RU2682265C1 - Способ упрочнения лопаток моноколеса из титанового сплава - Google Patents

Способ упрочнения лопаток моноколеса из титанового сплава Download PDF

Info

Publication number
RU2682265C1
RU2682265C1 RU2018119654A RU2018119654A RU2682265C1 RU 2682265 C1 RU2682265 C1 RU 2682265C1 RU 2018119654 A RU2018119654 A RU 2018119654A RU 2018119654 A RU2018119654 A RU 2018119654A RU 2682265 C1 RU2682265 C1 RU 2682265C1
Authority
RU
Russia
Prior art keywords
titanium
vanadium
blades
monowheel
carried out
Prior art date
Application number
RU2018119654A
Other languages
English (en)
Inventor
Аскар Джамилевич Мингажев
Николай Константинович Криони
Илья Тагирович Якупов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority to RU2018119654A priority Critical patent/RU2682265C1/ru
Application granted granted Critical
Publication of RU2682265C1 publication Critical patent/RU2682265C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к способу упрочнения лопаток моноколеса из титанового сплава. Способ включает ионно-имплантационную обработку материала поверхностного слоя лопаток энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅10смдо 2,0⋅10смс последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев. Слои титана с ванадием наносят толщиной от 0,15 мкм до 0,25 мкм, слои соединений титана с ванадием и азотом - толщиной от 1,2 мкм до 2,3 мкм при общей толщине многослойного покрытия от 7,0 мкм до 11,0 мкм. Перед ионно-имплантационной обработкой проводят электролитно-плазменное полирование при напряжении от 280 В до 300 В, в водном растворе с содержанием от 5 до 8 вес. % гидроксиламина солянокислого и KF от 0,7 до 0,8 вес. % При нанесении покрытия моноколесо вращают одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси. Нанесение титана и ванадия на лопатки производят одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия. В результате получают моноколесо с защитой пера лопаток от эрозионного разрушения при одновременном повышении их выносливости и циклической долговечности. 4 з.п. ф-лы.

