RU2683959C1 - Способ охлаждения выходного окна ускорителя электронов - Google Patents

Способ охлаждения выходного окна ускорителя электронов Download PDF

Info

Publication number
RU2683959C1
RU2683959C1 RU2018117744A RU2018117744A RU2683959C1 RU 2683959 C1 RU2683959 C1 RU 2683959C1 RU 2018117744 A RU2018117744 A RU 2018117744A RU 2018117744 A RU2018117744 A RU 2018117744A RU 2683959 C1 RU2683959 C1 RU 2683959C1
Authority
RU
Russia
Prior art keywords
foil
air
water
cooling
accelerator
Prior art date
Application number
RU2018117744A
Other languages
English (en)
Inventor
Николай Николаевич Курапов
Игорь Витальевич Шориков
Александр Валентинович Тельнов
Николай Петрович Ситников
Сергей Александрович Путевской
Илья Андреевич Юрьев
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом"), Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Priority to RU2018117744A priority Critical patent/RU2683959C1/ru
Application granted granted Critical
Publication of RU2683959C1 publication Critical patent/RU2683959C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

Изобретение относится к способу охлаждения выпускных окон электронных ускорителей непрерывного действия и может быть применено при создании ускорителей с выводом в атмосферу пучков ускоренных электронов различной мощности. Принцип охлаждения выбирают в зависимости от режима работы ускорителя, фольгу выполняют протяженной с первоначальным радиальным прогибом вдоль протяженной стороны, в режиме прямого, без раскачки, вывода пучка электронов на фольгу воздействуют воздушно-водяной смесью с образованием водяного пара у нагретого участка поверхности фольги, при этом воздушно-водяную смесь формируют в пневмогидравлической форсунке с насыщением потока воздуха каплями воды до степени насыщения, составляющей 30-50% воздуха, а остальное - вода, причем воздушно-водяную смесь подают под давлением не менее 4 атм с расходом воды не более 3 л/мин через пневмогидравлическую форсунку на центральный участок фольги под углом 25≤α≤35 градусов к ее поверхности, а в режиме сканирующего электронного пучка воздействие на фольгу осуществляют потоком воздуха вдоль ее поверхности, от края фольги, с одной из протяженных сторон, под углом 50≤β≤70 градусов к ее поверхности. Техническим результатом является повышение эффективности способа охлаждения выходного окна ускорителя электронов. 1 ил.

