RU2161661C1 - Способ нанесения износостойких покрытий и повышения долговечности деталей - Google Patents

Способ нанесения износостойких покрытий и повышения долговечности деталей Download PDF

Info

Publication number
RU2161661C1
RU2161661C1 RU99118131/02A RU99118131A RU2161661C1 RU 2161661 C1 RU2161661 C1 RU 2161661C1 RU 99118131/02 A RU99118131/02 A RU 99118131/02A RU 99118131 A RU99118131 A RU 99118131A RU 2161661 C1 RU2161661 C1 RU 2161661C1
Authority
RU
Russia
Prior art keywords
coating
layers
ion
deposition
layer
Prior art date
Application number
RU99118131/02A
Other languages
English (en)
Inventor
А.Н. Падеров
Ю.Г. Векслер
Original Assignee
Падеров Анатолий Николаевич
Векслер Юрий Генрихович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Падеров Анатолий Николаевич, Векслер Юрий Генрихович filed Critical Падеров Анатолий Николаевич
Priority to RU99118131/02A priority Critical patent/RU2161661C1/ru
Priority to EA200100177A priority patent/EA002682B1/ru
Priority to CA2332856A priority patent/CA2332856C/en
Priority to PCT/RU1999/000336 priority patent/WO2001012872A1/ru
Priority to US09/700,473 priority patent/US6797335B1/en
Application granted granted Critical
Publication of RU2161661C1 publication Critical patent/RU2161661C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к нанесению покрытий на рабочие поверхности деталей, преимущественно лопаток компрессоров газовых турбин. Способ включает ионную очистку поверхности подложки, нанесение не менее чем трехслойного покрытия, первый слой получают в разряде нейтрального газа из одного или смеси переходных металлов IVA - VIA групп, второй - осаждением указанных металлов в смеси нейтрального и реакционных газов, а третий слой - осаждением в смеси нейтральных и реакционных газов нитридов, или карбидов, или боридов или их смесей, толщины слоев находятся в соотношении (0,02-5,0): (0,04-10): (0,1-12,5) мк, причем один или несколько слоев подвергают ионной имплантации аргоном, азотом, углеродом или бором в процессе осаждения или после окончания процесса осаждения, после нанесения покрытия проводят виброобработку микрошариками. Изобретение обеспечивает создание покрытия с высоким сопротивлением износу, коррозии при сохранении усталостных свойств деталей. 5 з. п. ф-лы, 1 табл., 5 ил.