Description

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера лопаток моноколеса компрессора ГТД из титановых сплавов от эрозионного разрушенияпри одновременном повышении их выносливости и циклической долговечности.
Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК В23Н 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91.]
Известные способы электрохимического полирования не позволяют производить качественное полирование поверхности детелей из титановых сплавов.
Известен также способ электролитно-плазменного полирования деталей из титановых сплавов [Патент РФ №2373306, МПК C25F 3/16. Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов. Бюл. №32, 2009], включающий погружение детали в электролит, содержащий окислитель, фторсодержащее соединение и воду, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала.
Однако известный способ [Патент РФ №2373306, МПК C25F 3/16] является многостадийным, что приводит с одной стороны к возрастанию сложности процесса обработки деталей, снижению качества и надежности процесса обработки из-за необходимости обеспечения большего количества параметров процесса и их соотношений, а также к повышению его трудоемкости.
Известен способ ионно-плазменного нанесения защитных покрытий на детали турбомашин (патент США №9,765,635. МПК F01D 5/14. Erosion and corrosion resistant protective coatings for turbomachinery. Опубл. 2017 г). Покрытие образуется путем конденсации материала при ионной бомбардировке из металло-газообразного плазменного потока. Причем кинетическая энергия ионов осажденных металлов превышает 5 эВ.
Известен также способ вакуумного ионно-плазменного нанесения покрытий на подложку в среде инертного газа, включающий создание разности электрических потенциалов между подложкой и катодом и очистку поверхности подложки потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, причем ионный поток и поток испаряемого материала, идущий от катода к подложке, экранируют, очистку проводят ионами инертного газа, после очистки экраны отводят и покрытие наносят в несколько этапов до получения требуемой толщины (Патент РФ 2192501, С23С 14/34, опубл. 10.11.2002).
Известен также способ нанесения ионно-плазменных покрытий на лопатки турбин, включающий последовательное осаждение в вакууме первого слоя из титана толщиной от 0,5 до 5,0 мкм, затем нанесение второго слоя нитрида титана толщиной 6 мкм (Патент РФ 2165475, МПК С23С 14/16, 30/00, С22С 19/05, 21/04, опубл. 20.04.2001).
Известен также способ нанесения ионно-плазменных покрытий на лопатки турбин, из титановых сплавов (патент РФ №2234556 МПК С23С 14/06, 2004.08.20), включающий последовательное упрочнение поверхности изделия путем ионной имплантации азота и проведение стабилизирующего отжига, и проведение, после ионной имплантации ионно-плазменное нанесение покрытия нитрида титана при токе разряда от 90 до 110 А, напряжении разряда от 50 до 60 В и давлении азота от 10-1 до 4⋅10-1 Па, при этом ионную имплантацию, нанесение покрытия и стабилизирующий отжиг осуществляют в одном вакуумном объеме.
Основным недостатком этих способов является недостаточно высокая эрозионной стойкости поверхности лопатки. Кроме того, при увеличении толщины покрытия (или каждого из слоев покрытия) происходит снижение адгезионной и усталостной прочности деталей с покрытиями, что ухудшает их ресурс и надежность.
Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ нанесения эрозионностойких покрытий на лопатки блиска газотурбинного двигателя из титановых сплавов, включающий упрочняющую обработку пера лопатки с последующим нанесением ионно-плазменного многослойного покрытия в виде заданного количества пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом (Патент РФ 2226227, МПК С23С 14/48, опубл. 27.03.2004).
Основным недостатком аналогов и прототипа является невозможность их использования для ионно-импалнтационной обработки и нанесения покрытий на лопатки моноколеса в результате образования «мертвых» зон, возникающих из-за затенения лопатками моноколеса друг друга, особенно в случае моноколес с широкохордными лопатками, что не обеспечивает для лопаток моноколес защиту от эрозии при одновременном повышении их выносливости и циклической прочности.
Техническим результатом заявляемого способа являетсяповышение стойкости лопатокмоноколеса компрессора ГТД к эрозионному разрушению при одновременном обеспечении их высокой выносливости и циклической прочностиза счет полирования поверхности пера лопатки, равномерной его ионно-имплантационной обработки иравномерного нанесения на них эрозионностойкого покрытия.
Технический результат достигается за счет того, что в способеупрочнениялопаток моноколеса из титанового сплава, включающем упрочняющую и ионно-имплантационную обработку материала поверхностного слоя лопаток с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом, в отличие от прототипа, перед ионно-имплантационной обработкой проводят электролитно-плазменное полирование поверхности блиска путем приложения к нему электрического потенциала от 280 В до 300 В, причем в качестве электролита используют водный раствор с содержанием от 5 до 8 вес. % гидроксиламина солянокислого и содержанием KF от 0,7 до 0,8 вес. %, а при нанесении покрытия на лопатки, моноколесо вращают одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной осис отклонением по обе стороны от вертикали на угол 45°, причем ионно-имплантационную обработку лопаток моноколеса проводят ионами азота при энергии от 20 кэВ до 35 кэВ, дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2, а в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом используют ванадий, причем нанесение титана и ванадия на лопатки моноколеса производят одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия, причем слой титана с ванадием наносят толщиной от 0,15 мкм до 0,25 мкм, а слой соединений титана с ванадием и азотом наносят толщиной от 1,2 мкм до 2,3 мкм при общей толщине многослойного покрытия от 7,0 мкм до 11,0 мкм, а при нанесении покрытия используют соотношение титана к ванадию, вес. %: V от 35 до 45, остальное - Ti.
Кроме того возможно также осуществлять нанесение слоев соединений титана с ванадием осуществляют в режиме ассистирования ионами аргона, а полирование ведут при температуре от 70°С до 90°С, при величине тока от 0,4 А/см2 до 0,7 А/см2 в течение от 2,0 до 4,5 минут.
