RU184016U1 - INTERFERENCE COMPENSATION COMPUTER - Google Patents
INTERFERENCE COMPENSATION COMPUTER Download PDFInfo
- Publication number
- RU184016U1 RU184016U1 RU2018119795U RU2018119795U RU184016U1 RU 184016 U1 RU184016 U1 RU 184016U1 RU 2018119795 U RU2018119795 U RU 2018119795U RU 2018119795 U RU2018119795 U RU 2018119795U RU 184016 U1 RU184016 U1 RU 184016U1
- Authority
- RU
- Russia
- Prior art keywords
- inputs
- interference
- meter
- unit
- weight
- Prior art date
Links
- 238000005303 weighing Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 abstract description 6
- 238000000605 extraction Methods 0.000 abstract description 4
- 230000001427 coherent effect Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S13/522—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
- G01S13/524—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Computer Networks & Wireless Communication (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Полезная модель относится к области компьютерной технике и может быть использована в автоматизированных системах для выполнения комплексных математических операций с целью выделения сигналов на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами. Указанный результат достигается тем, что вычислительное устройство компенсации помех содержит измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель, первый блок задержки, синхрогенератор, измеритель коэффициента корреляции помехи, вычислитель весовых коэффициентов, второй блок задержки, блок переключения, блок коммутации и двухканальный коммутатор, определенным образом соединенные между собой и осуществляющие когерентную обработку исходных отсчетов. 9 ил.The utility model relates to the field of computer technology and can be used in automated systems to perform complex mathematical operations in order to isolate signals against passive noise during group tuning of the carrier frequency of the probe pulses. The technical result achieved is an increase in the efficiency of signal extraction of moving targets against the background of passive interference with a priori unknown correlation properties. This result is achieved in that the interference compensation computing device comprises a Doppler phase noise meter, a weight block, a complex adder, a complex multiplier, a first delay block, a clock generator, a noise correlation coefficient meter, a weight coefficient calculator, a second delay block, a switching block, a switching unit, and two-channel switch, in a certain way interconnected and performing coherent processing of the original samples. 9 ill.
Description
Полезная модель относится к области компьютерной технике и может быть использована в автоматизированных системах для выполнения комплексных математических операций с целью выделения сигналов на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов.The utility model relates to the field of computer technology and can be used in automated systems to perform complex mathematical operations in order to isolate signals against passive noise during group tuning of the carrier frequency of the probe pulses.
Известно устройство для обнаружения движущейся цели [1], содержащее последовательно включенные блоки задержки, умножитель комплексных чисел и вычитатель. Однако это устройство обладает низкой эффективностью выделения сигнала движущейся цели.A device for detecting a moving target [1], which contains series-connected delay blocks, a complex number multiplier and a subtractor, is known. However, this device has a low signal extraction efficiency for a moving target.
Другим известным устройством является корреляционный автокомпенсатор [2], который содержит ряд блоков задержки, два перемножителя, сумматор и блок оценки параметров коррелированной помехи. Недостатком этого устройства является плохое подавление кромок протяженной помехи из-за большой постоянной времени цепи адаптивной обратной связи.Another known device is the correlation auto-compensator [2], which contains a number of delay units, two multipliers, an adder and a unit for estimating the parameters of the correlated noise. The disadvantage of this device is the poor suppression of the edges of the extended interference due to the large time constant of the adaptive feedback circuit.
Наиболее близкое к данной полезной модели цифровое устройство для подавления пассивных помех [3], выбранное в качестве прототипа, содержит измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель, блок задержки и синхронизатор. Однако данное устройство из-за переходного процесса при поступлении кромки пассивной помехи имеет низкую эффективность выделения сигналов движущихся целей.Closest to this utility model, a digital device for suppressing passive interference [3], selected as a prototype, contains a Doppler phase noise meter, a weight unit, a complex adder, a complex multiplier, a delay unit, and a synchronizer. However, this device due to the transient process upon receipt of the edge of the passive interference has a low efficiency of signal extraction of moving targets.