Description

Настоящее изобретение относится к области металлургии и машиностроения, а именно к разработке способов повышения долговечности и надежности деталей машин, в частности к лопаткам компрессоров газовых турбин авиационных двигателей путем нанесения покрытий на металлические поверхности.
Самолеты и вертолеты с газотурбинными двигателями часто эксплуатируются в условиях значительной запыленности воздушного потока, а также высокой влажности морской среды с агрессивными компонентами коррозионной активности. Такие условия работы приводят к воздушно-абразивной эрозии и коррозии деталей авиадвигателей, особенно лопаток компрессоров. Происходит изменение геометрических размеров лопаток, снижение эксплуатационных характеристик, потеря мощности, увеличение расхода топлива и значительный рост расходов на техническое обслуживание и ремонт двигателей. Применение пылезащитных устройств для предотвращения таких процессов недостаточно эффективно.
Изношенные лопатки обычно восстанавливаются путем полировки кромки профиля, или заменяются новыми. Так как лопатки компрессоров изготавливают из сплавов на основе титана или высоколегированных сталей, которые имеют высокую стоимость и трудно обрабатываются, то ремонт двигателей становится очень дорогим.
Известен способ осаждения тонких пленок CNx с имплантацией ионов азота из плазмы (Патент США N 5580429 от 03.12.96). В нем описан вакуумный дуговой источник с системой плазменно-ионной имплантации для нанесения тонких покрытий на подложки. Как катодные, так и анодные вакуумные дуговые источники (CAVAD) используются для создания плазмы твердых материалов катода или анода в катодной или анодной дуге, соответственно. Газы, например водород или азот, могут находиться в пленках при создании фоновой плазмы (плазмы заднего плана) требуемого газа с использованием энергии RF, термоионной эмиссии или последующей ионизации газа, проходящего через дугу или вокруг субстрата. Применяются высокие отрицательные импульсы для извлечения ионов и обеспечения их необходимой энергией при образовании тонкой пленки с целью получения требуемого покрытия с переменным соотношением углерод/азот.
Известен также способ нанесения металлосодержащих покрытий на крупноразмерные подложки в вакууме (Патент РФ N 2062818, БИ N 18 от 27.06.96), включающий очистку подложки пучком ионов инертного газа и нанесение металлосодержащего покрытия на подложку катодным распылением в разряде инертного газа при одновременной бомбардировке подложки пучком ионов инертного газа, который формируется ускорителем с замкнутым дрейфом электронов и энергии ионов инертного газа 50-150 эВ.
Однако в патентах США N 5580429 и РФ N 2062818 не рассматриваются вопросы долговечности и износостойкости деталей, и особенно поверхности лопаток авиационных двигателей, к которым предъявляется определенный комплекс различных требований по износостойкости, коррозионной стойкости, сохранению уровня механических и особенно усталостных свойств.
Наиболее близким к предложенному является способ нанесения износостойких покрытий, включающий нанесение на подложку катодным распылением чередующихся металлических слоев в среде инертного газа и керамических слоев в среде реакционного газа. Два материала, выбранные для этих слоев, имеют дополняющие друг друга характеристики сопротивления износу - один из них пластичен, а другой тверд и хрупок (Патент США N 4904542 от 27.02.90, пересмотренный под N Re 34173, 02.02.93).
Однако в указанном патенте не затрагиваются вопросы повышения долговечности покрытия за счет увеличения адгезионных свойств, повышения сопротивления эрозии и коррозии при сохранении механических свойств материала основы деталей, главным образом усталостных характеристик.
Техническим результатом изобретения является создание такого способа нанесения покрытия на металлические поверхности, в частности на детали паровых и газовых, а более конкретно - на лопатки компрессора авиационного двигателя, который обеспечивал бы повышенное сопротивление эрозии, коррозии и сохранял достаточный уровень механических свойств, а точнее усталости.
Указанный технический результат достигается тем, что в способе нанесения износостойких покрытий, включающем нанесение на металлическую подложку катодным распылением чередующихся металлических слоев в среде инертного газа и керамических слоев в среде реакционного газа, перед нанесением покрытия проводят ионную очистку поверхности подложки, покрытие нанося не менее чем трехслойным, первый слой получают в разряде нейтрального газа из одного или смеси переходных металлов IVA - VIA групп, второй - осаждением указанных металлов в смеси нейтрального и реакционных газов, а третий слой - осаждением в смеси нейтральных и реакционных газов нитридов, или карбидов, или боридов указанных металлов или их смесей, толщины слоев находятся в соотношении (0,02-5,0): (0,04-10): (0,1-12,5) мк, причем один или несколько слоев подвергают ионной имплантации аргоном, азотом, углеродом или бором в процессе осаждения, или после окончания процесса осаждения, а после нанесения покрытия проводят виброобработку микрошариками.
Для улучшения адгезии покрытия и основы на подложку может быть нанесен микрослой из скандия, иттрия или редкоземельных металлов толщиной 0,02-0,08 мк. Для получения требуемой толщины покрытия количество нанесенных слоев может составлять 3-500, преимущественно 3-24, а толщина первых трех слоев находится в соотношении 1,0:2,0:2,5. Ионную имплантацию проводят при ускоряющих напряжениях 10-50 кВ, дозах облучения 1014 - 1018 ион/см2 и энергии ионов 5·103 - 1·105 эВ, виброобработку проводят микрошариками диаметром 0,5-5 мм при амплитуде вибрации 2-8 мм не позднее, чем через 10-30 мин после окончания нанесения покрытия, а в качестве реакционных газов используют азот, метан, диборан или их смеси.
Таким образом, предложенный способ предусматривает нанесение как минимум трех функциональных микрослоев:
1 - демпфирующий и коррозионно-стойкий микрослой обеспечивает релаксацию напряжений между твердыми слоями, возникающих при эрозионном воздействии, и сплошность от проникновения коррозионно-активных сред и представляет собой один из переходных металлов IVA - VIA групп или сплавы замещения на основе этих металлов, осаждается в атмосфере нейтрального газа и имеет толщину порядка 0,02-5 мк;
2 - армирующий слой, который обеспечивает плавный переход к высокотвердому слою и состоит, в основном, из твердых растворов внедрения азота, бора, углерода на базе переходных металлов первого слоя, осаждается в атмосфере реакционного газа (или азота, или диборана, или метана, или их смеси) и нейтрального газа, и имеет толщину 0,04-10 мк;
