RU2680672C1 - Датчик вакуума - Google Patents

Датчик вакуума Download PDF

Info

Publication number
RU2680672C1
RU2680672C1 RU2018115384A RU2018115384A RU2680672C1 RU 2680672 C1 RU2680672 C1 RU 2680672C1 RU 2018115384 A RU2018115384 A RU 2018115384A RU 2018115384 A RU2018115384 A RU 2018115384A RU 2680672 C1 RU2680672 C1 RU 2680672C1
Authority
RU
Russia
Prior art keywords
housing
disk
cylindrical anode
vacuum sensor
coaxial cylindrical
Prior art date
Application number
RU2018115384A
Other languages
English (en)
Inventor
Анатолий Николаевич Филиппов
Николай Моисеевич Пушкин
Original Assignee
Акционерное общество "Научно-производственное объединение Измерительной техники" (АО "НПО ИТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение Измерительной техники" (АО "НПО ИТ") filed Critical Акционерное общество "Научно-производственное объединение Измерительной техники" (АО "НПО ИТ")
Priority to RU2018115384A priority Critical patent/RU2680672C1/ru
Application granted granted Critical
Publication of RU2680672C1 publication Critical patent/RU2680672C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/30Vacuum gauges by making use of ionisation effects
    • G01L21/34Vacuum gauges by making use of ionisation effects using electric discharge tubes with cold cathodes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Использование: для контроля герметичности космических аппаратов. Сущность изобретения заключается в том, что датчик вакуума содержит корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями, верхний и нижний диэлектрические держатели выполнены из фторопласта, нижний диэлектрический держатель с клеммами для подачи высокого напряжения установлен на основании, которое прикреплено к корпусу винтами, а воздушные полости между корпусом и верхним диэлектрическим держателем и основанием и нижним диэлектрическим держателем заполнены герметиком, корпус выполнен из немагнитного металла, дополнительно в него введены верхняя и нижняя магнитомягкие насадки, установленные на внешней поверхности корпуса, верхняя насадка выполнена в виде цилиндрического колпака, установленного на верхнюю часть корпуса, нижняя насадка выполнена в виде кольца, установленного на нижнюю часть корпуса, высота верхней и нижней насадок установлена равной (1/4-1/3) высоты корпуса, кроме того, основание датчика вакуума также выполнено из магнитомягкого металла. Технический результат: обеспечение возможности уменьшения помех, уменьшения влияния посторонних магнитных полей на показания датчика вакуума. 1 ил.