Целью полезной модели является повышение эффективности компенсации пассивной помехи и выделения сигналов движущихся целей при обработке группы импульсов на фоне пассивных помех с априорно неизвестными корреляционными свойствами.The purpose of the utility model is to increase the efficiency of compensating for passive interference and isolating signals of moving targets when processing a group of pulses against a background of passive interference with a priori unknown correlation properties.
Указанная цель достигается тем, что в вычислительное устройство компенсации помех, содержащее измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель, первый блок задержки и синхрогенератор, введены измеритель коэффициента корреляции помехи, вычислитель весовых коэффициентов, второй блок задержки, блок переключения, блок коммутации и двухканальный коммутатор.This goal is achieved by the fact that in the computing device for the compensation of interference, containing a meter of the Doppler phase of the interference, a weight unit, a complex adder, a complex multiplier, a first delay unit and a clock generator, a measure of the correlation coefficient of interference, a weight calculator, a second delay unit, a switching unit, switching unit and two-channel switch.
Сущность полезной модели как технического решения характеризуется совокупностью существенных признаков, изложенных в формуле полезной модели и обеспечивающих достижение поставленной цели путем оптимальной и согласованной обработки группы импульсов.The essence of the utility model as a technical solution is characterized by a combination of essential features set forth in the utility model formula and ensuring the achievement of the goal by optimal and consistent processing of a group of pulses.
Технический результат полезной модели состоит в повышении эффективности компенсации пассивной помехи с априорно неизвестными корреляционными свойствами и выделения сигналов движущихся целей при групповой перестройке несущей частоты зондирующих импульсов.The technical result of the utility model is to increase the efficiency of compensating for passive interference with a priori unknown correlation properties and isolating the signals of moving targets during group tuning of the carrier frequency of the probe pulses.
На фиг. 1 представлена структурная электрическая схема вычислительного устройства компенсации помех; на фиг. 2 - измерителя доплеровской фазы помехи; на фиг. 3 - весового блока; на фиг. 4 - комплексного сумматора; на фиг. 5 - комплексного перемножителя; на фиг. 6 - блока задержки; на фиг. 7 - накопителя; на фиг. 8 - измерителя коэффициента корреляции помехи; на фиг. 9 - блока переключения.In FIG. 1 is a structural electrical diagram of a noise reduction computing device; in FIG. 2 - meter Doppler phase interference; in FIG. 3 - weight unit; in FIG. 4 - complex adder; in FIG. 5 - complex multiplier; in FIG. 6 - delay unit; in FIG. 7 - drive; in FIG. 8 - meter correlation coefficient interference; in FIG. 9 - switching unit.
Вычислительное устройство компенсации помех (фиг. 1) содержит измеритель 1 доплеровской фазы помехи, весовой блок 2, комплексный сумматор 3, комплексный перемножитель 4, первый блок 5 задержки, синхрогенератор 6, измеритель 7 коэффициента корреляции помехи, вычислитель 8 весовых коэффициентов, второй блок 9 задержки, блок 10 переключения, блок 11 коммутации и двухканальный коммутатор 12.The interference compensation computing device (Fig. 1) contains a Doppler
Измеритель 1 доплеровской фазы помехи (фиг. 2) содержит блок 13 задержки, блок 14 комплексного сопряжения, комплексный перемножитель 15, два накопителя 16, блок 17 вычисления модуля и два делителя 18; весовой блок 2 (фиг. 3) содержит два перемножителя 19; комплексный сумматор 3 (фиг. 4) содержит два сумматора 20; комплексный перемножитель 4 (фиг. 5) содержит два канала (I, II), каждый из которых содержит перемножители 21, 22 и сумматор 23; блоки 5, 9 и 13 задержки (фиг. 6) содержат два оперативных запоминающих устройства 24; накопители 16, 29 (фиг. 7) содержат n элементов 25 задержки на интервал tд и n сумматоров 26; измеритель 7 коэффициента корреляции помехи (фиг. 8) содержит два перемножителя 27, сумматор 28, накопитель 29 и делитель 30; блок 10 переключения (фиг. 9) содержит счетчик 31, дешифратор 32, блоки 33 совпадений и сумматор 34.The
Вычислительное устройство компенсации помех может быть осуществлено следующим образом.The computing device for the compensation of interference can be implemented as follows.