3 - износостойкий, высокотвердый микрослой, обеспечивающий сопротивление абразивным частицам при эрозии, состоит из фаз внедрения типа нитридов, боридов, карбидов или их сложных смесей на основе указанных переходных металлов, осаждается в атмосфере соответствующих реакционных газов и имеет толщину 0,1-12,5 мк.
Покрытие может содержать дополнительный слой, нанесенный непосредственно на подложку, обеспечивающий прочную связь покрытия с поверхностью детали или микрослоев.
Осаждение каждого из указанных выше функциональных слоев обеспечивается изменением парциального давления, состава газа и временем осаждения в заданных условиях.
Одновременно проводится ионная имплантация одного или нескольких микрослоев неметаллическими атомами - аргоном, азотом, углеродом или бором, причем имплантация должна осуществляться непосредственно в камере ионно-плазменной установки одновременно с процессом осаждения слоя. Имплантацию проводят ионами с энергией 5·103-1·105 эВ и дозой облучения (флюенсы) 5·1013-1·1018 ион/см2.
Энергия имплантируемых ионов значительно выше энергии ионов, образуемых при нанесении покрытия в камере ионно-плазменной установки. Эти ионы глубоко проникают в кристаллическую решетку осаждаемых металлов или фаз внедрения, вызывают изменение концентрации элементов внедрения, образование твердых растворов, сверхструктурных, нестехиометрических соединений и изменение субмикроструктуры и напряженного состояния микрослоев, повышают адгезионную прочность и сопротивление многослойного покрытия эрозионному износу. При ионной имплантации могут возникать местные пики высоких температур и мгновенное охлаждение этих участков поверхности, что также приводит к повышению прочностных и трибологических свойств осажденных микрослоев, подвергнутых имплантации. Пример фрагментов рентгеновских дифрактограмм, полученных после нанесения покрытий с различными видами имплантации в камере ионно-плазменной установки приведен на фиг. 1.
Для уменьшения риска перегрева или коробления детали при ионно-плазменном осаждении покрытий и ионной имплантации, особенно лопаток компрессоров авиадвигателей, необходимо использовать источник высокоэнергетических пульсирующих ионов. Ионы, полученные в таком источнике, имеют энергию, достаточно высокую для имплантации в кристаллическую решетку осаждаемой фазы, а также для создания высокопрочных соединений. Одновременно мгновенное охлаждение после импульса предотвращает перегрев основного материала детали, сопровождается резким охлаждением облучаемого участка поверхности, вызывает измельчение субструктуры, образование нанокристаллических или аморфизированных структур микрослоев.
Ионная имплантация увеличивает не только сопротивление эрозии и коррозии, но также повышает усталостную прочность деталей, особенно при больших циклах нагружения, т.е. в условиях многоцикловой усталости. Это объясняется возникновением сжимающих напряжений на межфазных границах и устойчивых дефектов структуры, связанных с образованием высокодисперсных преципитатов-предвыделений многокомпонентных соединений переменной валентности металлов с неметаллами.
В то же время такие сложные процессы осаждения многослойного покрытия и ионной имплантации могут наводить повышенные внутренние напряжения в поверхностных слоях деталей. Для их более благоприятного распределения необходимо непосредственно после окончания процесса нанесения покрытия проводить дополнительную обработку. После выгрузки деталей из ионно-плазменной установки должна проводиться виброобработка микрошариками.
Таким образом, заявляемый способ включает в себя следующие процессы:
1. Подготовка поверхности под ионно-плазменное осаждение.
2. Установка катодов из осаждаемых металлов или сплавов.
3. Помещение деталей или подложек в камеру ионно-плазменной установки, оборудованной ионным имплантором.
4. Ионная очистка поверхности.
5. Ионно-плазменное нанесение многослойных покрытий с поддержанием необходимых состава и давления газовых атмосфер внутри установки.
6. Ионная имплантация одного или нескольких слоев в процессе их формирования или после нанесения покрытия.
7. Охлаждение и выгрузка деталей.
8. Виброобработка микрошариками по заданному режиму.
Подписи к фигурам
Фиг. 1 - фрагменты рентгеновских дифрактограмм покрытий с различными видами имплантации.
Фиг. 2 - результаты исследования многослойного покрытия методом спектроскопии обратного Резерфордовского рассеяния.
Фиг. 3 - сравнительные эрозионные испытания лопаток компрессора ГТД по уносу массы.
Фиг. 4 - сравнительные эрозионные испытания лопаток компрессора ГТД по износу хорды.
Фиг. 5, 5a - результаты усталостных испытаний образцов и лопаток компрессоров с покрытиями и без покрытий.
Примеры конкретного выполнения заявляемого способа
На практике, ионно-плазменное осаждение металлических ионов с соответствующего металлического катода в среде инертного газа, например в атмосфере аргона, или для осаждения нитрида металла в атмосфере азота, осуществляется по общим принципам ионно-плазменного осаждения в камере низкого давления с горячим катодом, имеющей значительную разницу потенциалов между горячим катодом и анодом, которым является деталь.
Примеры покрытий, перечисленные в таблице 1, были приготовлены следующим образом. Ионно-плазменное осаждение и имплантация проводились в установке типа ННВ-6.6, оборудованной дополнительно источником ионной имплантации типа "Пульсар", снабженной оптическими пирометрами высокой точности и системами дозированной подачи нейтральных и реакционных газов в камеру ионно-плазменного осаждения и в имплантор.
Титановые, или стальные, или изготовленные из сплава на никелевой основе лопатки компрессоров авиационных двигателей были сначала обработаны ионной плазмой аргона с разницей потенциалов до 1500 вольт между титановым катодом и лопатками, для очищения поверхности лопаток от твердых, жидких или поглощенных газовых примесей.
Рассмотрим подробнее 8 вариант нанесения покрытия. После подготовки поверхности путем абразивно-жидкостной обработки, промывки и сушки, лопатки из сплава типа ВТ6 помещались в камеру ионно-плазменной установки и подвергались ионной очистке в инертном газе, затем проводилось осаждение многослойного покрытия, начиная со скандия.
Подмикрослой скандия толщиной 0,03 - 0,05 микрон был осажден на поверхность лопаток при токе нагрева скандиевого катода 10 - 200 ампер для обеспечения температуры 200 - 400 градусов Цельсия и разнице потенциалов 700 - 1000 вольт между лопатками и скандиевым катодом. В этот раз титановый катод и циркониевый катоды не нагревались. Эта стадия заняла примерно 2 минуты, и лопатки вращались со скоростью примерно 2,5 об/мин. Титановый микрослой толщиной 2 мк был затем нанесен путем дезактивации скандиевого катода в результате выключения его источника тока и нагрева титанового катода путем приложения тока 20 - 200 ампер и разницы потенциалов 100 - 800 вольт между анодом и лопатками в атмосфере аргона. В течение этой стадии достигалась температура катода до 700 градусов Цельсия. Затем проводилось осаждение титана толщиной 1-2 мк в атмосфере азота и аргона, которая напускалась в рабочую камеру.
