RU2679974C1 - Interference compensation computer - Google Patents

Interference compensation computer Download PDF

Info

Publication number
RU2679974C1
RU2679974C1 RU2017140559A RU2017140559A RU2679974C1 RU 2679974 C1 RU2679974 C1 RU 2679974C1 RU 2017140559 A RU2017140559 A RU 2017140559A RU 2017140559 A RU2017140559 A RU 2017140559A RU 2679974 C1 RU2679974 C1 RU 2679974C1
Authority
RU
Russia
Prior art keywords
inputs
interference
meter
unit
complex
Prior art date
Application number
RU2017140559A
Other languages
Russian (ru)
Inventor
Дмитрий Иванович Попов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет"
Priority to RU2017140559A priority Critical patent/RU2679974C1/en
Application granted granted Critical
Publication of RU2679974C1 publication Critical patent/RU2679974C1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Remote Sensing (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

FIELD: computer equipment.
SUBSTANCE: invention relates to computer technology and can be used in automated systems for complex mathematical operations in order to isolate signals against background of passive interference in a group reorganization of the carrier frequency of probe pulses. Device comprises a meter for the Doppler phase of interference, a weight unit, a complex adder, a complex multiplier, a delay unit, interference correlation coefficient meter, a weighting factor calculator, a transfer unit, a switching unit, a two-channel switch and a clock generator.
EFFECT: increased efficiency of signal extraction of moving targets against background of passive interference with priori unknown correlation properties.
1 cl, 9 dwg

Description

Изобретение относится к области компьютерной технике и может быть использовано в автоматизированных системах для выполнения комплексных математических операций с целью выделения сигналов на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов.The invention relates to the field of computer technology and can be used in automated systems to perform complex mathematical operations in order to isolate signals against the background of passive interference during group tuning of the carrier frequency of the probe pulses.

Известно устройство для обнаружения движущейся цели [1], содержащее последовательно включенные блоки задержки, умножитель комплексных чисел и вычитатель. Однако это устройство обладает низкой эффективностью выделения сигнала движущейся цели.A device for detecting a moving target [1], which contains series-connected delay blocks, a complex number multiplier and a subtractor, is known. However, this device has a low signal extraction efficiency for a moving target.

Другим известным устройством является корреляционный автокомпенсатор [2], который содержит ряд блоков задержки, два перемножителя, сумматор и блок оценки параметров коррелированной помехи. Недостатком этого устройства является плохое подавление кромок протяженной помехи из-за большой постоянной времени цепи адаптивной обратной связи.Another known device is the correlation auto-compensator [2], which contains a number of delay units, two multipliers, an adder and a unit for estimating the parameters of the correlated noise. The disadvantage of this device is the poor suppression of the edges of the extended interference due to the large time constant of the adaptive feedback circuit.

Наиболее близкое к данному изобретению цифровое устройство для подавления пассивных помех [3], выбранное в качестве прототипа, содержит измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель и блок задержки. Однако данное устройство из-за переходного процесса при поступлении кромки пассивной помехи имеет низкую эффективность выделения сигналов движущихся целей.Closest to the present invention, a digital device for suppressing passive interference [3], selected as a prototype, contains a Doppler phase noise meter, a weight unit, a complex adder, a complex multiplier and a delay unit. However, this device due to the transient process upon receipt of the edge of the passive interference has a low efficiency of signal extraction of moving targets.

Задачей, решаемой в изобретении, является повышение эффективности компенсации пассивной помехи и выделения сигналов движущихся целей при обработке группы импульсов на фоне пассивных помех с априорно неизвестными корреляционными свойствами.The problem to be solved in the invention is to increase the efficiency of compensating for passive interference and isolating signals of moving targets when processing a group of pulses against a background of passive interference with a priori unknown correlation properties.