Группа когерентных радиоимпульсов, первоначально излученных с одинаковой несущей частотой и состоящих из сигнала от движущейся цели и пассивной помехи, значительно превышающей сигнал, поступает на вход радиоприемного устройства, в котором усиливается, в квадратурных фазовых детекторах переносится на видеочастоту, а затем подвергается аналого-цифровому преобразованию (соответствующие блоки на фиг. 1 не показаны).A group of coherent radio pulses, initially radiated with the same carrier frequency and consisting of a signal from a moving target and passive interference significantly exceeding the signal, is fed to the input of a receiving device, in which it is amplified, is transferred to the video frequency in quadrature phase detectors, and then subjected to analog-to-digital conversion (corresponding blocks in Fig. 1 are not shown).
Цифровые коды обеих квадратурных проекций, следующие через период повторения Т, в каждом элементе разрешения по дальности (кольце дальности) каждого периода повторения образуют последовательность комплексных чиселDigital codes of both quadrature projections following through the repetition period T, in each range resolution element (range ring) of each repetition period form a sequence of complex numbers
где k - номер текущего периода, - номер текущего кольца дальности, - доплеровский сдвиг за период повторения фазы (обычно помехи, ввиду ее значительного превышения над сигналом), равный здесь - доплеровская частота помехи.where k is the number of the current period, - number of the current range ring, - Doppler shift during the phase repetition period (usually interference, due to its significant excess over the signal), equal here - Doppler interference frequency.
Цифровые отсчеты в заявляемом устройстве (фиг. 1) поступают на соединенные входы измерителя 1 доплеровской фазы помехи (фиг. 2), второго блока 9 задержки (фиг. 6) и измерителя 7 коэффициента корреляции помехи (фиг. 8). Оперативные запоминающие устройства (ОЗУ) 24 (фиг. 6) блоков 5, 13 задержки служат для хранения отсчетов в течение одного периода T, а ОЗУ 24 второго блока 9 задержки - в течение интервала τ.Digital readings in the inventive device (Fig. 1) are supplied to the connected inputs of the
В блоке 14 комплексного сопряжения измерителя 1 доплеровской фазы помехи происходит инвертирование знака мнимых проекций задержанных отсчетов. В комплексном перемножителе 15 происходит перемножение соответствующих комплексных чисел, реализуемое путем операций с проекциями этих чисел в соответствии с фиг. 5 и приводящее к образованию величинIn block 14 of the complex conjugation of the
В накопителях 16 (фиг. 7) с помощью элементов 25 задержки и сумматоров 26 осуществляется скользящее вдоль дальности в каждом периоде повторения суммирование проекций смежных элементов разрешения по дальности строба, кроме элемента с номером n/2+1, для чего выходные величины элемента 25 задержки с номером n/2 поступают только на последующий элемент 25 задержки (фиг. 7). В результате накопления образуются величиныIn the drives 16 (Fig. 7) using the
где - оценка сдвига фазы помехи за период повторения, усредненная по n смежным элементам разрешения по дальности.Where - an estimate of the phase shift of the interference over the repetition period averaged over n adjacent range resolution elements.