Затем давление повышалось и формировался микрослой нитрида титана толщиной примерно 4 мк. Температура лопаток поддерживалась в интервале 480-550oC для предотвращения каких-либо фазовых изменений в лопатках. Титановый катод был дезактивирован, а циркониевый катод нагрет до той же температуры с той же плотностью тока и разницей потенциалов, что и в предшествующей стадии осаждения титана. При нанесении слоев нитрида титана и нитрида циркония проводилась ионная имплантация азотом. Вышеперечисленные стадии осаждения были повторены в той же последовательности несколько раз для получения заданной толщины покрытия.
В альтернативных вариантах описанные стадии осаждения титана и циркония могут быть повторены, заменены или поменяны местами на стадии ионного осаждения нитрида титана и (или) нитрида циркония, выполненные в атмосфере азота. Чередование различных микрослоев обеспечивается поочередным нагреванием титанового или циркониевого катодов в атмосфере аргона или азота, или одновременной активацией титанового и циркониевого катодов. Изменение состава различных слоев одного из вариантов исследованного покрытия, полученного по заявляемому способу, полученное методом обратного Резерфордовского рассеяния приведено на фиг. 2. Ясно, что требуемая общая толщина покрытия может быть получена благодаря множеству микрослоев, скажем, предпочтительно, 3 - 20.
В предпочтительных вариантах, каждый или некоторые из микрослоев покрытия на различных стадиях его нанесения подвергают воздействию высокоэнергетического потока ионов аргона, или азота, или углерода, или бора путем контроля атмосферы и активации различных катодов, при этом разница потенциалов между электродом ионного имплантора и лопатками составляет 10 - 50 киловольт.
Ионные импланторы известны в данной области производства. В нашем случае, ионный имплантор типа "Пульсар" обеспечивается дугой низкого давления между экранированным катодным пятном и расширенной анодной частью разряда. Дуга вырабатывает ток неметаллических ионов аргона или реакционной газовой среды, впрыскиваемой в имплантор с созданной эмиссионной поверхности анодной плазмы. Эмиссия ионов катода имплантора незначительна, т.к. катод не нагревается. Далее, экранирование катодного пятна предотвращает его взаимодействие с анодной плазмой и снижает загрязнение газоразрядной плазмы металлическими ионами. Поэтому только ионы дуговой анодной плазмы входят в оптическую систему, которая образует пучок высокоэнергетических ионов. Плазма содержит менее 0,1% металлических ионов.
В процессе, соответствующем данному изобретению, использовались следующие параметры:
Ускоряющее напряжение - до 50 кВ
Ток ионного пучка:
в импульсе - 1 A
средний - 50 мA
Поперечное сечение пучка: - широкий пучок
150 см2
конвергентный пучок - 5 см2
Длительность импульса - 1·10-3 с
Частота повторения - 1- 50 с-1
Типы ионов - ионы химически активных или инертных газов.
Пучок ионов азота, углерода или аргона, исходящий от испускающего электрода, ускоряется через ускоряющий электрод и выходной электрод, чтобы попеременно оседать, как это требуется, на отдельные микрослои осаждаемого покрытия.
Таблица дает структурный порядок микрослоев и состав образцов покрытых деталей в соответствии с данным изобретением.
Эрозионная стойкость комплексных многослонных покрытий, полученных но заявляемому способу из циркония, титана и их нитридов при испытании компрессорных лопаток из сплава типа Ti-6Al-4V с имплантацией ионов азота, по сравнению со стойкостью лопаток без покрытий показана на фиг. 3 и фиг. 4. Условия испытаний указаны на рисунках.
Износостойкость покрытий, имеющих одинаковое количество слоев и толщину 12-16 мк, подвергнутых и не подвергнутых ионной имплантации азотом или углеродом приведены ниже.
1. Сплав BT8 (сплав Ti-6Al-3.5Mo-0.5Zr) без покрытия = 1,0
2. Покрытие на сплаве BT8 - Sc-Ti-[Ti(N)]-TiN-Zr-[Zr(N)]-ZrN = 0.12
3. Покрытие на сплаве BT8 - Sc-Cr-[Cr(C)]-Cr2C3-Zr-[Zr(N)]-ZrC = 0.26
4. Покрытие на сплаве BT8 - Sc-Ti-[Ti(N)]-TiN+N-Zr-[Zr(N)]-ZrN+N = 0.014
5. Покрытие на сплаве BT8 - Sc-Cr-[Cr(C)]-Cr2C3+C-Zr-[Zr(C)]-ZrC-C = 0.037
Условия испытания:
скорость воздушно-абразивного потока - 120 м/сек,
температура испытаний - комнатная,
абразив - кварцевый песок фракции 10 мкм,
количество абразива - 10 кг,
угол атаки 20 градусов.
Варианты 4 и 5 с имплантацией соответственно азотом и углеродом.
Коррозионные испытания. Стальные и титановые лопатки без покрытий и с многослойным покрытием по заявляемому способу были подвергнуты испытаниям на коррозию следующим методом.
Титановые лопатки были нагреты при 300 градусах Цельсия, а лопатки из нержавеющей стали при 420 градусах в камере в течение 1 часа. Затем лопатки были охлаждены в 3% растворе хлорида натрия, выдержаны во влажной камере в течение 23 часов, и цикл был повторен 10 раз. Целью этих испытаний было смоделировать работу лопаток в течение 2 лет в условиях тропического морского климата. Оценка сопротивления коррозии производилась визуальным осмотром лопаток после каждого цикла и путем определения изменения массы во время и после коррозионных испытаний.
Результаты показали, что непокрытые лопатки имели среднее изменение массы в 1,3 г/м, в отличие от покрытых лопаток, которые не имели коррозии по визуальной оценке, а также изменений массы.
Испытания на коррозию также проводились в климатической камере при температуре 35oC в парах 3% раствора поваренной соли в течение 3 суток для оценки коррозионных повреждений на питтинговую коррозию на пере лопатки (имитация стояночной коррозии), данные усреднялись по 8 лопаткам и приведены ниже:
1. Лопатки без покрытия - более 20 питтингов на пере.
2. Лопатки с серийным покрытием нитрида титана - 9-12 питтингов.
3. Лопатки с многослойным покрытием с имплантацией аргоном по настоящей заявке - 1-3 питтинга.
Проведенные испытания на усталость лопаток с предпочтительными покрытиями и лопаток без покрытий показали, что усталостная прочность лопаток после нанесения покрытий практически не изменяется, остается на высоком уровне и обеспечивает необходимую долговечность детали (фиг.5а). Условия испытаний лопаток на усталостную прочность соответствовали реальным параметрам при эксплуатации авиадвигателей.
После проведения комплекса лабораторных испытаний были выполнены испытания на натурных двигателях с вбросом абразива с размерами частиц 100-200 мк и количеством 1,2 кг/час. Эти испытания также показали существенное повышение эрозионной стойкости лопаток направляющего аппарата и ротора компрессора авиадвигателя в жестких условиях по сравнению с непокрытыми лопатками.