Для решения поставленной задачи в вычислитель для компенсации помех, содержащий измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель и блок задержки, введены измеритель коэффициента корреляции помехи, вычислитель весовых коэффициентов, блок переключения, блок коммутации, двухканальный коммутатор и синхрогенератор, соединенные между собой определенным образом.To solve this problem, a calculator for interference compensation, containing a Doppler phase noise meter, a weight unit, a complex adder, a complex multiplier and a delay unit, introduces an interference correlation coefficient meter, a weight coefficient calculator, a switching unit, a switching unit, a two-channel switch and a clock generator connected among themselves in a certain way.

Сущность изобретения как технического решения характеризуется совокупностью существенных признаков, изложенных в формуле изобретения и обеспечивающих решение поставленной задачи путем оптимальной и согласованной обработки группы импульсов.The essence of the invention as a technical solution is characterized by a combination of essential features set forth in the claims and providing a solution to the problem by optimal and consistent processing of a group of pulses.

Технический результат изобретения состоит в повышении эффективности компенсации пассивной помехи с априорно неизвестными корреляционными свойствами и выделения сигналов движущихся целей при групповой перестройке несущей частоты зондирующих импульсов.The technical result of the invention is to increase the efficiency of compensation for passive interference with a priori unknown correlation properties and the allocation of signals of moving targets during group tuning of the carrier frequency of the probe pulses.

На фиг. 1 представлена структурная электрическая схема вычислителя для компенсации помех; на фиг. 2 - измерителя доплеровской фазы помехи; на фиг. 3 - весового блока; на фиг. 4 - комплексного сумматора; на фиг. 5 - комплексного перемножителя; на фиг. 6 - блока задержки; на фиг. 7 - накопителя; на фиг. 8 - измерителя коэффициента корреляции помехи; на фиг. 9 - блока переключения.In FIG. 1 shows a block diagram of a calculator for noise compensation; in FIG. 2 - meter Doppler phase interference; in FIG. 3 - weight unit; in FIG. 4 - complex adder; in FIG. 5 - complex multiplier; in FIG. 6 - delay unit; in FIG. 7 - drive; in FIG. 8 - meter correlation coefficient interference; in FIG. 9 - switching unit.

Вычислитель для компенсации помех (фиг. 1) содержит измеритель 1 доплеровской фазы помехи, весовой блок 2, комплексный сумматор 3, комплексный перемножитель 4, блок 5 задержки, измеритель 6 коэффициента корреляции помехи, вычислитель 7 весовых коэффициентов, блок 8 переключения, блок 9 коммутации, двухканальный коммутатор 10 и синхрогенератор 11.The calculator for interference compensation (Fig. 1) contains a Doppler phase interference meter 1, a weight unit 2, a complex adder 3, a complex multiplier 4, a delay unit 5, an interference correlation coefficient meter 6, a weighting computer 7, a switching unit 8, a switching unit 9 , two-channel switch 10 and a sync generator 11.

Измеритель 1 доплеровской фазы помехи (фиг. 2) содержит блок 12 задержки, блок 13 комплексного сопряжения, комплексный перемножитель 14, два накопителя 15, блок 16 вычисления модуля и два делителя 17; весовой блок 2 (фиг. 3) содержит два перемножителя 18; комплексный сумматор 3 (фиг. 4) содержит два сумматора 19; комплексный перемножитель 4 (фиг. 5) содержит два канала (I, II), каждый из которых содержит перемножители 20, 21 и сумматор 22; блоки 5, 12 задержки (фиг. 6) содержат два оперативных запоминающих устройства 23; накопители 15, 28 (фиг. 7) содержат n элементов 24 задержки на интервал tд и n сумматоров 25; измеритель 6 коэффициента корреляции помехи (фиг. 8) содержит два перемножителя 26, сумматор 27, накопитель 28 и делитель 29; блок 8 переключения (фиг. 9) содержит счетчик 30, дешифратор 31, блоки 32 совпадений и сумматор 33.The meter 1 of the Doppler phase of interference (Fig. 2) contains a delay unit 12, a complex conjugation unit 13, a complex multiplier 14, two drives 15, a module calculation unit 16 and two divider 17; the weight unit 2 (Fig. 3) contains two multipliers 18; complex adder 3 (Fig. 4) contains two adders 19; complex multiplier 4 (Fig. 5) contains two channels (I, II), each of which contains multipliers 20, 21 and the adder 22; blocks 5, 12 delay (Fig. 6) contain two random access memory 23; drives 15, 28 (Fig. 7) contain n delay elements 24 for the interval t d and n adders 25; the interference correlation coefficient meter 6 (Fig. 8) comprises two multipliers 26, an adder 27, a drive 28 and a divider 29; block 8 switching (Fig. 9) contains a counter 30, a decoder 31, blocks 32 matches and the adder 33.