В блоке 17 вычисления модуля определяются величины а затем на выходах делителей 18 (фиг. 2) - величины поступающие на первые входы комплексного перемножителя 4. Точность определения величины определяется числом накапливаемых отсчетов n.In
В измерителе 7 коэффициента корреляции помехи в соответствии с его структурной схемой (фиг. 8) и поступающими входными отсчетами и величиной |Yk| от измерителя 1 доплеровской фазы помехи определяется оценка коэффициента корреляции помехиIn the
Оценка поступает в вычислитель 8 весовых коэффициентов. Количество вычисляемых по оценке весовых коэффициентов определяется реализуемым порядком вычислительного устройства компенсации помех т, связанным с числом импульсов в группе, равным m+1. В частности, при m=1 весовые коэффициенты при m=2 - при m=3 - Rating enters the
В весовом блоке 2 (фиг. 3) происходит взвешивание поступающих отсчетов весовыми коэффициентами . Весовые коэффициенты переключаются в каждом периоде повторения блоком 10 переключения (фиг. 9), который обеспечивает обработку группы импульсов (отсчетов) с одинаковой исходной несущей частотой.In the weight block 2 (Fig. 3), the incoming samples are weighed by weight coefficients . The weights are switched in each repetition period by the switching unit 10 (Fig. 9), which provides processing of a group of pulses (samples) with the same initial carrier frequency.
Импульс от синхронизатора радиолокатора (на фиг. 1 не показан), соответствующий излучению зондирующего импульса в каждом периоде, поступает на первый управляющий вход (1) устройства, являющийся первым управляющим входом (1) блока 10 переключения, а затем на счетный вход счетчика 31 (фиг. 9). Показания счетчика, соответствующие номеру импульса в группе, в дешифраторе 32 преобразуются в единичный сигнал на соответствующем номеру импульса выходе дешифратора 32. Этот сигнал открывает подключенный к нему каскад совпадений 33, через который проходит соответствующий весовой коэффициент, поступающий через сумматор 34 на выход блока 10 переключения. Таким образом, каждому периоду и, следовательно, каждому импульсу в группе соответствует свой весовой коэффициент.The pulse from the radar synchronizer (not shown in Fig. 1), corresponding to the radiation of the probe pulse in each period, is fed to the first control input (1) of the device, which is the first control input (1) of the
Взвешенные в весовом блоке 2 отсчеты суммируются в комплексном сумматоре 3 с задержанными в блоке 5 задержки на период повторения Т, прошедшими через двухканальный коммутатор 12 и умноженными в комплексном перемножителе 4 на величину весовыми суммами отсчетов всех предыдущих импульсов группы. В конечном счете, в результате адаптивной весовой обработки отсчетов m+1 периодов образуется величинаSamples weighted in
Двумерный поворот задержанных отсчетов на угол обеспечивает необходимую для компенсации помехи синфазность суммируемых отсчетов, а их взвешивание коэффициентами - наилучшую режекцию (компенсацию) отсчетов помехи с коэффициентом корреляции Отсчеты сигнала от движущейся цели из-за сохранения доплеровских сдвигов фазы не подавляются.Two-dimensional rotation of delayed samples at an angle provides the necessary in-phase compensation of the summed samples to compensate for interference, and their weighing by coefficients - the best notch (compensation) of the interference samples with a correlation coefficient The signal samples from a moving target due to the conservation of Doppler phase shifts are not suppressed.
Во втором блоке 9 задержки отсчеты задерживаются на интервал τ, равный временной задержке оценок по отношению к среднему элементу обучающей выборки, исключенному в накопителях 16 и 29 (фиг. 7) в соответствии с выражениями (1) и (2). Величина т определяется выражениемIn the
τ=tв+ntд/2,τ = t in + nt d / 2,
где tв - время вычисления оценки фазы помехи, n - количество элементов обучающей выборки, tд - интервал (период) дискретизации.where t in is the calculation time of the estimation of the interference phase, n is the number of elements of the training sample, t d is the interval (period) discretization.
При этом адаптивная обработка осуществляется для среднего элемента, исключенного из обучающей выборки и не влияющего на получаемые оценки Тогда при режекции отсчетов помехи с элемента разрешения, содержащего сигнал, исключается возможность ослабления или подавления сигнала за счет его влияния на используемые оценки.In this case, adaptive processing is carried out for the middle element excluded from the training set and not affecting the resulting estimates Then, when the interference samples are rejected from the resolution element containing the signal, the possibility of attenuation or suppression of the signal due to its influence on the estimates used is excluded.