Claims (6)

1. Способ нанесения износостойких покрытий и повышения долговечности деталей, включающий нанесение на металлическую подложку катодным распылением чередующихся металлических слоев в среде инертного газа и керамических слоев в среде реакционного газа, отличающийся тем, что перед нанесением покрытия проводят ионную очистку поверхности подложки, покрытие наносят не менее чем трехслойным, первый слой получают в разряде нейтрального газа из одного или смеси переходных металлов IVA-VIA групп, второй - осаждением указанных металлов в смеси нейтрального и реакционных газов, а третий слой - осаждением в смеси нейтральных и реакционных газов нитридов, или карбидов, или боридов указанных металлов или их смесей, толщины слоев находятся в соотношении (0,02 - 5,0) : (0,04 - 10) : (0,1 - 12,5) мк, причем один или несколько слоев подвергают ионной имплантации аргоном, азотом, углеродом или бором в процессе осаждения, или после окончания процесса осаждения, а после нанесения покрытия проводят виброобработку микрошариками.
2. Способ по п.1, отличающийся тем, что на подложку после ионной очистки наносят микрослой из скандия, иттрия или редкоземельных металлов толщиной 0,02 - 0,08 мк.
3. Способ по п.1, отличающийся тем, что количество нанесенных слоев составляет 3 - 500, преимущественно 3 - 24, а толщина первых трех слоев находится в соотношении 1,0 : 2,0 : 2,5.
4. Способ по п.1, отличающийся тем, что ионную имплантацию проводят при ускоряющих напряжениях 10 - 50 кВ, дозах облучения 1014 - 1018 ион/см2 и энергией ионов 5 x 103 - 1 x 105 эв.
5. Способ по п.1, отличающийся тем, что виброобработку проводят микрошариками диаметром 0,5 - 5 мм при амплитуде вибрации 2 - 8 мм не позднее, чем через 10 - 30 мин после окончания нанесения покрытия.
6. Способ по п. 1, отличающийся тем, что в качестве реакционных газов используют азот, метан, диборан или их смеси.
RU99118131/02A 1999-08-16 1999-08-16 Способ нанесения износостойких покрытий и повышения долговечности деталей RU2161661C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU99118131/02A RU2161661C1 (ru) 1999-08-16 1999-08-16 Способ нанесения износостойких покрытий и повышения долговечности деталей
EA200100177A EA002682B1 (ru) 1999-08-16 1999-09-14 Способ нанесения износостойких покрытий и повышения долговечности деталей
CA2332856A CA2332856C (en) 1999-08-16 1999-09-14 Method for deposition of wear resistant coatings to improve service life of coated components
PCT/RU1999/000336 WO2001012872A1 (en) 1999-08-16 1999-09-14 Method for deposition of wear-resistant coatings and for increasing the lifespan of parts
US09/700,473 US6797335B1 (en) 1999-08-16 1999-09-14 Method for deposition of wear-resistant coatings and for increasing the lifespan of parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99118131/02A RU2161661C1 (ru) 1999-08-16 1999-08-16 Способ нанесения износостойких покрытий и повышения долговечности деталей