Вычислитель для компенсации помех может быть осуществлен следующим образом.The calculator for noise compensation can be carried out as follows.

Группа когерентных радиоимпульсов, первоначально излученных с одинаковой несущей частотой и состоящих из сигнала от движущейся цели и пассивной помехи, значительно превышающей сигнал, поступает на вход радиоприемного устройства, в котором усиливается, в квадратурных фазовых детекторах переносится на видеочастоту, а затем подвергается аналого-цифровому преобразованию (соответствующие блоки на фиг. 1 не показаны).A group of coherent radio pulses, initially radiated with the same carrier frequency and consisting of a signal from a moving target and passive interference significantly exceeding the signal, is fed to the input of a receiving device, in which it is amplified, is transferred to the video frequency in quadrature phase detectors, and then subjected to analog-to-digital conversion (corresponding blocks in Fig. 1 are not shown).

Цифровые коды

Figure 00000001
обеих квадратурных проекций, следующие через период повторения Т, в каждом элементе разрешения по дальности (кольце дальности) каждого периода повторения образуют последовательность комплексных чиселDigital codes
Figure 00000001
of both quadrature projections following through the repetition period T, in each range resolution element (range ring) of each repetition period form a sequence of complex numbers

Figure 00000002
Figure 00000002

где k - номер текущего периода,

Figure 00000003
- номер текущего кольца дальности,
Figure 00000004
- доплеровский сдвиг за период повторения фазы (обычно помехи, ввиду ее значительного превышения над сигналом), равный
Figure 00000005
, здесь
Figure 00000006
- доплеровская частота помехи.where k is the number of the current period,
Figure 00000003
- number of the current range ring,
Figure 00000004
- Doppler shift during the phase repetition period (usually interference, due to its significant excess over the signal), equal
Figure 00000005
, here
Figure 00000006
- Doppler interference frequency.

Цифровые отсчеты в заявляемом устройстве (фиг. 1) поступают на соединенные входы измерителя 1 доплеровской фазы помехи (фиг. 2), весового блока 2 (фиг. 3) и измерителя 6 коэффициента корреляции помехи (фиг. 8). В измерителе 1 блок 12 задержки (фиг. 6) состоит из параллельно включенных оперативных запоминающих устройств (ОЗУ) 23. Причем каждое ОЗУ 23 служит для хранения значений отсчетов с колец дальности каждого квадратурного канала в течение одного периода.Digital readings in the inventive device (Fig. 1) are supplied to the connected inputs of the meter 1 of the Doppler phase noise (Fig. 2), the weight unit 2 (Fig. 3) and the meter 6 of the interference correlation coefficient (Fig. 8). In meter 1, the delay unit 12 (Fig. 6) consists of parallel-connected random access memory (RAM) 23. Moreover, each RAM 23 serves to store the values of the samples from the range rings of each quadrature channel for one period.

В блоке 13 комплексного сопряжения происходит инвертирование знака мнимых проекций задержанных отсчетов. В комплексном перемножителе 14 происходит перемножение соответствующих комплексных чисел, реализуемое путем операций с проекциями этих чисел в соответствии с фиг. 5 и приводящее к образованию величинIn block 13 complex conjugation, the sign of the imaginary projections of the delayed samples is inverted. In the complex multiplier 14, the multiplication of the corresponding complex numbers occurs, which is realized by operations with the projections of these numbers in accordance with FIG. 5 and leading to the formation of quantities

Figure 00000007
.
Figure 00000007
.