Для оценки эрозионной стойкости лопаток блиска были проведены следующие испытания. На образцы из титановых сплавов марок ВТ6, ВТ8, ВТ8 м, ВТ41, ВТ18у, ВТ31, ВТ9, ВТ22, ВТ25у были нанесены покрытия как по способу-прототипу (патент РФ 2226227, МПК С23С 14/48, опубл. 27.03.2004), согласно приведенным в способе-прототипе условиям и режимам нанесения, так и покрытия по предлагаемому способу.
Режимы нанесения покрытия по предлагаемому способу.
Нанесение слоев соединений титана с ванадием осуществляли: с двух, одновременно работающих, протяженных электродуговых испарителей одного для ванадия, другого для титана. Расположение испарителей - периферийное, на цилиндрической стенке камеры установки, напротив друг друга, в зоне расположения лопаток моноколеса. Размеры испарителей 300×800 мм. Моноколесо, при ионно-имплантационной обработке и нанесения покрытия вращалосьодновременно вокруг собственной продольной оси и поперечной оси, совпадающей с продольной, вертикально расположенной осью цилиндрической камеры установки, с одновременным совершением колебательных движений. Скорость вращения блиска относительно собственной оси составляла от 6 до 12 об/мин. Колебательные движения составляли по 45°по обе стороны от вертикали. Нанесение слоев соединений титана с ванадием осуществляли в режиме ассистирования ионами аргона, а слоев соединений титана с ванадием и азотом осуществляют в режиме ассистирования ионами азота. Ионно-имплантационную обработку проводили ионами азота. Для ионно-имплантационной обработки использовали протяженный генератор газовой плазмы, выполненный с возможностью обеспечения работы с азотом и имеющим размеры выходной апертуры 100×6 00 мм. Перед электролитно-плазменным полированием, как один из вариантов способа применялась обработка лопаток микрошариками.
Электролитно-плазменное полирование:
Электрический потенциал: 270 В - Н.Р., 280 В - У.Р., 290 В - У.Р., 300 В - У.Р., 320 В -Н.Р.
Электролит: водный раствор с содержанием от 5 до 8 вес. % гидроксиламина солянокислогои содержанием KF от 0,7 до 0,8 вес. %.
Температура электролита: от 70°С до 90°С.
Величина электрического тока: от 0,4 А/см2 до 0,7 А/см2.
Время: 2,0-4,5 минут.
Шероховатость исходной полируемой поверхности не более Ra 0,78…0,82 мкм.
Толщина слоя титана с ванадием: 0,1 мкм - неудовлеворительный результат (Н.Р.); 0,15 мкм - удовлетворительный результат (У.Р.); 0,25 мкм (У.Р.); 0,35 мкм (Н.Р.).
Толщина слоя соединений титана с ванадия и азотом: 0,9 мкм (Н.Р.); 1,2 мкм (У.Р.); 1,5 мкм (У.Р.); 2,3 мкм (У.Р.); 2,6 мкм (Н.Р.).
Общая толщина покрытия: 5,5 мкм (Н.Р.); 7,0 мкм (У.Р.); 9,0 мкм (У.Р.); 11,0 мкм (У.Р.); 13,0 мкм (Н.Р.).
Толщина покрытия, нанесенного по предлагаемому способу составляла от 7,0 мкм до 11,0 мкм, покрытия-прототипа от 0 мкм (в затененных зонах) до 11,0 мкм.
Соотношение титана к ванадию, вес. %: V, остальное - Ti,: содержание V, вес. %: 30% - (Н.Р.); 35% - (У.Р.); 40% - (У.Р.); 45% - (У.Р.); 50% -(Н.Р.).
Ионно-имплантационная обработка азотом:
энергия - 18 кэВ (Н.Р.); 20 кэВ (У.Р.); 22 кэВ (У.Р.); 23 кэВ (У.Р.); 25 кэВ (У.Р.); 35 кэВ (У.Р.); 40 кэВ (Н.Р.);
доза - 1,4⋅1017 см-2 (Н.Р.); 1,6⋅1017 см-2 (У.Р.); 1,8⋅1017 см-2 (У.Р.); 2,0⋅1017 см-2 (У.Р.); 2.4⋅1017 см-2 (Н.Р.);
Эрозионная стойкость поверхности образцов исследовалась по методике ЦИАМ (Технический отчет ЦИАМ Экспериментальное исследование износостойкости вакуумных ионно-плазменных покрытий в запыленном потоке воздуха 10790, 1987. - 37 с.) на пескоструйной установке 12Г-53 струйно-эжекторного типа. Для обдува использовался молотый кварцевый песок с плотностью р=2650 кг/м3, твердость HV=12000 МПа. Обдув производился при скорости воздушно-абразивного потока 195-210 м/с, температура потока 265-311 К, давление в приемной камере 0,115-0,122 МПа, время воздействия - 120 с, концентрация абразива в потоке до 2-3 г/м3. Результаты испытания показали, что эрозионная стойкость покрытий, полученных по предлагаемому способу, увеличилась по сравнению с покрытием-прототипом приблизительно в 5…6 раз.
Кроме того, были проведены испытания на выносливость и циклическую долговечность образцов - лопаток, вырезанных из моноколеса после его ионно-плазменной обработки и нанесения покрытий. Испытывались образцы из следующих марок титановых сплавов (ВТ6, ВТ8, ВТ8 м, ВТ41, ВТ18у, ВТ31, ВТ9, ВТ22, ВТ25у) на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (-1) образцов в исходном состоянии (без покрытия) составляет 430-440 МПа, у образцов, упрочненных по способу-прототипу - 430-445 МПа, а по предлагаемому способу - 470-485 МПа.
Таким образом, проведенные сравнительные испытания показали, что применение в способе нанесения защитных покрытий на лопатки моноколеса из титановых сплавов следующих приемов: ионно-имплантационную обработку материала поверхностного слоя лопаток моноколеса с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом; перед ионно-имплантационной обработкой проводят электролитно-плазменное полирование поверхности блиска путем приложения к нему электрического потенциала от 280 В до 300 В, причем в качестве электролита используют водный раствор с содержанием от 5 до 8 вес. % гидроксиламина солянокислого и содержанием KF от 0,7 до 0,8 вес. %; при нанесении покрытия на лопатки производят вращение моноколеса одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси, обеспечивающих ионно-имплантационную обработку всей поверхности лопаток и нанесение покрытия на всю поверхность лопаток моноколеса; ионно-имплантационную обработку лопаток моноколеса ионами азота при энергии от 20 кэВ до 35 кэВ, дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2; использование в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом ванадия; нанесение титана и ванадия на лопатки моноколеса одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия; нанесение слоя титана с ванадием толщиной от 0,15 мкм до 0,25 мкм; нанесение слоя соединений титана с ванадием и азотом толщиной от 1,2 мкм до 2,3 мкм; обеспечение общей толщины многослойного покрытия от 7,0 мкм до 11,0 мкм, позволяют достичь технического результата заявляемого изобретения - повысить стойкость лопаток моноколеса компрессора ГТД к эрозионному разрушению при одновременном обеспечении их высокой выносливости и циклической прочности за счет равномерной ионно-имплантационной обработки поверхности поверхности лопатки и равномерного нанесения на них эрозионностойкого покрытия.