Description

Изобретение относится к ускорительной технике, а именно способам охлаждения выпускных окон электронных ускорителей непрерывного действия и может быть применено при создании ускорителей с выводом в атмосферу пучков ускоренных электронов различной мощности.
Известен способ охлаждения оконной фольги, обеспечивающей вывод пучков электронов из ускорителя электронных пучков сканирующего типа (патент RU №2175172. «Способ охлаждения оконной фольги ускорителя электронных пучков и устройство для его реализации», опубликован 20.10.2001).
Устройство вывода электронных пучков из ускорителя включает сканирующую трубку, первичную оконную фольгу, прикрепленную к выходному отверстию сканирующей трубки, и вторичную оконную фольгу, расположенную со стороны атмосферы от первичной оконной фольги. В данной системе изогнутая форма поверхности фольги обеспечивается наружным атмосферным давлением при наличии центральной опоры, установленной внутри сканирующей трубки.
Способ характеризуется тем. что осуществляют воздействие охлаждающим газом на сканируемую электронным пучком поверхность с обеих сторон для охлаждения первичной оконной фольги. В центре первичной оконной фольги поток охлаждающих газов реверсируют и осуществляют циркуляцию охлаждающих газов путем всасывания охлаждающих газов с обеих сторон поверхности, сканируемой электронным пучком, благодаря чему одновременно охлаждается вторичная оконная фольга. В центральной опоре дополнительно выполнены каналы для охлаждающей воды.
Недостатками данного способа являются использование двух выпускных фолы на пути вывода пучка в атмосферу. Также недостатком данной системы является выполнение поддерживающего элемента фольги в виде опоры, расположенной в центре выпускного окна, что делает невозможным прямой вывод пучка ускоренных электронов из ускорителя в атмосферу.
Наиболее близким техническим решением к предлагаемому способу является способ охлаждения выходного окна ускорителя электронов (И.С. Егоров и др., «Выходное окно сильноточного ускорителя электронов «Астра». Известил Томского политехнического университета. 2013, Т. 322. №2. с. 91-94). Устройство для вывода электронного пучка, отделяющее вакуумированный объем ускорительного тракта от атмосферы, содержит разделительную фольгу толщиной 50 мкм. Фольга закреплена по периметру опорного фланца с внутренним диаметром 65 мм при помощи прижимного фланца. Режим работы указанного ускорителя предполагает генерацию и вывод в атмосферу сильноточного электронного пучка с частотой до 50 имп/с.
Охлаждение разделительной фольги в частотном режиме работы ускорителя производят воздействием на разделительную фольгу непрерывным охлаждающим потоком либо воздуха, либо воздушно-водяной смеси. Воздушно-водяная смесь генерируется эжектором с форсункой, обеспечивающей расход воды 5 л/мин.
Существенными недостатками данного способа являются:
- расположение форсунки, распыляющей воздушно-водянную смесь, на пути выводимого пучка, вследствие чего пучок поглощается охлаждающей смесью;
- в данном устройстве не предусмотрена возможность вывода пучка в сканирующем режиме;
- прогиб разделительной фольги происходит под действием атмосферного давления по причине высоких механических напряжений в материале фольги, превышающих предел текучести;
- большие трудозатраты при необходимости перехода на другой режим работы, связанные с заменой выводного устройства с выпускной фольгой на большее по размерам. Это влечет за собой необходимость развакуумирования ускоряющей секции, что является очень трудоемким занятием.
Таким образом, способ охлаждения выходного окна ускорителя электронов по прототипу не позволяет осуществлять охлаждение, достаточно эффективное для ряда режимов ускорителя.
Задача изобретения заключается в создании способа охлаждения выходного окна ускорителя непрерывного действия с большим сроком службы и надежностью выпускной фольги за счет уменьшения температуры нагрева фольги в зоне прохождения электронов (в зоне фокусного пятна) и снижения механических напряжений в материале фольги.
Техническим результатом является повышение эффективности способа и снижение затрат на его реализацию.
Технический результат достигается тем, что в способе охлаждения выходного окна ускорителя электронов, заключающемся в том. что охлаждение производят воздействием на фольгу непрерывным охлаждающим потоком, новым является то, что принцип охлаждения выбирают в зависимости от режима работы ускорителя, при этом фольгу выполняют протяженной с первоначальным радиальным прогибом вдоль протяженной стороны, в режиме прямого, без раскачки, вывода пучка электронов на фольгу воздействуют воздушно-водяной смесью с образованием водяного пара у нагретого участка поверхности фольги, при этом воздушно-водяную смесь формируют в пневмогидравлической форсунке с насыщением потока воздуха каплями воды до степени насыщения, составляющей 30-50% воздуха, а остальное - вода, причем воздушно-водяную смесь подают под давлением не менее 4 атм с расходом воды не более 3 л/мин через пневмогидравлическую форсунку на центральный участок фольги под углом 25≤α≤35 градусов к ее поверхности, а в режиме сканирующего электронного пучка воздействие на фольгу осуществляют потоком воздуха вдоль ее поверхности, от края фольги, с одной из протяженных сторон, под углом 50≤β≤70 градусов к ее поверхности.
При проведении исследований важна возможность вывода пучка в атмосферу двумя способами: в режиме сканирования (раскачки) пучка по всей поверхности выпускной фольги и в режиме прямого вывода пучка через центр выпускного окна. Но если для каждого режима вывода пучка использовать свое выпускное устройство, то это приведет к большим временным затратам для смены выпускного устройства.
Увеличение габаритов окна при использовании режима сканирующего пучка позволяет увеличить апертуру пучка с одновременным снижением мощности дозы на облучаемом объекте. Однако при этом возрастают вызванные наличием наружного атмосферного давления механические напряжения в материале оконной фольги, что приводит к ее повышенной деформации и разрыву. Повышение толщины фольги с целью увеличения ее прочности недопустимо, поскольку это приведет к дополнительному рассеянию электронов и еще большему разогреву фольги.