В накопителях 15 (фиг. 7) с помощью элементов 24 задержки и сумматоров 25 осуществляется скользящее вдоль дальности в каждом периоде повторения суммирование проекций

Figure 00000008
и
Figure 00000009
с n+1 смежных элементов разрешения по дальности
Figure 00000010
строба, кроме элемента с номером n/2+1, для чего выходные величины элемента 24 задержки с номером n/2 поступают только на последующий элемент 24 задержки (фиг. 7). В результате накопления образуются величиныIn the drives 15 (Fig. 7) using the delay elements 24 and the adders 25 is carried out sliding along the range in each repetition period, the summation of the projections
Figure 00000008
and
Figure 00000009
with n + 1 adjacent range resolution elements
Figure 00000010
the gate, except for the element with the number n / 2 + 1, for which the output values of the delay element 24 with the number n / 2 are received only to the subsequent delay element 24 (Fig. 7). As a result of accumulation, values are formed

Figure 00000011
Figure 00000011

где

Figure 00000012
- оценка сдвига фазы помехи за период повторения, усредненная по n смежным элементам разрешения по дальности.Where
Figure 00000012
- an estimate of the phase shift of the interference over the repetition period averaged over n adjacent range resolution elements.

В блоке 16 вычисления модуля определяются величины

Figure 00000013
, а затем на выходах делителей 17 (фиг. 2) - величины
Figure 00000014
, поступающие на первые входы комплексного перемножителя 4. Точность определения величины
Figure 00000015
определяется числом накапливаемых отсчетов n. In block 16, the calculation of the module determines the values
Figure 00000013
, and then at the outputs of the dividers 17 (Fig. 2) - values
Figure 00000014
entering the first inputs of the complex multiplier 4. Accuracy of determining the value
Figure 00000015
determined by the number of accumulated samples n.

В измерителе 6 коэффициента корреляции помехи в соответствии с его структурной схемой (фиг. 8) и поступающими входными отсчетами

Figure 00000016
и величиной | Yk | от измерителя 1 доплеровской фазы помехи определяется оценка коэффициента корреляции помехиIn the meter 6 of the correlation coefficient of interference in accordance with its structural diagram (Fig. 8) and the incoming input samples
Figure 00000016
and value | Y k | from the meter 1 of the Doppler phase of interference is determined by the estimate of the correlation coefficient of interference

Figure 00000017
Figure 00000017

Оценка

Figure 00000018
поступает в вычислитель 7 весовых коэффициентов. Количество вычисляемых по оценке
Figure 00000019
весовых коэффициентов
Figure 00000020
определяется реализуемым порядком вычислителя для компенсации помех m, связанным с числом импульсов в группе, равным m+1. В частности, при m=1 весовые коэффициенты
Figure 00000021
,
Figure 00000022
; при
Figure 00000023
,
Figure 00000024
; при
Figure 00000025
,
Figure 00000026
.Rating
Figure 00000018
enters the calculator 7 weighting factors. The number calculated
Figure 00000019
weighting factors
Figure 00000020
is determined by the implemented order of the calculator to compensate for interference m associated with the number of pulses in the group equal to m + 1. In particular, for m = 1 weights
Figure 00000021
,
Figure 00000022
; at
Figure 00000023
,
Figure 00000024
; at
Figure 00000025
,
Figure 00000026
.

В весовом блоке 2 (фиг. 3) происходит взвешивание поступающих отсчетов весовыми коэффициентами

Figure 00000027
. Весовые коэффициенты переключаются в каждом периоде повторения блоком 8 переключения (фиг. 9), который обеспечивает обработку группы импульсов (отсчетов) с одинаковой исходной несущей частотой.In the weight block 2 (Fig. 3), the incoming samples are weighed by weight coefficients
Figure 00000027
. The weights are switched in each repetition period by the switching unit 8 (Fig. 9), which provides the processing of a group of pulses (samples) with the same initial carrier frequency.