Claims (5)

1. Способ упрочнения лопаток моноколеса из титанового сплава, включающий ионно-имплантационную обработку материала поверхностного слоя лопаток с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом, отличающийся тем, что перед ионно-имплантационной обработкой осуществляют электролитно-плазменное полирование поверхности моноколеса путем приложения к нему электрического потенциала от 280 В до 300 В, причем в качестве электролита используют водный раствор с содержанием от 5 до 8 вес. % гидроксиламина солянокислого и содержанием KF от 0,7 до 0,8 вес. %, при этом нанесение покрытия осуществляют с вращением моноколеса одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси с отклонением по обе стороны от вертикали на угол 45°, причем ионно-имплантационную обработку лопаток моноколеса осуществляют ионами азота с энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2, а в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом используют ванадий, причем нанесение титана и ванадия на лопатки моноколеса производят одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия, причем слой титана с ванадием наносят толщиной от 0,15 мкм до 0,25 мкм, а слой соединений титана с ванадием и азотом наносят толщиной от 1,2 мкм до 2,3 мкм при общей толщине многослойного покрытия от 7,0 мкм до 11,0 мкм, при этом покрытие наносят с отношением титана к ванадию, вес. %: V от 35 до 45, остальное Ti.
2. Способ по п. 1, отличающийся тем, что нанесение слоев соединений титана с ванадием осуществляют в режиме ассистирования ионами аргона, а слоев соединений титана с ванадием и азотом осуществляют в режиме ассистирования ионами азота.
3. Способ по п. 1, отличающийся тем, что упомянутое полирование осуществляют при температуре от 70°С до 90°С и величине тока от 0,4 А/см2 до 0,7 А/см2 в течение от 2,0 до 4,5 мин.
4. Способ по п. 2, отличающийся тем, что упомянутое полирование осуществляют при температуре от 70°С до 90°С и величине тока от 0,4 А/см2 до 0,7 А/см2 в течение от 2,0 до 4,5 мин.
5. Способ по любому из пп. 1-4, отличающийся тем, что перед электролитно-плазменным полированием проводят обработку лопаток микрошариками.
RU2018119654A 2018-05-28 2018-05-28 Способ упрочнения лопаток моноколеса из титанового сплава RU2682265C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018119654A RU2682265C1 (ru) 2018-05-28 2018-05-28 Способ упрочнения лопаток моноколеса из титанового сплава