Выполнение опорного и прижимного фланцев с прилегающими друг к другу цилиндрическими поверхностями обеспечивает первоначальный прогиб фольги в сторону вакуумированного объема. Изогнутая форма фольги позволяет максимально снизить механические напряжения в фольге. В режиме сканирующего пучка разогрев фольги менее интенсивен, чем в режиме прямого вывода, поэтому для ее охлаждения требуется только подача воздуха. Расчетная и экспериментальная отработка режимов охлаждения показали, что оптимальный угол подачи воздушно-водяной смеси, на подверженный нагреву участок выпускной фольги, при прямом выводе пучка в атмосферу, лежит в области 25≤α≤35 градусов, а угол - подачи воздуха, при обдуве фольги в сканирующем режиме работы, лежит в области 50≤β≤70 градусов.
Реализация режима прямого вывода пучка означает значительное уменьшение апертуры пучка с увеличением плотности тока электронов на облучаемом объекте и, соответственно, с резким повышением разогрева участка фольги, через который проходит пучок электронов. Охлаждение обдувом в этом случае не справляется с задачей охлаждения локального участка фольги. Использование двойных фолы и поддерживающих решеток вносит дополнительные преграды на пути движения пучка ускоренных электронов и приводит к потере мощности пучка на нагрев оконной фольги. В этом случае эффективнее охлаждать фольгу воздушно-водяной смесью, теплообмен которой с фольгой в несколько раз интенсивнее, чем с воздухом, поскольку тепло расходуется как на нагрев смеси, так и на испарение воды. В прототипе перемешивание воздуха с водой осуществляется практически у поверхности выпускной фольги, а в предлагаемом устройстве перемешивание осуществляется в специализированной пневмогидравлической форсунке, создающей водяной туман у поверхности выпускной фольги. Наиболее оптимальная степень насыщения потока воздуха каплями воды определялась расчетным методом и составила 30-50% воздуха, а остальное - вода. Форсунка закреплена на прижимном фланце и не мешает выводу пучка в атмосферу. Также в прототипе жидкость является объектом облучения, в предлагаемом устройстве жидкость служит теплоносителем. В прототипе расход воды пять литров в минуту, в предлагаемом устройстве расход воды не превышает трех литров в минуту. Оптимальный расход воды был получен при экспериментальной отработке режима охлаждения смесью и являются достаточными для требуемого режима работы.
Подача смеси на участок фольги, через который проходит электронный пучок под углом 20≤α≤40 градусов к поверхности и под давлением не менее 4 атм позволяет достичь оптимального съема тепла с локального участка выпускной фольги, так как охлаждающая смесь максимально эффективно взаимодействует с поверхностью фольги. Использование фольги с первоначальным радиальным прогибом вдоль ее протяженной стороны также позволяет максимально обеспечить механическую прочность фольги и не допустить ее разрыва. Такой профиль был выбран в результате расчетов, которые показали, что наличие прогиба, обеспечит необходимый запас механической прочности фольги к воздействию атмосферного давления.
На фиг. показано устройство, используемое для осуществления заявляемого способа охлаждения выходного окна ускорителя электронов, где 1 - пневмогидравлическая форсунка. 2 - конический раструб блока вентиляторов с держателями. 3 - фольга. 4 блок вентиляторов для подачи воздуха. 5 и 6 прилегающие друг к другу цилиндрические поверхности опорного и прижимного фланцев, обеспечивающие первоначальный радиальный прогиб фольги в сторону вакуумированного объема ускорителя. 7 - болты, стягивающие цилиндрические фланцы.
В примере осуществления заявляемого способа выпускное окно размером 550×168 мм содержит титановую фольгу, вакуумно-плотно обжатую с двух сторон стальными фланцами. Для снижения механических напряжений обеспечен начальный прогиб фольги путем выполнения фланцев в зоне соприкосновения с фольгой в виде сопряженных цилиндрических поверхностей радиусом R=335 мм. Толщина фольги 100 мкм.
Конструктивно система охлаждения потоком воздуха состоит из пяти осевых вентиляторов JamiconJ A 1238H2. воздушный поток от которых собирается в конический раструб с узким щелевым выходным соплом, ориентированным вдоль максимального размера фольги. Такое решение системы охлаждения показало хорошие результаты при работе ускорителя в режиме сканирования пучка, обеспечивая непрерывную работу ускорителя в течение длительного времени при максимальных выходных параметрах пучка: частоте посылок импульсов тока 1000 Гц. среднем токе электронов 1 мА, средней энергии 7 МэВ. мощности пучка, выводимого в атмосферу, 10 кВт.
Расчеты показали, что если в сканирующем режиме тепловое воздействие на титановую фольгу в среднем составляет 0.1 Вт/см2, то в режиме прямого вывода пучка тепловое воздействие увеличивается многократно и достигает 45 Вт/см2. Только воздушного охлаждения титановой фольги толщиной 0.1 мм при такой мощности теплового воздействия явно недостаточно, и фольга выйдет из строя за несколько секунд. Поэтому в режиме прямого вывода пучка (без раскачки) через центр выпускной фольги используется пневмогидравлическая форсунка, которая крепится в горизонтальном, положении на короткой кромке выходного окна. Поток воздушно-водяной смеси выходит из сопла форсунки, расположенного под углом 30° к поверхности и направлен на область фольги, через которую проходит пучок в режиме прямого вывода. В воздушный патрубок форсунки подается воздух из воздушного компрессора под давлением 1 кгс/см2. К водяному патрубку через шланг подводится вода из системы холодного водоснабжения под давлением 2 кгс/см2. Температура подводимой к форсунке воды составляет порядка 10°С. Проведенные эксперименты показали, что данная конфигурация системы вывода с пневмогидравлической форсункой позволяет в месте вывода электронного пучка поддерживать температуру фольги в диапазоне от 70 до 100°'С.
Таким образом, реализация предлагаемого изобретения дает возможность при смене режима сканирующего пучка на режим прямого вывода пучка не демонтировать окно с тяжеловесной двухкоординатной магнитной системой развертки пучка.
Система охлаждения дает возможность полностью использовать весь исследовательский потенциал, заложенный в линейных ускорителях электронов.