Импульс от синхронизатора радиолокатора (на фиг. 1 не показан), соответствующий излучению зондирующего импульса в каждом периоде, поступает на первый управляющий вход (1) вычислителя для компенсации помех, являющийся первым управляющим входом (1) блока 8 переключения, а затем на счетный вход счетчика 30 (фиг. 9). Показания счетчика, соответствующие номеру импульса в группе, в дешифраторе 31 преобразуются в единичный сигнал на соответствующем номеру импульса выходе дешифратора 31. Этот сигнал открывает подключенный к нему каскад совпадений 32, через который проходит соответствующий весовой коэффициент, поступающий через сумматор 33 на выход блока 8 переключения. Таким образом, каждому периоду и, следовательно, каждому импульсу в группе соответствует свой весовой коэффициент.The pulse from the radar synchronizer (not shown in Fig. 1), corresponding to the radiation of the probe pulse in each period, is fed to the first control input (1) of the computer for noise compensation, which is the first control input (1) of the switching unit 8, and then to the counting input counter 30 (Fig. 9). The counter readings corresponding to the pulse number in the group in the decoder 31 are converted into a single signal at the corresponding pulse number of the output of the decoder 31. This signal opens the coincidence cascade 32 connected to it, through which the corresponding weight coefficient passes through the adder 33 to the output of the switching unit 8 . Thus, each period and, therefore, each impulse in the group has its own weight coefficient.

Взвешенные в весовом блоке 2 отсчеты суммируются в комплексном сумматоре 3 с задержанными в блоке 5 задержки на период повторения T, прошедшими через двухканальный коммутатор 10 и умноженными в комплексном перемножителе 4 на величину

Figure 00000028
весовыми суммами отсчетов всех предыдущих импульсов группы. В конечном счете, в результате адаптивной весовой обработки отсчетов m+1 периодов образуется величинаThe samples weighted in the weight block 2 are summed in the complex adder 3 with the delays in the delay unit 5 for the repetition period T, passed through the two-channel switch 10 and multiplied in the complex multiplier 4 by the value
Figure 00000028
weighted sums of samples of all previous pulses of the group. Ultimately, as a result of adaptive weight processing of samples of m + 1 periods, the value

Figure 00000029
Figure 00000029

Двумерный поворот задержанных отсчетов на угол

Figure 00000030
обеспечивает необходимую для компенсации помехи синфазность суммируемых отсчетов, а их взвешивание коэффициентами
Figure 00000031
- наилучшую компенсацию (режектирование) отсчетов помехи с коэффициентом корреляции
Figure 00000032
. Отсчеты сигнала от движущейся цели из-за сохранения доплеровских сдвигов фазы не подавляются.Two-dimensional rotation of delayed samples at an angle
Figure 00000030
provides the necessary in-phase compensation of the summed samples to compensate for interference, and their weighing by coefficients
Figure 00000031
- the best compensation (notch) of interference samples with a correlation coefficient
Figure 00000032
. The signal samples from a moving target due to the conservation of Doppler phase shifts are not suppressed.

Адаптивная обработка осуществляется для среднего элемента обучающей выборки, исключенного в накопителях 15 и 28 (фиг. 7) в соответствии с выражениями (1) и (2) и не влияющего на получаемые оценки

Figure 00000033
и
Figure 00000034
.Adaptive processing is carried out for the middle element of the training sample, excluded in drives 15 and 28 (Fig. 7) in accordance with expressions (1) and (2) and not affecting the resulting estimates
Figure 00000033
and
Figure 00000034
.