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018119654A RU2682265C1 (ru) 2018-05-28 2018-05-28 Способ упрочнения лопаток моноколеса из титанового сплава

Publications (1)

Publication Number Publication Date
RU2682265C1 true RU2682265C1 (ru) 2019-03-18

Family

ID=65805958

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018119654A RU2682265C1 (ru) 2018-05-28 2018-05-28 Способ упрочнения лопаток моноколеса из титанового сплава

Country Status (1)

Country Link
RU (1) RU2682265C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768945C1 (ru) * 2021-10-27 2022-03-25 Общество с ограниченной ответственностью Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2226227C1 (ru) * 2002-08-05 2004-03-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты стальных деталей машин от солевой коррозии, пылевой и капельно-ударной эрозии
US20090004364A1 (en) * 2004-01-21 2009-01-01 Terry Hollis Method For Protecting New/Used Engine Parts
WO2010044936A1 (en) * 2008-08-29 2010-04-22 General Electric Company Erosion-and impact-resistant coatings
RU2552201C2 (ru) * 2013-08-05 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов
RU2552202C2 (ru) * 2013-08-05 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2226227C1 (ru) * 2002-08-05 2004-03-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты стальных деталей машин от солевой коррозии, пылевой и капельно-ударной эрозии
US20090004364A1 (en) * 2004-01-21 2009-01-01 Terry Hollis Method For Protecting New/Used Engine Parts
WO2010044936A1 (en) * 2008-08-29 2010-04-22 General Electric Company Erosion-and impact-resistant coatings
RU2552201C2 (ru) * 2013-08-05 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов
RU2552202C2 (ru) * 2013-08-05 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768945C1 (ru) * 2021-10-27 2022-03-25 Общество с ограниченной ответственностью Научно-производственное предприятие "Уралавиаспецтехнология" Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Similar Documents

Publication Publication Date Title
RU2390578C2 (ru) Способ получения эрозионно стойкого покрытия, содержащего нанослои, для лопаток турбомашин из титановых сплавов
RU2552202C2 (ru) Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2430992C2 (ru) Способ нанесения износостойких покрытий на лопатки компрессора гтд
RU2552201C2 (ru) Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов
RU2479667C2 (ru) Способ ионно-имплантационной обработки деталей из титановых сплавов
RU2655563C1 (ru) Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2585599C1 (ru) Способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии
RU2682265C1 (ru) Способ упрочнения лопаток моноколеса из титанового сплава
RU2496910C2 (ru) Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе
RU2226227C1 (ru) Способ защиты стальных деталей машин от солевой коррозии, пылевой и капельно-ударной эрозии
RU2478140C2 (ru) Способ получения ионно-плазменного покрытия на лопатках компрессора из титановых сплавов
JP2009102696A (ja) Ti−Al系合金の表面処理方法およびそれによって得られたTi−Al系合金
RU2693414C1 (ru) Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2308537C1 (ru) Способ обработки поверхности металлического изделия
RU2533223C1 (ru) Способ обработки лопатки газотурбинного двигателя
RU2685919C1 (ru) Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеобразной эрозиии
RU2677041C1 (ru) Способ нанесения защитного многослойного покрытия на лопатки блиска газотурбинного двигателя из титанового сплава от пылеабразивной эрозии
RU2388685C1 (ru) Способ получения ионно-плазменного нанослойного покрытия на лопатках турбомашин из титановых сплавов
RU2768945C1 (ru) Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2706263C1 (ru) Способ электролитно-плазменного полирования изделий из титановых и железохромоникелевых сплавов
RU2685896C1 (ru) Способ нанесения защитного многослойного покрытия на лопатки моноколеса из титанового сплава
Shulov et al. Application of high-current pulsed electron beams for the restoration of operational properties of the blades of gas-turbine engines
RU2806569C1 (ru) Способ защиты пера лопатки компрессора газотурбинного двигателя из титановых сплавов от газоабразивного износа
CN108588636A (zh) 一种提高脆性材料机械加工表面完整性的方法
RU2769799C1 (ru) Способ защиты лопаток газотурбинного двигателя из титановых сплавов с ультрамелкозернистой структурой от пылеабразивной эрозии

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200529