После завершения обработки данных m+1 периодов и очередной перестройки несущей частоты на вторые управляющие входы (2) устройства (фиг. 1) и блока 10 переключения (фиг. 9) и управляющий вход блока 11 коммутации поступает импульс, который обнуляет счетчик 31, а в блоке 11 коммутации переключает релаксационный генератор (мультивибратор). По команде блока 11 коммутации двухканальный коммутатор 12 переключает блок 5 задержки к выходу устройства, и в течение периода повторения Т происходит считывание результатов режекции V. На вход устройства поступают и начинают обрабатываться данные следующей группы.After the processing of data of m + 1 periods and the next tuning of the carrier frequency to the second control inputs (2) of the device (Fig. 1) and the switching unit 10 (Fig. 9) and the control input of the
Синхронизация вычислительного устройства компенсации помех осуществляется подачей на все блоки заявляемого устройства последовательности синхронизирующих импульсов от синхрогенератора 6 (фиг. 1), управляемого совместно с блоком 10 переключения импульсами (1) синхронизатора радиолокатора (на фиг. 1 не показан), следующими с интервалом Т.The synchronization of the computing device for the compensation of interference is carried out by applying to all the blocks of the claimed device a sequence of synchronizing pulses from the sync generator 6 (Fig. 1), controlled together with the
Достигаемый технический результат состоит в следующем. На выход устройства не поступают нескомпенсированные остатки помехи в переходном режиме, традиционно маскирующие сигнал от цели. В предлагаемом устройстве на выход поступают только скомпенсированные остатки помехи в установившемся режиме, что исключает эффект «кромки» помехи и повышает эффективность выделения сигналов движущихся целей.The technical result achieved is as follows. Uncompensated residuals of noise in the transition mode, traditionally masking the signal from the target, do not arrive at the output of the device. In the proposed device, the output receives only compensated residual noise in the steady state, which eliminates the effect of the "edge" of the noise and increases the efficiency of signal extraction of moving targets.
Таким образом, вычислительное устройство компенсации помех повышает эффективность режекции пассивной помехи и выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами.Thus, the interference compensation computing device increases the efficiency of rejecting passive interference and isolating the signals of moving targets against passive interference with a priori unknown correlation properties.
БиблиографияBibliography
1. Патент №63-49193 (Япония), МПК G01S 13/52. Радиолокационное устройство для обнаружения движущейся цели / К.К. Тосиба. Опубл. 03.10.1988. - Изобретения стран мира. - 1989. - Выпуск 109. - №15. - С. 52.1. Patent No. 63-49193 (Japan), IPC G01S 13/52. Radar device for detecting a moving target / K.K. Toshiba. Publ. 10/03/1988. - Inventions of the countries of the world. - 1989. - Issue 109. - No. 15. - S. 52.
2. Радиоэлектронные системы: основы построения и теория. Справочник / Я.Д. Ширман, С.Т. Багдасарян, А.С. Маляренко, Д.И. Леховицкий [и др.]; под ред Я.Д. Ширмана. - 2-е изд., перераб. и доп. - М.: Радиотехника, 2007; с. 439, рис. 25.22.2. Radio-electronic systems: fundamentals of construction and theory. Reference book / Ya.D. Shirman, S.T. Baghdasaryan, A.S. Malyarenko, D.I. Lekhovitsky [et al.]; edited by Y.D. Shirman. - 2nd ed., Revised. and add. - M .: Radio engineering, 2007; from. 439, fig. 25.22.