После завершения обработки данных m+1 периодов и очередной перестройки несущей частоты на вторые управляющие входы (2) устройства (фиг. 1) и блока 8 переключения (фиг. 9) и управляющий вход блока 9 коммутации поступает импульс, который обнуляет счетчик 30, а в блоке 9 коммутации переключает релаксационный генератор (мультивибратор). По команде блока 9 коммутации двухканальный коммутатор 10 переключает блок 5 задержки к выходу вычислителя, и в течение периода повторения Т происходит считывание результатов режектирования V. На вход устройства поступают и начинают обрабатываться данные первого периода следующей группы.After the processing of data of m + 1 periods and the next tuning of the carrier frequency to the second control inputs (2) of the device (Fig. 1) and the switching unit 8 (Fig. 9) and the control input of the switching unit 9, a pulse arrives that resets the counter 30, and in block 9 switching switches the relaxation generator (multivibrator). At the command of the switching unit 9, the two-channel switch 10 switches the delay unit 5 to the output of the calculator, and during the repetition period T, the results of the notch V are read. The data of the first period of the next group are received and processed.

Синхронизация вычислителя для компенсации помех осуществляется подачей на все блоки заявляемого устройства последовательности синхронизирующих импульсов от синхрогенератора 11 (фиг. 1), управляемого совместно с блоком 8 переключения импульсами (1) синхронизатора радиолокатора (на фиг. 1 не показан), следующими с интервалом Т. Период повторения синхронизирующих импульсов равен интервалу

Figure 00000035
дискретизации tд, выбираемому из условия требуемой разрешающей способности по дальности. Достигаемый технический результат состоит в следующем. На выход устройства не поступают нескомпенсированные остатки помехи в переходном режиме, традиционно маскирующие сигнал от цели. В предлагаемом устройстве на выход поступают только скомпенсированные остатки помехи в установившемся режиме, что исключает эффект «кромки» помехи и повышает эффективность выделения сигналов движущихся целей.The synchronization of the calculator to compensate for interference is carried out by applying to all the blocks of the claimed device a sequence of synchronizing pulses from the sync generator 11 (Fig. 1), controlled together with the pulser switching unit 8 (radar synchronizer (1) not shown in Fig. 1), with an interval T. The repetition period of the synchronizing pulses is equal to the interval
Figure 00000035
discretization t d selected from the conditions of the required resolution in range. The technical result achieved is as follows. Uncompensated residuals of noise in the transition mode, traditionally masking the signal from the target, do not arrive at the output of the device. In the proposed device, the output receives only compensated residual noise in the steady state, which eliminates the effect of the "edge" of the noise and increases the efficiency of signal extraction of moving targets.

Таким образом, вычислитель для компенсации помех повышает эффективность режектирования пассивной помехи и выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами.Thus, the calculator for noise compensation improves the efficiency of rejecting passive interference and isolating the signals of moving targets against the background of passive interference with a priori unknown correlation properties.

БиблиографияBibliography

1. Патент №63-49193 (Япония), МПК G01S 13/52. Радиолокационное устройство для обнаружения движущейся цели / К.К. Тосиба. Опубл. 03.10.1988. - Изобретения стран мира. - 1989. - Выпуск 109. - №15. - С. 52.1. Patent No. 63-49193 (Japan), IPC G01S 13/52. Radar device for detecting a moving target / K.K. Toshiba. Publ. 10/03/1988. - Inventions of the countries of the world. - 1989. - Issue 109. - No. 15. - S. 52.

2. Радиоэлектронные системы: основы построения и теория. Справочник / Я.Д. Ширман, С.Т. Багдасарян, А.С. Маляренко, Д.И. Леховицкий [и др.]; под ред Я.Д. Ширмана. - 2-е изд., перераб. и доп. - М.: Радиотехника, 2007; с. 439, рис. 25.22.2. Radio-electronic systems: fundamentals of construction and theory. Reference book / Ya.D. Shirman, S.T. Baghdasaryan, A.S. Malyarenko, D.I. Lekhovitsky [et al.]; edited by Y.D. Shirman. - 2nd ed., Revised. and add. - M .: Radio engineering, 2007; from. 439, fig. 25.22.

