RU2680203C1 - Calculator for interference rejection - Google Patents
Calculator for interference rejection Download PDFInfo
- Publication number
- RU2680203C1 RU2680203C1 RU2017136627A RU2017136627A RU2680203C1 RU 2680203 C1 RU2680203 C1 RU 2680203C1 RU 2017136627 A RU2017136627 A RU 2017136627A RU 2017136627 A RU2017136627 A RU 2017136627A RU 2680203 C1 RU2680203 C1 RU 2680203C1
- Authority
- RU
- Russia
- Prior art keywords
- interference
- inputs
- meter
- unit
- calculator
- Prior art date
Links
- 238000005303 weighing Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/36—Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Radar, Positioning & Navigation (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Remote Sensing (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
Изобретение относится к области компьютерной технике и может быть использовано в автоматизированных системах для выполнения комплексных математических операций с целью выделения сигналов на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов.The invention relates to the field of computer technology and can be used in automated systems to perform complex mathematical operations in order to isolate signals against the background of passive interference during group tuning of the carrier frequency of the probe pulses.
Известно устройство для обнаружения движущейся цели [1], содержащее последовательно включенные блоки задержки, умножитель комплексных чисел и вычитатель. Однако это устройство обладает низкой эффективностью выделения сигнала движущейся цели.A device for detecting a moving target [1], which contains series-connected delay blocks, a complex number multiplier and a subtractor, is known. However, this device has a low signal extraction efficiency for a moving target.
Другим известным устройством является корреляционный автокомпенсатор [2], который содержит ряд блоков задержки, два перемножителя, сумматор и блок оценки параметров коррелированной помехи. Недостатком этого устройства является плохое подавление кромок протяженной помехи из-за большой постоянной времени цепи адаптивной обратной связи.Another known device is the correlation auto-compensator [2], which contains a number of delay units, two multipliers, an adder and a unit for estimating the parameters of the correlated noise. The disadvantage of this device is the poor suppression of the edges of the extended interference due to the large time constant of the adaptive feedback circuit.
Наиболее близкое к данному изобретению цифровое устройство для подавления пассивных помех [3], выбранное в качестве прототипа, содержит измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель, блок задержки и синхронизатор. Однако данное устройство из-за переходного процесса при поступлении кромки пассивной помехи имеет низкую эффективность выделения сигналов движущихся целей.Closest to the present invention, a digital device for suppressing passive interference [3], selected as a prototype, contains a Doppler phase noise meter, a weight unit, a complex adder, a complex multiplier, a delay unit and a synchronizer. However, this device due to the transient process upon receipt of the edge of the passive interference has a low efficiency of signal extraction of moving targets.
Задачей, решаемой в изобретении, является повышение эффективности режекции пассивной помехи и выделения сигналов движущихся целей при обработке группы импульсов на фоне пассивных помех с априорно неизвестными корреляционными свойствами.The problem to be solved in the invention is to increase the efficiency of rejection of passive interference and separation of signals of moving targets when processing a group of pulses against a background of passive interference with a priori unknown correlation properties.
Для решения поставленной задачи в вычислитель для режекции помех, содержащий измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель, первый блок задержки и синхрогенератор, введены измеритель коэффициента корреляции помехи, вычислитель весовых коэффициентов, второй блок задержки, блок переключения, блок коммутации и двухканальный коммутатор.To solve the problem, a calculator for interference rejection, which contains a Doppler phase noise meter, a weight unit, a complex adder, a complex multiplier, a first delay unit and a clock generator, introduces an interference correlation coefficient meter, a weight coefficient calculator, a second delay unit, a switching unit, a switching unit and dual channel switch.
Сущность изобретения как технического решения характеризуется совокупностью существенных признаков, изложенных в формуле изобретения и обеспечивающих решение поставленной задачи путем оптимальной и согласованной обработки группы импульсов.The essence of the invention as a technical solution is characterized by a combination of essential features set forth in the claims and providing a solution to the problem by optimal and consistent processing of a group of pulses.
Технический результат изобретения состоит в повышении эффективности режекции пассивной помехи с априорно неизвестными корреляционными свойствами и выделения сигналов движущихся целей при групповой перестройке несущей частоты зондирующих импульсов.The technical result of the invention is to increase the efficiency of rejection of passive interference with a priori unknown correlation properties and the selection of signals of moving targets during group tuning of the carrier frequency of the probe pulses.