Publications (1)

Publication Number Publication Date
RU2161661C1 true RU2161661C1 (ru) 2001-01-10

Family

ID=20224135

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99118131/02A RU2161661C1 (ru) 1999-08-16 1999-08-16 Способ нанесения износостойких покрытий и повышения долговечности деталей

Country Status (5)

Country Link
US (1) US6797335B1 (ru)
CA (1) CA2332856C (ru)
EA (1) EA002682B1 (ru)
RU (1) RU2161661C1 (ru)
WO (1) WO2001012872A1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038826A1 (fr) * 2004-03-02 2006-04-13 Anatoly Nikolaevich Paderov Procede d'application d'un revetement a couches multiples aux articles metalliques
US8067086B2 (en) 2006-03-27 2011-11-29 Siemens Aktiengesellschaft Matrix and layer system comprising non-stoichiometric particles
RU2477672C2 (ru) * 2007-10-01 2013-03-20 Миркона Аб Новое изделие и способ его изготовления при обработке материала
RU2495154C2 (ru) * 2012-01-10 2013-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев
EA024887B1 (ru) * 2012-11-29 2016-10-31 Государственное Научное Учреждение "Физико-Технический Институт Национальной Академии Наук Беларуси" Способ нанесения упрочняющего покрытия на металлические изделия
RU2682738C2 (ru) * 2014-04-30 2019-03-21 ЭРЛИКОН МЕТКО (ЮЭс) ИНК. Наплавленное покрытие с карбидом титана и способ его изготовления