Description

Изобретение относится к области измерительной и космической технике и может быть использовано для контроля герметичности космических аппаратов (КА) и является усовершенствованием известного устройства, описание которого приведено в патенте RU №2561235.
Известный датчик вакуума содержит корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями (патент RU №2561235, G01L 21/34, от 27.08.2015 г, Бюл. №24).
Недостатком данного устройства является большой уровень помех, создаваемых магнитной системой датчика вакуума в окружающее его пространство.
Задача, решаемая изобретением, заключается в уменьшении помех, создаваемых магнитной системой датчика вакуума, а так же уменьшения влияния посторонних магнитных полей на показания датчика вакуума.
Ожидаемый технический результат достигается тем, что в датчике вакуума по патенту RU №2561235, содержащим корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями, верхний и нижний диэлектрические держатели выполнены из фторопласта, нижний диэлектрический держатель с клеммами для подачи высокого напряжения установлен на основании, которое прикреплено к корпусу винтами, а воздушные полости между корпусом и верхним диэлектрическим держателем и основанием и нижним диэлектрическим держателем заполнены герметиком, корпус выполнен из немагнитного металла, в него введены верхняя и нижняя магнитомягкие насадки, установленные на внешней поверхности корпуса, верхняя насадка выполнена в виде цилиндрического колпака, установленного на верхнюю часть корпуса, нижняя насадка выполнена в виде кольца, установленного на нижнюю часть корпуса, высота верхней и нижней насадок установлена равной (1/4-1/3) высоты корпуса, кроме того, основание датчика вакуума так же выполнено из магнитомягкого металла.
На фиг. 1 приведена конструкция датчика вакуума.
Датчик вакуума содержит корпус 1, коаксиальный цилиндрический анод 2, катод 3, состоящий из двух металлических дисков 3.1 и 3.2, соединенных между собой металлическим центральным стержнем 3.3, и магнитную систему 4, составленную из двух дисковых постоянных магнитов 4.1 и 4.2, которые вместе с коаксиальным цилиндрическим анодом 2 и катодом 3 размещены в корпусе 1. Корпус 1 и коаксиальный цилиндрический анод 2 выполнены с отверстиями 5 и 6 соответственно. Внутри коаксиального цилиндрического анода 2 на дисковых частях катода 3.1 и 3.2 расположены дисковые постоянные магниты 4.1 и 4.2 соответственно. Катод 3 вместе с дисковыми постоянными магнитами 4.1 и 4.2 зафиксированы внутри цилиндрического анода 2 диэлектрическими держателями 7 и 8. Нижний диэлектрический держатель 7 вместе с клеммами для подачи высокого напряжения 9 и 10 установлены на основании 11, которое прикреплено к корпусу 1 винтами 12. Воздушные полости между корпусом 1 и верхним диэлектрическим держателем 8 и основанием 11 и нижним диэлектрическим держателем 7 заполнены герметиком 13. Кроме того, диэлектрические держатели 7 и 8 выполнены из фторопласта. Корпус 1 выполнен из немагнитного металла (например, алюминия).
Верхняя 14 и нижняя 15 магнитомягкие насадки установлены на внешней поверхности корпуса 1, верхняя насадка 14 выполнена в виде цилиндрического колпака, установленного на верхнюю часть корпуса 1. Нижняя насадка 15 выполнена в виде кольца, установленного на нижнюю часть корпуса 1. Высота верхней 14 и нижней 15 насадок установлена равной (1/4-1/3) высоты корпуса 1.
Основание 11, верхняя 14 и нижняя 15 насадки выполнены из магнитомягкого металла, а анод 2 и катод 3 - из нержавеющей стали.
Принцип действия датчика вакуума основан на ионизационном разряде в скрещенных магнитном и электрическом полях. Заявленный датчик вакуума в условиях функционирования размещается на элементе поверхности МКС в вакуумной среде, с которой датчик связан через отверстия 5 в своем корпусе 1 и отверстия 6 в цилиндрическом корпусе анода 2. Внутри датчика вакуума в объеме между цилиндрическим анодом 2 и катодом 3 с наложенными на дисковые части катода 3.1 и 3.2 постоянные магниты 4.1 и 4.2 создается постоянное однородное магнитное поле, поперечное радиальному электрическому полю внутри цилиндрического анода 2, которое возбуждается при подаче на анод 2 высокого (~2,5 кВ) напряжения через высоковольтные клеммы 9 и 10. Сильное электрическое поле вырывает из катода 3 электроны. Индукция магнитного поля Вм устанавливается больше критического значения, препятствующего непосредственному попаданию электрона на анод, соответствующего значению Вм.критм=0,1 Тл. Поэтому электроны двигаются к аноду 2 не прямолинейно, а по спирали, благодаря чему увеличивается длина их пробега в межэлектродном пространстве. Большая часть электронов на своем пути сталкивается с нейтральными молекулами газа. При этом газ ионизируется и по цепи анод 2 катод 3 протекает ионизационный ток разряда. Величина ионизационного тока прямо пропорциональна количеству молекул в разрядном объеме между анодом 2 и катодом 3, а, следовательно, и величине давления Р. Таким образом, измеряя величину разрядного тока датчика вакуума, определяют давление среды окружающей его.
Как известно, в диапазоне давлений 0,3-1,0 мм рт.ст. согласно закону Пашена находится минимум напряжения, необходимого для возникновения разрядного процесса. Он составляет ~300-400 В. Поэтому для исключения возможности возникновения «паразитного» разрядного процесса между клеммами 9 и 10 для подачи высокого напряжения нижняя полость между основанием и нижним диэлектрическим держателем с клеммами для подачи высокого напряжения 9 и 10 заполнена герметиком (компаунд Виксинт ПКФ-68, ТУ38.103508-81). Электрическая прочность этого компаунда составляет 15 кВ/мм и значительно превышает напряжение пробоя воздушного промежутка (2 кВ/мм при нормальном давлении). Этим же герметиком заполнена и верхняя полость, образованная между верхним диэлектрическим держателем 8 и корпусом 1. Это позволяет исключить зазоры между конструктивными элементами датчика вакуума и, за счет эластичности герметика, значительно повысить вибростойкость датчика вакуума. Предварительные испытания датчика вакуума показали, что герметик (Виксинт ПКФ-68) не влияет на метрологические характеристики датчика в требуемом диапазоне измерения давлений Р=10-2-10-6 мм рт.ст., при этом значительно повышает его вибростойкость.
Как уже упоминалось выше, индукция магнитного поля, создаваемого постоянными магнитами 4.1 и 4.2 в объеме между цилиндрическим анодом 2 и катодом 3, имеет величину порядка 0,1 Тл. Однако, эти же постоянные магниты 4.1 и 4.2 создают постоянное магнитное поле и за пределами корпуса 1 и основания 11 датчика вакуума, что может быть крайне нежелательным для работы другой аппаратуры, находящейся рядом с датчиком вакуума.
Введение в датчик вакуума накладок 14 и 15 и выполнение их и его основания 11 из магнитомягкого металла (пермаллоя) позволяет, во-первых, локализовать силовые линии постоянного магнитного поля практически в пределах корпуса датчика и тем самым значительно уменьшить влияние постоянного магнитного поля на работу других приборов, находящихся рядом с датчиком вакуума, во-вторых, повысить плотность и однородность силовых магнитных линий (напряженность и однородность магнитного поля) в рабочей зоне датчика вакуума, что так же улучшает его метрологические характеристики.