3. А.с. 743208 СССР, МПК G01S 7/36. Цифровое устройство для подавления пассивных помех / Д.И. Попов. - №2540079/09; заявл. 03.11.1977; опубл. 25.06.1980, Бюл. №23. - 4 с.3. A.S. 743208 USSR,
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018119795U RU184016U1 (en) | 2018-05-29 | 2018-05-29 | INTERFERENCE COMPENSATION COMPUTER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018119795U RU184016U1 (en) | 2018-05-29 | 2018-05-29 | INTERFERENCE COMPENSATION COMPUTER |
Publications (1)
Publication Number | Publication Date |
---|---|
RU184016U1 true RU184016U1 (en) | 2018-10-11 |
Family
ID=63858973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018119795U RU184016U1 (en) | 2018-05-29 | 2018-05-29 | INTERFERENCE COMPENSATION COMPUTER |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU184016U1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2758877C1 (en) * | 2021-03-23 | 2021-11-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Interference compensation filter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU743208A1 (en) * | 1977-11-03 | 1980-06-25 | Рязанский Радиотехнический Институт | Digital device for suppressing passive noise |
US5960097A (en) * | 1997-01-21 | 1999-09-28 | Raytheon Company | Background adaptive target detection and tracking with multiple observation and processing stages |
RU157117U1 (en) * | 2015-06-30 | 2015-11-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | ADAPTIVE CALCULATOR FOR SUPPRESSION OF INTERFERENCE |
RU2582871C1 (en) * | 2015-06-05 | 2016-04-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | Computer for adaptive interference rejection |
RU165559U1 (en) * | 2016-04-19 | 2016-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" | ADAPTIVE NOISE SUPPRESSION DEVICE |
-
2018
- 2018-05-29 RU RU2018119795U patent/RU184016U1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU743208A1 (en) * | 1977-11-03 | 1980-06-25 | Рязанский Радиотехнический Институт | Digital device for suppressing passive noise |
US5960097A (en) * | 1997-01-21 | 1999-09-28 | Raytheon Company | Background adaptive target detection and tracking with multiple observation and processing stages |
RU2582871C1 (en) * | 2015-06-05 | 2016-04-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | Computer for adaptive interference rejection |
RU157117U1 (en) * | 2015-06-30 | 2015-11-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | ADAPTIVE CALCULATOR FOR SUPPRESSION OF INTERFERENCE |
RU165559U1 (en) * | 2016-04-19 | 2016-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" | ADAPTIVE NOISE SUPPRESSION DEVICE |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2758877C1 (en) * | 2021-03-23 | 2021-11-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Interference compensation filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2628904C1 (en) | Computer for improvement of interference | |
RU2674468C1 (en) | Interference rejection filter | |
RU2642418C1 (en) | Interference reject filter | |
RU2634190C1 (en) | Interference rejecting counter | |
RU173289U1 (en) | INTERFERENCE COMPRESSION DEVICE | |
RU2680202C1 (en) | Calculator for interference rejecting | |
RU2660803C1 (en) | Filter of noise notching | |
RU184016U1 (en) | INTERFERENCE COMPENSATION COMPUTER | |
RU182703U1 (en) | INTERFERENCE REDUCTION COMPUTER | |
RU2642808C1 (en) | Interference suppressor | |
RU183845U1 (en) | COMPUTING DEVICE OF INTERFERENCE OF INTERFERENCE | |
RU2679972C1 (en) | Interference suppression computer | |
RU2634191C1 (en) | Interference rejection counter | |
RU182621U1 (en) | ADAPTIVE INTERFERENCE FILTER FILTER | |
RU2674467C1 (en) | Filter compensation of passive interference | |
RU182620U1 (en) | ADAPTIVE COMPENSATOR OF PASSIVE INTERFERENCE | |
RU2680203C1 (en) | Calculator for interference rejection | |
RU2660645C1 (en) | Adaptive band-stop filter | |
RU2686643C1 (en) | Interference suppression computer | |
RU2628907C1 (en) | Computer for interference compensation | |
RU182318U1 (en) | CALCULATOR FOR ADAPTIVE INTERFERENCE COMPENSATION | |
RU172404U1 (en) | PASSIVE INTERFERENCE MANAGER | |
RU172504U1 (en) | COMPUTING DEVICE OF INTERFERENCE OF INTERFERENCE | |
RU182317U1 (en) | ADAPTIVE FILTRATION COMPUTER | |
RU2641647C1 (en) | Rejection filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM9K | Utility model has become invalid (non-payment of fees) |
Effective date: 20180924 |