3. А.с. 743208 СССР, МПК G01S 7/36. Цифровое устройство для подавления пассивных помех / Д.И. Попов. - №2540079/09; заявл. 03.11.1977; опубл. 25.06.1980, Бюл. №23. - 4 с. 3. A.S. 743208 USSR, IPC G01S 7/36. Digital device for suppressing passive interference / D.I. Popov. - No. 2540079/09; declared 11/03/1977; publ. 06/25/1980, Bull. Number 23. - 4 p.

Claims (1)

Вычислитель для компенсации помех, содержащий измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель и блок задержки, при этом входы измерителя доплеровской фазы помехи соединены с первыми входами весового блока, выходы которого соединены с первыми входами комплексного сумматора, вторые входы которого соединены с выходами комплексного перемножителя, первые выходы измерителя доплеровской фазы помехи соединены с первыми входами комплексного перемножителя, отличающийся тем, что введены измеритель коэффициента корреляции помехи, вычислитель весовых коэффициентов, блок переключения, блок коммутации, двухканальный коммутатор и синхрогенератор, при этом первые входы измерителя коэффициента корреляции помехи соединены с входами измерителя доплеровской фазы помехи и с первыми входами весового блока, второй вход измерителя коэффициента корреляции помехи соединен со вторым выходом измерителя доплеровской фазы помехи, выход измерителя коэффициента корреляции помехи соединен с входом вычислителя весовых коэффициентов, выходы которого соединены с основными входами блока переключения, выход которого соединен со вторым входом весового блока, первый управляющий вход блока переключения соединен с первым управляющим входом вычислителя для компенсации помех, выходы комплексного сумматора соединены с входами блока задержки, выходы которого соединены с основными входами двухканального коммутатора, первые выходы которого соединены со вторыми входами комплексного перемножителя, а управляющий вход - с выходом блока коммутации, второй управляющий вход блока переключения и управляющий вход блока коммутации соединены со вторым управляющим входом вычислителя для компенсации помех, управляющий вход синхрогенератора соединен с первым управляющим входом вычислителя для компенсации помех, а выход синхрогенератора - с синхровходами измерителя доплеровской фазы помехи, весового блока, комплексного сумматора, комплексного перемножителя, блока задержки, измерителя коэффициента корреляции помехи, вычислителя весовых коэффициентов, блока переключения, блока коммутации и двухканального коммутатора, причем основными входами вычислителя для компенсации помех являются соединенные входы измерителя доплеровской фазы помехи, первые входы весового блока и первые входы измерителя коэффициента корреляции помехи, а выходами - вторые выходы двухканального коммутатора.A calculator for interference compensation, comprising a Doppler phase noise meter, a weight unit, a complex adder, a complex multiplier and a delay unit, while the inputs of the Doppler phase phase meter are connected to the first inputs of the weight unit, the outputs of which are connected to the first inputs of the complex adder, the second inputs of which are connected with the outputs of the complex multiplier, the first outputs of the meter of the Doppler phase noise are connected to the first inputs of the complex multiplier, characterized in that the introduced an interference correlation coefficient calculator, a weight calculator, a switching unit, a switching unit, a two-channel switch and a clock generator, while the first inputs of the interference correlation coefficient meter are connected to the inputs of the Doppler phase noise meter and to the first inputs of the weight block, the second input of the interference correlation coefficient meter is connected to the second output of the Doppler phase noise meter, the output of the interference correlation coefficient meter is connected to the input of the weight coefficient calculator, the outputs which is connected to the main inputs of the switching unit, the output of which is connected to the second input of the weighing unit, the first control input of the switching unit is connected to the first control input of the computer to compensate for interference, the outputs of the complex adder are connected to the inputs of the delay unit, the outputs of which are connected to the main inputs of the two-channel switch, the first outputs of which are connected to the second inputs of the complex multiplier, and the control input is connected to the output of the switching unit, the second control input of the unit is switched the values and the control input of the switching unit are connected to the second control input of the calculator for noise compensation, the control input of the clock is connected to the first control input of the computer to compensate for noise, and the output of the clock is connected to the clock inputs of the Doppler phase noise meter, weight block, complex adder, complex multiplier, block delays, interference correlation coefficient meter, weight calculator, switching unit, switching unit and two-channel switch, The main inputs of the calculator for noise compensation are the connected inputs of the Doppler phase noise meter, the first inputs of the weight block and the first inputs of the interference correlation coefficient meter, and the outputs are the second outputs of the two-channel switch.
RU2017140559A 2017-11-21 2017-11-21 Interference compensation computer RU2679974C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017140559A RU2679974C1 (en) 2017-11-21 2017-11-21 Interference compensation computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017140559A RU2679974C1 (en) 2017-11-21 2017-11-21 Interference compensation computer