На фиг. 1 представлена структурная электрическая схема вычислителя для режекции помех; на фиг. 2 - измерителя доплеровской фазы помехи; на фиг. 3 - весового блока; на фиг. 4 - комплексного сумматора; на фиг. 5 - комплексного перемножителя; на фиг. 6 - блока задержки; на фиг. 7 - накопителя; на фиг. 8 - измерителя коэффициента корреляции помехи; на фиг. 9 - блока переключения.In FIG. 1 is a structural electrical diagram of a computer for rejecting interference; in FIG. 2 - meter Doppler phase interference; in FIG. 3 - weight unit; in FIG. 4 - complex adder; in FIG. 5 - complex multiplier; in FIG. 6 - delay unit; in FIG. 7 - drive; in FIG. 8 - meter correlation coefficient interference; in FIG. 9 - switching unit.
Вычислитель для режекции помех (фиг. 1) содержит измеритель 1 доплеровской фазы помехи, весовой блок 2, комплексный сумматор 3, комплексный перемножитель 4, первый блок 5 задержки, синхрогенератор 6, измеритель 7 коэффициента корреляции помехи, вычислитель 8 весовых коэффициентов, второй блок 9 задержки, блок 10 переключения, блок 11 коммутации и двухканальный коммутатор 12.The calculator for rejection of interference (Fig. 1) contains a
Измеритель 1 доплеровской фазы помехи (фиг. 2) содержит блок 13 задержки, блок 14 комплексного сопряжения, комплексный перемножитель 15, два накопителя 16, блок 17 вычисления модуля и два делителя 18; весовой блок 2 (фиг. 3) содержит два перемножителя 19; комплексный сумматор 3 (фиг. 4) содержит два сумматора 20; комплексный перемножитель 4 (фиг. 5) содержит два канала (I, II), каждый из которых содержит перемножители 21, 22 и сумматор 23; блоки 5, 9 и 13 задержки (фиг. 6) содержат два оперативных запоминающих устройства 24; накопители 16, 29 (фиг. 7) содержат n элементов 25 задержки на интервал tд и n сумматоров 26; измеритель 7 коэффициента корреляции помехи (фиг. 8) содержит два перемножителя 27, сумматор 28, накопитель 29 и делитель 30; блок 10 переключения (фиг. 9) содержит счетчик 31, дешифратор 32, блоки 33 совпадений и сумматор 34.The
Вычислитель для режекции помех может быть осуществлен следующим образом.The calculator for rejection of interference can be carried out as follows.
Группа когерентных радиоимпульсов, первоначально излученных с одинаковой несущей частотой и состоящих из сигнала от движущейся цели и пассивной помехи, значительно превышающей сигнал, поступает на вход радиоприемного устройства, в котором усиливается, в квадратурных фазовых детекторах переносится на видеочастоту, а затем подвергается аналого-цифровому преобразованию (соответствующие блоки на фиг. 1 не показаны).A group of coherent radio pulses, initially radiated with the same carrier frequency and consisting of a signal from a moving target and passive interference significantly exceeding the signal, is fed to the input of a receiving device, in which it is amplified, is transferred to the video frequency in quadrature phase detectors, and then subjected to analog-to-digital conversion (corresponding blocks in Fig. 1 are not shown).
Цифровые коды (xkl,ykl) обеих квадратурных проекций, следующие через период повторения T, в каждом элементе разрешения по дальности (кольце дальности) каждого периода повторения образуют последовательность комплексных чиселThe digital codes (x kl , y kl ) of both quadrature projections following through the repetition period T in each range resolution element (range ring) of each repetition period form a sequence of complex numbers
Ukl=xkl+iykl=|Ukl|ехр(ikϕl),U kl = x kl + iy kl = | U kl | exp (ikϕ l ),
где k - номер текущего периода, l - номер текущего кольца дальности, ϕl - доплеровский сдвиг за период повторения фазы (обычно помехи, ввиду ее значительного превышения над сигналом), равный ϕl=2πƒlT, здесь ƒl - доплеровская частота помехи.where k is the number of the current period, l is the number of the current range ring, ϕ l is the Doppler shift for the phase repetition period (usually interference, due to its significant excess over the signal), equal to ϕ l = 2πƒ l T, here ƒ l is the Doppler interference frequency .
