RU2561235C1 - Датчик вакуума - Google Patents

Датчик вакуума Download PDF

Info

Publication number
RU2561235C1
RU2561235C1 RU2014117884/28A RU2014117884A RU2561235C1 RU 2561235 C1 RU2561235 C1 RU 2561235C1 RU 2014117884/28 A RU2014117884/28 A RU 2014117884/28A RU 2014117884 A RU2014117884 A RU 2014117884A RU 2561235 C1 RU2561235 C1 RU 2561235C1
Authority
RU
Russia
Prior art keywords
cylindrical anode
disk
coaxial cylindrical
cathodes
disc
Prior art date
Application number
RU2014117884/28A
Other languages
English (en)
Inventor
Анатолий Николаевич Филиппов
Николай Моисеевич Пушкин
Original Assignee
Акционерное общество "Научно-производственное объединение измерительной техники"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение измерительной техники" filed Critical Акционерное общество "Научно-производственное объединение измерительной техники"
Priority to RU2014117884/28A priority Critical patent/RU2561235C1/ru
Application granted granted Critical
Publication of RU2561235C1 publication Critical patent/RU2561235C1/ru

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

Изобретение относится к области измерительной и космической техники и может быть использовано для контроля герметичности космических аппаратов. Техническим результатом изобретения является увеличение электрической прочности и вибростойкости конструкции датчика вакуума. Датчик вакуума содержит корпус, коаксиальный цилиндрический анод, дисковые катоды и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями. Коаксиальный цилиндрический анод выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями. Верхний и нижний диэлектрические держатели выполнены из фторопласта или материала с подобными диэлектрическими свойствами, нижний диэлектрический держатель с клеммами для подачи высокого напряжения установлен на основании, которое прикреплено к корпусу винтами, а воздушные полости между корпусом и верхним диэлектрическим держателем и основанием и нижним диэлектрическим держателем заполнены герметиком. 1 ил.

Description

Изобретение относится к области измерительной и космической техники, может быть использовано для контроля герметичности космических аппаратов (КА) и является усовершенствованием известного устройства, описанного в патенте RU №2427813.
Известный датчик вакуума содержит корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями (патент RU №2427813, кл. G01L 21/34, от 27.08.2011 г., Бюл. №24).
Недостатком данного устройства является недостаточная вибростойкость конструкции датчика вакуума и недостаточно высокая электрическая прочность клемм для подачи высокого напряжения на электроды датчика вакуума.
Задача, решаемая изобретением, заключается в увеличении электрической прочности и вибростойкости конструкции датчика вакуума.
Ожидаемый технический результат достигается тем, что в датчике вакуума по патенту RU №2427813, содержащем корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями, верхний и нижний диэлектрические держатели выполнены из фторопласта, нижний диэлектрический держатель с клеммами для подачи высокого напряжения установлен на основании, которое прикреплено к корпусу винтами, а воздушные полости между корпусом и верхним диэлектрическим держателем и основанием и нижним диэлектрическим держателем заполнены герметиком.
На фиг.1 приведена конструкция датчика вакуума.
Датчик вакуума содержит корпус 1, коаксиальный цилиндрический анод 2, катод 3, состоящий из двух металлических дисков 3.1 и 3.2, соединенных между собой металлическим центральным стержнем 3.3, и магнитную систему 4, составленную из двух дисковых постоянных магнитов 4.1 и 4.2, которые вместе с коаксиальным цилиндрическим анодом 2 и катодом 3 размещены в корпусе 1. Корпус 1 и коаксиальный цилиндрический анод 2 выполнены с отверстиями 5 и 6 соответственно. Внутри коаксиального цилиндрического анода 2 на дисковых частях катода 3.1 и 3.2 расположены дисковые постоянные магниты 4.1 и 4.2 соответственно. Катод 3 вместе с дисковыми постоянными магнитами 4.1 и 4.2 зафиксирован внутри цилиндрического анода 2 диэлектрическими держателями 7 и 8. Нижний диэлектрический держатель 7 вместе с клеммами для подачи высокого напряжения 9 и 10 установлен на основании 11, которое прикреплено к корпусу 1 винтами 12. Воздушные полости между корпусом 1 и верхним диэлектрическим держателем 8 и основанием 11 и нижним диэлектрическим держателем 7 заполнены герметиком 13. Кроме того, диэлектрические держатели 7 и 8 выполнены из фторопласта.
Принцип действия датчика вакуума основан на ионизационном разряде в скрещенных магнитном и электрическом полях. Заявленный датчик вакуума в условиях функционирования размещается на элементе поверхности КА в вакуумной среде, с которой датчик связан через отверстия 5 в своем корпусе 1 и отверстия 6 в цилиндрическом корпусе анода 2. Внутри датчика вакуума, в объеме между цилиндрическим анодом 2 и катодом 3 с наложенными на дисковые части катода 3.1 и 3.2 постоянными магнитами 4.1 и 4.2, создается постоянное однородное магнитное поле, поперечное радиальному электрическому полю внутри цилиндрического анода 2, которое возбуждается при подаче на анод 2 высокого (~2,5 кВ) напряжения через высоковольтные клеммы 9 и 10. Сильное электрическое поле вырывает из катода 3 электроны. Индукция магнитного поля Вм устанавливается больше критического значения, препятствующего непосредственному попаданию электрона на анод, соответствующего значению Вм.критм=0,1 Тл. Поэтому электроны двигаются к аноду 2 не прямолинейно, а по спирали, благодаря чему увеличивается длина их пробега в межэлектродном пространстве. Большая часть электронов на своем пути сталкивается с нейтральными молекулами газа. При этом газ ионизируется, и по цепи анод 2 - катод 3 протекает ионизационный ток разряда. Величина ионизационного тока прямо пропорциональна количеству молекул в разрядном объеме между анодом 2 и катодом 3, а следовательно, и величине давления Р. Таким образом, измеряя величину разрядного тока датчика вакуума, определяют давление среды, окружающей его.
Как известно, в диапазоне давлений 0,3-1,0 мм рт.ст. согласно закону Пашена находится минимум напряжения, необходимого для возникновения разрядного процесса. Он составляет ~300-400 В. Поэтому для исключения возможности возникновения «паразитного» разрядного процесса между клеммами 9 и 10 для подачи высокого напряжения нижняя полость между основанием и нижним диэлектрическим держателем с клеммами для подачи высокого напряжения 9 и 10 заполнена герметиком (компаунд Виксинт ПКФ-68, ТУ38.103508-81). Электрическая прочность этого компаунда составляет 15 кВ/мм и значительно превышает напряжение пробоя воздушного промежутка (2 кВ/мм при нормальном давлении). Этим же герметиком заполнена и верхняя полость, образованная между верхним диэлектрическим держателем 8 и корпусом 1. Это позволяет исключить зазоры между конструктивными элементами датчика вакуума и за счет эластичности герметика значительно повысить вибростойкость датчика вакуума. Предварительные испытания датчика вакуума показали, что герметик (Виксинт ПКФ-68) не влияет на метрологические характеристики датчика в требуемом диапазоне измерения давлений Р=10-2-10-6 мм рт.ст., при этом значительно повышает его вибростойкость (не менее 20g в диапазоне частот от 20 до 2000 Гц) и электрическую прочность.