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0205419B1 (pt) * 2002-12-20 2017-10-24 Coppe/Ufrj Coordenacao Dos Programas De Pos Graduacao De Engenharia Da Univ Federal Do Rio De Janeir Process of ionic nitretation by pulsed plasma for obtaining diffusion barrier for hydrogen for steel api 5l x-65
US7096712B2 (en) * 2003-04-21 2006-08-29 Conocophillips Company Material testing system for turbines
US7455890B2 (en) * 2003-08-05 2008-11-25 General Electric Company Ion implantation of turbine engine rotor component
US20070099027A1 (en) * 2005-10-28 2007-05-03 Anand Krishnamurthy Wear resistant coatings
US8229570B2 (en) * 2006-01-30 2012-07-24 Medtronic, Inc. Implantable electrodes having zirconium nitride coatings
US7901799B2 (en) 2006-10-02 2011-03-08 Praxair S.T. Technology, Inc. Multilayer nitride-containing coatings
US7959409B2 (en) * 2007-03-01 2011-06-14 Honeywell International Inc. Repaired vane assemblies and methods of repairing vane assemblies
US8505305B2 (en) 2007-04-20 2013-08-13 Pratt & Whitney Canada Corp. Diffuser with improved erosion resistance
DE102008023590A1 (de) 2008-05-14 2009-11-19 Mtu Aero Engines Gmbh Schutzschicht und Verfahren zum Herstellen einer Schutzschicht
US8092922B2 (en) * 2008-06-30 2012-01-10 GM Global Technology Operations LLC Layered coating and method for forming the same
US8132467B2 (en) * 2008-09-15 2012-03-13 Siemens Energy, Inc. Apparatus and method for monitoring wear of components
US8235648B2 (en) * 2008-09-26 2012-08-07 Pratt & Whitney Canada Corp. Diffuser with enhanced surge margin
US20100086397A1 (en) * 2008-10-03 2010-04-08 General Electric Company Surface Treatments for Turbine Components to Reduce Particle Accumulation During Use Thereof
JP5815713B2 (ja) * 2010-09-23 2015-11-17 ロールス−ロイス コーポレイション 環境保護のためのイオン衝撃表面を備えた合金
US9153422B2 (en) 2011-08-02 2015-10-06 Envaerospace, Inc. Arc PVD plasma source and method of deposition of nanoimplanted coatings
RU2509174C1 (ru) * 2012-06-25 2014-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" Способ имплантации ионами газов металлов и сплавов
US20140003954A1 (en) * 2012-06-27 2014-01-02 General Electric Company Modified rotor blade and method for modifying a wear characteristic of a rotor blade in a turbine system
US20140003959A1 (en) * 2012-06-27 2014-01-02 General Electric Company Modified rotor component and method for modifying a wear characteristic of a rotor component in a turbine system
EP3036353B1 (en) 2013-08-20 2022-01-26 MDS Coating Technologies Corp. Coating containing macroparticles and cathodic arc process of making the coating
TWI589277B (zh) * 2015-03-06 2017-07-01 明志科技大學 高抗機械疲勞的根管銼針
US10570925B2 (en) 2015-10-27 2020-02-25 Pratt & Whitney Canada Corp. Diffuser pipe with splitter vane
US9926942B2 (en) 2015-10-27 2018-03-27 Pratt & Whitney Canada Corp. Diffuser pipe with vortex generators
RU2634400C1 (ru) * 2016-09-26 2017-10-26 Научно-производственная Ассоциация "Технопарк авиационных технологий" (НПА "Технопарк АТ") Способ ионного азотирования режущего инструмента из легированной стали
US10823197B2 (en) 2016-12-20 2020-11-03 Pratt & Whitney Canada Corp. Vane diffuser and method for controlling a compressor having same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915757A (en) * 1972-08-09 1975-10-28 Niels N Engel Ion plating method and product therefrom
US3900592A (en) * 1973-07-25 1975-08-19 Airco Inc Method for coating a substrate to provide a titanium or zirconium nitride or carbide deposit having a hardness gradient which increases outwardly from the substrate
JPS56156767A (en) * 1980-05-02 1981-12-03 Sumitomo Electric Ind Ltd Highly hard substance covering material
US4758978A (en) * 1983-04-18 1988-07-19 Motorola, Inc. Method and apparatus for selectively evaluating an effective address for a coprocessor
JPS60141869A (ja) * 1983-12-29 1985-07-26 Nissin Electric Co Ltd 膜形成方法および膜形成装置
JPS6115967A (ja) * 1984-06-29 1986-01-24 Sumitomo Electric Ind Ltd 表面処理方法
GB8423255D0 (en) * 1984-09-14 1984-10-17 Atomic Energy Authority Uk Surface treatment of metals
GB8626330D0 (en) * 1986-11-04 1986-12-31 Atomic Energy Authority Uk Ion assisted coatings
JP2773092B2 (ja) * 1986-12-27 1998-07-09 住友金属鉱山 株式会社 表面被覆鋼製品
AT388394B (de) * 1987-01-09 1989-06-12 Vni Instrument Inst Verfahren zur herstellung von schneidwerkzeug
US4943486A (en) * 1987-04-01 1990-07-24 Seiko Epson Corporation Coated article and method of production
JPH01168856A (ja) * 1987-12-23 1989-07-04 Agency Of Ind Science & Technol 鋼材の表面硬化方法
JPH0745706B2 (ja) * 1988-06-10 1995-05-17 日本真空技術株式会社 窒化チタン薄膜の形成方法
USRE34173E (en) 1988-10-11 1993-02-02 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
US5117065A (en) * 1990-06-15 1992-05-26 Savage Howard S Method of joining shielding used for minimizing EMI or RFI, and the joint formed by the method
JPH05148649A (ja) * 1991-11-25 1993-06-15 Nissin Electric Co Ltd 膜形成方法
RU2061090C1 (ru) 1991-12-28 1996-05-27 Московский государственный технологический университет "СТАНКИН" Многослойное износостойкое покрытие
JP2840502B2 (ja) * 1992-06-03 1998-12-24 三洋電機株式会社 高機能材料膜形成方法
US5580429A (en) 1992-08-25 1996-12-03 Northeastern University Method for the deposition and modification of thin films using a combination of vacuum arcs and plasma immersion ion implantation
RU2065505C1 (ru) * 1992-09-10 1996-08-20 Акционерное общество "Моторостроитель" Лопатка турбины и способ ее изготовления
DE69319531T2 (de) 1992-10-12 1999-04-15 Sumitomo Electric Industries, Ltd., Osaka Ultradünnes Filmlaminat
RU2062818C1 (ru) 1992-10-29 1996-06-27 Егоров Юрий Иванович Способ нанесения металлосодержащих покрытий на крупноразмерные подложки в вакууме и установка для его осуществления
JP2793772B2 (ja) * 1994-05-13 1998-09-03 神鋼コベルコツール株式会社 密着性に優れた硬質皮膜被覆工具および硬質皮膜被覆部材
DE69527236T2 (de) 1994-09-16 2003-03-20 Sumitomo Electric Industries, Ltd. Mehrschichtfilm aus ultrafeinen Partikeln und harter Verbundwerkstoff für Werkzeuge, die diesen Film enthalten
RU2113971C1 (ru) * 1996-08-12 1998-06-27 Владимир Михайлович Казаков Ручной процесс обработки цилиндрических поверхностей деталей дробью с разработкой специального устройства и способа контроля и управления процессом
RU2106429C1 (ru) 1997-03-28 1998-03-10 Вячеслав Алексеевич Рыженков Способ нанесения многослойного износостойкого покрытия на изделия из железных и титановых сплавов
EP1029945A1 (de) * 1999-02-17 2000-08-23 Balzers Aktiengesellschaft Verfahren zum Beschichten von Werkzeugen
US6117493A (en) * 1998-06-03 2000-09-12 Northmonte Partners, L.P. Bearing with improved wear resistance and method for making same
RU2176184C2 (ru) * 1999-12-06 2001-11-27 Казаков Владимир Михайлович Способ отделочно-упрочняющей обработки цилиндрических поверхностей с устройством для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 00RE42173E, 02.02.1993. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038826A1 (fr) * 2004-03-02 2006-04-13 Anatoly Nikolaevich Paderov Procede d'application d'un revetement a couches multiples aux articles metalliques
US8067086B2 (en) 2006-03-27 2011-11-29 Siemens Aktiengesellschaft Matrix and layer system comprising non-stoichiometric particles
RU2477672C2 (ru) * 2007-10-01 2013-03-20 Миркона Аб Новое изделие и способ его изготовления при обработке материала
RU2495154C2 (ru) * 2012-01-10 2013-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев
EA024887B1 (ru) * 2012-11-29 2016-10-31 Государственное Научное Учреждение "Физико-Технический Институт Национальной Академии Наук Беларуси" Способ нанесения упрочняющего покрытия на металлические изделия
RU2682738C2 (ru) * 2014-04-30 2019-03-21 ЭРЛИКОН МЕТКО (ЮЭс) ИНК. Наплавленное покрытие с карбидом титана и способ его изготовления