Цифровые отсчеты в заявляемом устройстве (фиг. 1) поступают на соединенные входы измерителя 1 доплеровской фазы помехи (фиг. 2), второго блока 9 задержки (фиг. 6) и измерителя 7 коэффициента корреляции помехи (фиг. 8). Оперативные запоминающие устройства (ОЗУ) 24 (фиг. 6) блоков 5, 13 задержки служат для хранения отсчетов в течение одного периода T, а ОЗУ 24 второго блока 9 задержки - в течение интервала τ.Digital readings in the inventive device (Fig. 1) are supplied to the connected inputs of the
В блоке 14 комплексного сопряжения измерителя 1 доплеровской фазы помехи происходит инвертирование знака мнимых проекций задержанных отсчетов. В комплексном перемножителе 15 происходит перемножение соответствующих комплексных чисел, реализуемое путем операций с проекциями этих чисел в соответствии с фиг. 5 и приводящее к образованию величинIn
. .
В накопителях 16 (фиг. 7) с помощью элементов 25 задержки и сумматоров 26 осуществляется скользящее вдоль дальности в каждом периоде повторения суммирование проекций ReXkl и ImXkl с n+1 смежных элементов разрешения по дальности строба, кроме элемента с номером n/2+1, для чего выходные величины элемента 25 задержки с номером n/2 поступают только на последующий элемент 25 задержки (фиг. 7). В результате накопления образуются величиныIn the drives 16 (Fig. 7), using the
где - оценка сдвига фазы помехи за период повторения, усредненная по n смежным элементам разрешения по дальности.Where - an estimate of the phase shift of the interference over the repetition period averaged over n adjacent range resolution elements.
В блоке 17 вычисления модуля определяются величины , а затем на выходах делителей 18 (фиг. 2) - величины , поступающие на первые входы комплексного перемножителя 4. Точность определения величины определяется числом накапливаемых отсчетов n.In
В измерителе 7 коэффициента корреляции помехи в соответствии с его структурной схемой (фиг. 8) и поступающими входными отсчетами Uk+1,l и величиной |Yk| от измерителя 1 доплеровской фазы помехи определяется оценка коэффициента корреляции помехиIn the
Оценка поступает в вычислитель 8 весовых коэффициентов. Количество вычисляемых по оценке весовых коэффициентов определяется реализуемым порядком вычислителя для режекции помех m, связанным с числом импульсов в группе, равным m+1. В частности, при m=1 весовые коэффициенты ; при , ; при .Rating enters the
В весовом блоке 2 (фиг. 3) происходит взвешивание поступающих отсчетов весовыми коэффициентами . Весовые коэффициенты переключаются в каждом периоде повторения блоком 10 переключения (фиг. 9), который обеспечивает обработку группы импульсов (отсчетов) с одинаковой исходной несущей частотой.In the weight block 2 (Fig. 3), the incoming samples are weighed by weight coefficients . The weights are switched in each repetition period by the switching unit 10 (Fig. 9), which provides processing of a group of pulses (samples) with the same initial carrier frequency.
Импульс от синхронизатора радиолокатора (на фиг. 1 не показан), соответствующий излучению зондирующего импульса в каждом периоде, поступает на первый управляющий вход (1) вычислителя, являющийся первым управляющим входом (1) блока 10 переключения, а затем на счетный вход счетчика 31 (фиг. 9). Показания счетчика, соответствующие номеру импульса в группе, в дешифраторе 32 преобразуются в единичный сигнал на соответствующем номеру импульса выходе дешифратора 32. Этот сигнал открывает подключенный к нему каскад совпадений 33, через который проходит соответствующий весовой коэффициент, поступающий через сумматор 34 на выход блока 10 переключения. Таким образом, каждому периоду и, следовательно, каждому импульсу в группе соответствует свой весовой коэффициент.The pulse from the radar synchronizer (not shown in Fig. 1), corresponding to the radiation of the probe pulse in each period, is fed to the first control input (1) of the calculator, which is the first control input (1) of the switching unit 10, and then to the counting input of the counter 31 ( Fig. 9). The counter readings corresponding to the pulse number in the group in the
Взвешенные в весовом блоке 2 отсчеты суммируются в комплексном сумматоре 3 с задержанными в блоке 5 задержки на период повторения Т, прошедшими через двухканальный коммутатор 12 и умноженными в комплексном перемножителе 4 на величину весовыми суммами отсчетов всех предыдущих импульсов группы. В конечном счете, в результате адаптивной весовой обработки отсчетов m+1 периодов образуется величинаSamples weighted in
. .