Claims (1)

  1. Способ охлаждения выходного окна ускорителя электронов, заключающийся в том, что охлаждение производят воздействием на фольгу непрерывным охлаждающим потоком, отличающийся тем, что принцип охлаждения выбирают в зависимости от режима работы ускорителя, фольгу выполняют протяженной с первоначальным радиальным прогибом вдоль протяженной стороны, в режиме прямого, без раскачки, вывода пучка электронов на фольгу воздействуют воздушно-водяной смесью с образованием водяного пара у нагретого участка поверхности фольги, при этом воздушно-водяную смесь формируют в пневмогидравлической форсунке с насыщением потока воздуха каплями воды до степени насыщения, составляющей 30-50% воздуха, а остальное - вода, причем воздушно-водяную смесь подают под давлением не менее 4 атм с расходом воды не более 3 л/мин через пневмогидравлическую форсунку на центральный участок фольги под углом 25≤α≤35 градусов к ее поверхности, а в режиме сканирующего электронного пучка воздействие на фольгу осуществляют потоком воздуха вдоль ее поверхности, от края фольги, с одной из протяженных сторон, под углом 50≤β≤70 градусов к ее поверхности.
RU2018117744A 2018-05-14 2018-05-14 Способ охлаждения выходного окна ускорителя электронов RU2683959C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018117744A RU2683959C1 (ru) 2018-05-14 2018-05-14 Способ охлаждения выходного окна ускорителя электронов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018117744A RU2683959C1 (ru) 2018-05-14 2018-05-14 Способ охлаждения выходного окна ускорителя электронов

Publications (1)