Also Published As

Publication number Publication date
US6797335B1 (en) 2004-09-28
WO2001012872A1 (en) 2001-02-22
CA2332856C (en) 2010-05-11
EA002682B1 (ru) 2002-08-29
EA200100177A1 (ru) 2001-10-22
CA2332856A1 (en) 2001-02-16

Similar Documents

Publication Publication Date Title
RU2161661C1 (ru) Способ нанесения износостойких покрытий и повышения долговечности деталей
Vereschaka Development of assisted filtered cathodic vacuum arc deposition of nano-dispersed multi-layered composite coatings on cutting tools
CN111005002B (zh) 一种压气机叶片耐冲蚀防腐蚀自洁涂层的制备方法
RU2390578C2 (ru) Способ получения эрозионно стойкого покрытия, содержащего нанослои, для лопаток турбомашин из титановых сплавов
CN101575696B (zh) 一种闭合场非平衡磁控溅射制备铬铝氮薄膜的方法
Parameswaran et al. Titanium nitride coating for aero engine compressor gas path components
US7229675B1 (en) Protective coating method for pieces made of heat resistant alloys
CN109295453A (zh) 一种钢表面制备氮化钛涂层的方法
CN101294284A (zh) 一种耐冲蚀抗疲劳等离子表面复合强化方法
Immarigeon et al. Erosion testing of coatings for aero engine compressor components
RU2655563C1 (ru) Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
Sagalovych et al. Vacuum-plasma protective coating for turbines blades.
RU2308537C1 (ru) Способ обработки поверхности металлического изделия
RU2478140C2 (ru) Способ получения ионно-плазменного покрытия на лопатках компрессора из титановых сплавов
CN103774092B (zh) 一种在镁合金表面制备导电且耐腐蚀涂层的方法
Shulov et al. Application of high-current pulsed electron beams for the restoration of operational properties of the blades of gas-turbine engines
RU2566232C1 (ru) Способ комбинированной ионно-плазменной обработки изделий из алюминиевых сплавов
CN108588636A (zh) 一种提高脆性材料机械加工表面完整性的方法
RU2415199C1 (ru) Способ нанесения покрытия
RU2677041C1 (ru) Способ нанесения защитного многослойного покрытия на лопатки блиска газотурбинного двигателя из титанового сплава от пылеабразивной эрозии
CN103031509A (zh) 一种强化钛合金表面的方法
RU2685919C1 (ru) Способ получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеобразной эрозиии
Mednikov et al. Study of stress state changes in steel with Ti-TiC-DLC coating under high speed droplet impact
RU2570274C1 (ru) Способ получения износостойкого высокотемпературного покрытия
RU2685896C1 (ru) Способ нанесения защитного многослойного покрытия на лопатки моноколеса из титанового сплава

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20111109

PC41 Official registration of the transfer of exclusive right

Effective date: 20130419

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130817