Publications (1)

Publication Number Publication Date
RU2679974C1 true RU2679974C1 (en) 2019-02-14

Family

ID=65442379

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017140559A RU2679974C1 (en) 2017-11-21 2017-11-21 Interference compensation computer

Country Status (1)

Country Link
RU (1) RU2679974C1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU743208A1 (en) * 1977-11-03 1980-06-25 Рязанский Радиотехнический Институт Digital device for suppressing passive noise
US5337056A (en) * 1993-06-11 1994-08-09 Rockwell International Corporation Dynamically tunable notch filter
US20090109083A1 (en) * 2007-10-25 2009-04-30 Tietjen Byron W Adaptive moving target indicator (MTI) clutter rejection filter for radar systems
RU2582871C1 (en) * 2015-06-05 2016-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Computer for adaptive interference rejection
RU2582874C1 (en) * 2015-06-18 2016-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Adaptive computer for interference rejection
RU2628904C1 (en) * 2016-10-11 2017-08-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Computer for improvement of interference

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU743208A1 (en) * 1977-11-03 1980-06-25 Рязанский Радиотехнический Институт Digital device for suppressing passive noise
US5337056A (en) * 1993-06-11 1994-08-09 Rockwell International Corporation Dynamically tunable notch filter
US20090109083A1 (en) * 2007-10-25 2009-04-30 Tietjen Byron W Adaptive moving target indicator (MTI) clutter rejection filter for radar systems
RU2582871C1 (en) * 2015-06-05 2016-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Computer for adaptive interference rejection
RU2582874C1 (en) * 2015-06-18 2016-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Adaptive computer for interference rejection
RU2628904C1 (en) * 2016-10-11 2017-08-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Computer for improvement of interference

Similar Documents

Publication Publication Date Title
RU2628904C1 (en) Computer for improvement of interference
RU2674468C1 (en) Interference rejection filter
RU2642418C1 (en) Interference reject filter
RU2634190C1 (en) Interference rejecting counter
RU2680202C1 (en) Calculator for interference rejecting
RU173289U1 (en) INTERFERENCE COMPRESSION DEVICE
RU2660803C1 (en) Filter of noise notching
RU2634191C1 (en) Interference rejection counter
RU183845U1 (en) COMPUTING DEVICE OF INTERFERENCE OF INTERFERENCE
RU2642808C1 (en) Interference suppressor
RU2679972C1 (en) Interference suppression computer
RU184016U1 (en) INTERFERENCE COMPENSATION COMPUTER
RU2674467C1 (en) Filter compensation of passive interference
RU182703U1 (en) INTERFERENCE REDUCTION COMPUTER
RU2660645C1 (en) Adaptive band-stop filter
RU182620U1 (en) ADAPTIVE COMPENSATOR OF PASSIVE INTERFERENCE
RU182621U1 (en) ADAPTIVE INTERFERENCE FILTER FILTER
RU2680203C1 (en) Calculator for interference rejection
RU2686643C1 (en) Interference suppression computer
RU2628907C1 (en) Computer for interference compensation
RU172504U1 (en) COMPUTING DEVICE OF INTERFERENCE OF INTERFERENCE
RU172404U1 (en) PASSIVE INTERFERENCE MANAGER
RU2679974C1 (en) Interference compensation computer
RU2641647C1 (en) Rejection filter
RU2680824C1 (en) Calculator for interference rejection

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191122