Claims (1)

  1. Датчик вакуума, содержащий корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями, отличающийся тем, что верхний и нижний диэлектрические держатели выполнены из фторопласта, нижний диэлектрический держатель с клеммами для подачи высокого напряжения установлен на основании, которое прикреплено к корпусу винтами, а воздушные полости между корпусом и верхним диэлектрическим держателем и основанием и нижним диэлектрическим держателем заполнены герметиком.
RU2014117884/28A 2014-04-30 2014-04-30 Датчик вакуума RU2561235C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014117884/28A RU2561235C1 (ru) 2014-04-30 2014-04-30 Датчик вакуума

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014117884/28A RU2561235C1 (ru) 2014-04-30 2014-04-30 Датчик вакуума

Publications (1)

Publication Number Publication Date
RU2561235C1 true RU2561235C1 (ru) 2015-08-27

Family

ID=54015536

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014117884/28A RU2561235C1 (ru) 2014-04-30 2014-04-30 Датчик вакуума

Country Status (1)

Country Link
RU (1) RU2561235C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680672C1 (ru) * 2018-04-24 2019-02-25 Акционерное общество "Научно-производственное объединение Измерительной техники" (АО "НПО ИТ") Датчик вакуума

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474171B1 (en) * 1999-03-24 2002-11-05 The Boc Group Plc Vacuum gauge
RU2427813C1 (ru) * 2010-06-15 2011-08-27 Открытое акционерное общество "Научно-производственное объединение измерительной техники" Датчик вакуума
RU2485465C1 (ru) * 2012-04-28 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ изготовления датчика вакуума с наноструктурой и датчик вакуума на его основе

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474171B1 (en) * 1999-03-24 2002-11-05 The Boc Group Plc Vacuum gauge
RU2427813C1 (ru) * 2010-06-15 2011-08-27 Открытое акционерное общество "Научно-производственное объединение измерительной техники" Датчик вакуума
RU2485465C1 (ru) * 2012-04-28 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ изготовления датчика вакуума с наноструктурой и датчик вакуума на его основе

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680672C1 (ru) * 2018-04-24 2019-02-25 Акционерное общество "Научно-производственное объединение Измерительной техники" (АО "НПО ИТ") Датчик вакуума

Similar Documents

Publication Publication Date Title
JP6019121B2 (ja) イオン化真空測定セル
CN102771196B (zh) 高频谐振器腔和加速器
CN109075010B (zh) 冷阴极电离真空计和测量压力的方法
CN106057614B (zh) 一种冷阴极潘宁离子源
US20140062343A1 (en) Cyclotron
RU2016106660A (ru) Способ определения давления внутри вакуумного выключателя и вакуумный выключатель
RU2561235C1 (ru) Датчик вакуума
US4672323A (en) Device for measuring the internal pressure of an operationally built built-in vacuum switch
RU2389990C2 (ru) Комбинированный ионизационный вакуумметрический преобразователь
RU2543103C2 (ru) Ионный двигатель
EP3249677B1 (en) Miniature ion pump
RU2680672C1 (ru) Датчик вакуума
Li et al. Effects of atmospheric-pressure discharge type on ionic wind velocity for needle-to-cylinder electrode
RU2427813C1 (ru) Датчик вакуума
CN202332716U (zh) 内置冷阴极规管的真空灭弧室真空度测量装置
Schueller et al. Influence of the gas volume size on spacer charging in SF6 under DC stress
CN106350777B (zh) 一种磁控溅射阴极装置及磁控溅射装置
TWI761403B (zh) 用於反磁控管冷陰極電離計量器的陽極電極屏蔽
RU2356114C1 (ru) Запаянная нейтронная трубка
CN105679596B (zh) 一种超高电压真空绝缘装置
CN109473334A (zh) 一种新型离子源
JPH1019711A (ja) 冷陰極電離真空計
Lee et al. Hydrogen beam extraction of penning ion source for compact neutron generator
CN102412089B (zh) 内置冷阴极规管的真空灭弧室真空度测量装置
CN112582248B (zh) 一种用于汞离子微波频标的电子枪装置