Claims (1)

  1. Датчик вакуума, содержащий корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями, верхний и нижний диэлектрические держатели выполнены из фторопласта, нижний диэлектрический держатель с клеммами для подачи высокого напряжения установлен на основании, которое прикреплено к корпусу винтами, а воздушные полости между корпусом и верхним диэлектрическим держателем и основанием и нижним диэлектрическим держателем заполнены герметиком, корпус выполнен из немагнитного металла, отличающийся тем, что в него введены верхняя и нижняя магнитомягкие насадки, установленные на внешней поверхности корпуса, верхняя насадка выполнена в виде цилиндрического колпака, установленного на верхнюю часть корпуса, нижняя насадка выполнена в виде кольца, установленного на нижнюю часть корпуса, высота верхней и нижней насадок установлена равной (1/4-1/3) высоты корпуса, кроме того, основание датчика вакуума также выполнено из магнитомягкого металла.
RU2018115384A 2018-04-24 2018-04-24 Датчик вакуума RU2680672C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018115384A RU2680672C1 (ru) 2018-04-24 2018-04-24 Датчик вакуума

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018115384A RU2680672C1 (ru) 2018-04-24 2018-04-24 Датчик вакуума

Publications (1)

Publication Number Publication Date
RU2680672C1 true RU2680672C1 (ru) 2019-02-25

Family

ID=65479440

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018115384A RU2680672C1 (ru) 2018-04-24 2018-04-24 Датчик вакуума

Country Status (1)

Country Link
RU (1) RU2680672C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095198A (ja) * 1995-06-19 1997-01-10 Ulvac Japan Ltd コールドカソードゲージ
EP1039285A2 (en) * 1999-03-24 2000-09-27 The BOC Group plc Cold cathode vacuum gauge
RU2427813C1 (ru) * 2010-06-15 2011-08-27 Открытое акционерное общество "Научно-производственное объединение измерительной техники" Датчик вакуума
RU2561235C1 (ru) * 2014-04-30 2015-08-27 Акционерное общество "Научно-производственное объединение измерительной техники" Датчик вакуума
US20160025587A1 (en) * 2013-03-06 2016-01-28 Inficon Gmbh Ionization vacuum measuring cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095198A (ja) * 1995-06-19 1997-01-10 Ulvac Japan Ltd コールドカソードゲージ
EP1039285A2 (en) * 1999-03-24 2000-09-27 The BOC Group plc Cold cathode vacuum gauge
RU2427813C1 (ru) * 2010-06-15 2011-08-27 Открытое акционерное общество "Научно-производственное объединение измерительной техники" Датчик вакуума
US20160025587A1 (en) * 2013-03-06 2016-01-28 Inficon Gmbh Ionization vacuum measuring cell
RU2561235C1 (ru) * 2014-04-30 2015-08-27 Акционерное общество "Научно-производственное объединение измерительной техники" Датчик вакуума

Similar Documents

Publication Publication Date Title
JP6019121B2 (ja) イオン化真空測定セル
CN109075010B (zh) 冷阴极电离真空计和测量压力的方法
JP2005527941A (ja) ある体積内にプラズマを閉じ込める装置
US4672323A (en) Device for measuring the internal pressure of an operationally built built-in vacuum switch
RU2680672C1 (ru) Датчик вакуума
RU2389990C2 (ru) Комбинированный ионизационный вакуумметрический преобразователь
US3575656A (en) Method and apparatus for measuring pressure in vacuum interrupters
RU2561235C1 (ru) Датчик вакуума
US4833921A (en) Gas pressure measurement device
EP3249677B1 (en) Miniature ion pump
JPH04505828A (ja) 真空装置のリーク検出のための、冷陰極イオン源を用いる分圧ゲージ
JP3602917B2 (ja) 冷陰極電離真空計
KR102499367B1 (ko) 역 마그네트론 냉음극 이온화 게이지를 위한 양극 전극 차폐물
RU2427813C1 (ru) Датчик вакуума
US3287589A (en) Electron-collision ion source, particularly for electric mass spectrometers
Tazhen et al. Measuring the self-generated magnetic field and the velocity of plasma flow in a pulsed plasma accelerator
Cranberg et al. Small‐Aperture Diaphragms in Ion‐Accelerator Tubes
JP3739141B2 (ja) 電離真空計
RU2356114C1 (ru) Запаянная нейтронная трубка
Jousten Pressure measurement with ionization gauges
CN112582248B (zh) 一种用于汞离子微波频标的电子枪装置
CN112582247B (zh) 一种用于囚禁离子的小型真空装置和方法
Humphries Jr et al. Miniature Penning ionization gauge for pulsed gas measurements
US3555411A (en) Cold cathode magnetron ionization gauge with cathodes forming pole pieces for cylindrical magnet
US2899605A (en) Warmoltz