Publication Number Publication Date
RU2683959C1 true RU2683959C1 (ru) 2019-04-03

Family

ID=66090188

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018117744A RU2683959C1 (ru) 2018-05-14 2018-05-14 Способ охлаждения выходного окна ускорителя электронов

Country Status (1)

Country Link
RU (1) RU2683959C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742712C1 (ru) * 2020-09-25 2021-02-10 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Окно для вывода пучка электронов из вакуумной камеры ускорителя в атмосферу и ввода в рабочую камеру радиационно-химического реактора

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU96120721A (ru) * 1995-10-17 1998-12-20 Ибара Корпорейшн Способ охлаждения оконной фольги ускорителя электронных пучков и устройство для его реализации
RU2175172C2 (ru) * 1995-10-17 2001-10-20 Ибара Корпорейшн Способ охлаждения оконной фольги ускорителя электронных пучков и устройство для его реализации
RU143673U1 (ru) * 2014-04-14 2014-07-27 Открытое акционерное общество "Московский радиотехнический институт Российской академии наук" (ОАО "МРТИ РАН") Устройство развертки электронного пучка
KR20160114255A (ko) * 2015-03-23 2016-10-05 한국원자력연구원 차등진공을 이용한 하전입자빔 대기인출장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU96120721A (ru) * 1995-10-17 1998-12-20 Ибара Корпорейшн Способ охлаждения оконной фольги ускорителя электронных пучков и устройство для его реализации
RU2175172C2 (ru) * 1995-10-17 2001-10-20 Ибара Корпорейшн Способ охлаждения оконной фольги ускорителя электронных пучков и устройство для его реализации
RU143673U1 (ru) * 2014-04-14 2014-07-27 Открытое акционерное общество "Московский радиотехнический институт Российской академии наук" (ОАО "МРТИ РАН") Устройство развертки электронного пучка
KR20160114255A (ko) * 2015-03-23 2016-10-05 한국원자력연구원 차등진공을 이용한 하전입자빔 대기인출장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742712C1 (ru) * 2020-09-25 2021-02-10 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Окно для вывода пучка электронов из вакуумной камеры ускорителя в атмосферу и ввода в рабочую камеру радиационно-химического реактора

Similar Documents

Publication Publication Date Title
EP1707036B1 (en) X-ray tube cooling collar
US2899556A (en) Apparatus for the treatment of substances
US20140369476A1 (en) Device for generating x-rays having a liquid metal anode
US6529579B1 (en) Cooling system for high power x-ray tubes
RU2683959C1 (ru) Способ охлаждения выходного окна ускорителя электронов
US20050225224A1 (en) Source for energetic electrons
JP2006128137A (ja) X線発生装置
US5416440A (en) Transmission window for particle accelerator
JP2017509868A (ja) 照射窓の冷却効率を向上させた電子線照射装置
CN211959648U (zh) 用于电子加速器的双窗引出窗装置及辐照加工装置
JPS6333261B2 (ru)
JP2010251323A (ja) 粒子線を生成するためのイオン源、イオン源用の電極並びにイオン化されるガスをイオン源内に導入するための方法
EP0543920A4 (en) Particle accelerator transmission window configurations, cooling and materials processing
US6359968B1 (en) X-ray tube capable of generating and focusing beam on a target
US20170263411A1 (en) Electron beam emission device
CN111465164A (zh) 用于电子加速器的双窗引出窗装置及辐照加工装置
WO1990003052A1 (en) Discharge tube for a gas laser device
KR101762255B1 (ko) 대기용 전자빔 표면 처리 장치
RU178158U1 (ru) Устройство для электронно-лучевой резки хрупких листовых неметаллических материалов
WO2023140174A1 (ja) 電源装置
KR101634535B1 (ko) 반사전자 차단구조체가 구비된 전자빔 방출장치
JP2000346998A (ja) 電子線照射装置
JP7054663B2 (ja) 高周波誘導熱プラズマ装置
KR0161631B1 (ko) 반도체 이온주입설비의 냉각장치
JP2007232609A (ja) 電子線照射装置