (ru) Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
US20110117276A1 (en) Multilayer nitride-containing coatings
RU2552201C2 (ru) Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов
RU2479667C2 (ru) Способ ионно-имплантационной обработки деталей из титановых сплавов
Kablov et al. Erosion-resistant coatings for gas turbine engine compressor blades
Chakravarty et al. The effect of surface modification on fretting fatigue in Ti alloy turbine components
RU2226227C1 (ru) Способ защиты стальных деталей машин от солевой коррозии, пылевой и капельно-ударной эрозии
RU2655563C1 (ru) Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2496910C2 (ru) Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе
RU2478140C2 (ru) Способ получения ионно-плазменного покрытия на лопатках компрессора из титановых сплавов
RU2685919C9 (ru) Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеобразной эрозии
RU2682265C1 (ru) Способ упрочнения лопаток моноколеса из титанового сплава
Immarigeon et al. Erosion testing of coatings for aero engine compressor components
RU2677041C1 (ru) Способ нанесения защитного многослойного покрытия на лопатки блиска газотурбинного двигателя из титанового сплава от пылеабразивной эрозии
RU2685896C1 (ru) Способ нанесения защитного многослойного покрытия на лопатки моноколеса из титанового сплава
RU2388685C1 (ru) Способ получения ионно-плазменного нанослойного покрытия на лопатках турбомашин из титановых сплавов
RU2693414C1 (ru) Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2308537C1 (ru) Способ обработки поверхности металлического изделия
RU2413035C2 (ru) Способ получения ионно-плазменного нанослойного покрытия на лопатках турбомашин из легированных сталей
RU2768945C1 (ru) Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
Shulov et al. Application of high-current pulsed electron beams for the restoration of operational properties of the blades of gas-turbine engines
RU2693227C1 (ru) Способ нанесения эрозионностойких покрытий на лопатки блиска газотурбинного двигателя из титановых сплавов
RU2806569C1 (ru) Способ защиты пера лопатки компрессора газотурбинного двигателя из титановых сплавов от газоабразивного износа

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: CORRECTION TO CHAPTER -FG4A- IN JOURNAL 12-2019 FOR INID CODE(S) (54)

TH4A Reissue of patent specification
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200529