Двумерный поворот задержанных отсчетов на угол обеспечивает необходимую для режекции помехи синфазность суммируемых отсчетов, а их взвешивание коэффициентами - наилучшее подавление (режекцию) отсчетов помехи с коэффициентом корреляции . Отсчеты сигнала от движущейся цели из-за сохранения доплеровских сдвигов фазы не подавляются.Two-dimensional rotation of delayed samples at an angle provides the necessary for rejection interference common mode phase of the summed samples, and their weighing by coefficients - the best suppression (notch) of interference samples with a correlation coefficient . The signal samples from a moving target due to the conservation of Doppler phase shifts are not suppressed.
Во втором блоке 9 задержки отсчеты задерживаются на интервал τ, равный задержке оценок по отношению к среднему элементу обучающей выборки, исключенному в накопителях 16 и 29 (фиг. 7) в соответствии с выражениями (1) и (2). Величина τ определяется выражениемIn the
τ=tв+ntд/2,τ = t in + nt d / 2,
где tв - время вычисления оценки фазы помехи, n - количество элементов обучающей выборки, tд - интервал (период) дискретизации.where t in is the calculation time of the estimation of the interference phase, n is the number of elements of the training sample, t d is the interval (period) discretization.
При этом адаптивная обработка осуществляется для среднего элемента, исключенного из обучающей выборки и не влияющего на получаемые оценки и . Тогда при режектировании отсчетов помехи с элемента разрешения, содержащего сигнал, исключается возможность ослабления или подавления сигнала за счет его влияния на используемые оценки.In this case, adaptive processing is carried out for the middle element excluded from the training set and not affecting the resulting estimates and . Then, when rejecting the interference samples from the resolution element containing the signal, the possibility of attenuation or suppression of the signal due to its influence on the estimates used is excluded.
После завершения обработки данных m+1 периодов и очередной перестройки несущей частоты на вторые управляющие входы (2) устройства (фиг. 1) и блока 10 переключения (фиг. 9) и управляющий вход блока 11 коммутации поступает импульс, который обнуляет счетчик 31, а в блоке 11 коммутации переключает релаксационный генератор (мультивибратор). По команде блока 11 коммутации двухканальный коммутатор 12 переключает блок 5 задержки к выходу вычислителя, и в течение периода повторения Т происходит считывание результатов режектирования V. На вход устройства поступают и начинают обрабатываться данные следующей группы.After the processing of data of m + 1 periods and the next tuning of the carrier frequency to the second control inputs (2) of the device (Fig. 1) and the switching unit 10 (Fig. 9) and the control input of the switching
Синхронизация вычислителя для режекции помех осуществляется подачей на все блоки заявляемого устройства последовательности синхронизирующих импульсов от синхрогенератора 6 (фиг. 1), управляемого совместно с блоком 10 переключения импульсами (1) синхронизатора радиолокатора (на фиг. 1 не показан), следующими с интервалом Т. Период повторения синхронизирующих импульсов равен интервалу дискретизации tд, выбираемому из условия требуемой разрешающей способности по дальности.The synchronization of the calculator for rejection of interference is carried out by applying to all the blocks of the claimed device a sequence of synchronizing pulses from the synchro-generator 6 (Fig. 1), controlled together with the 10 switching pulses of the radar synchronizer (1) not shown in Fig. 1, next with an interval T. The repetition period of the synchronizing pulses is equal to the interval discretization t d selected from the conditions of the required resolution in range.
Достигаемый технический результат состоит в следующем. На выход устройства не поступают нескомпенсированные остатки помехи в переходном режиме, традиционно маскирующие сигнал от цели. В предлагаемом устройстве на выход поступают только скомпенсированные остатки помехи в установившемся режиме, что исключает эффект «кромки» помехи и повышает эффективность выделения сигналов движущихся целей.The technical result achieved is as follows. Uncompensated residuals of noise in the transition mode, traditionally masking the signal from the target, do not arrive at the output of the device. In the proposed device, the output receives only compensated residual noise in the steady state, which eliminates the effect of the "edge" of the noise and increases the efficiency of signal extraction of moving targets.
Таким образом, вычислитель для режекции помех повышает эффективность подавления пассивной помехи и выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами.Thus, the calculator for rejection of interference increases the efficiency of suppressing passive interference and isolating the signals of moving targets against passive interference with a priori unknown correlation properties.
БиблиографияBibliography
1. Патент №63-49193 (Япония), МПК G01S 13/52. Радиолокационное устройство для обнаружения движущейся цели / К.К. Тосиба. Опубл. 03.10.1988. - Изобретения стран мира. - 1989. - Выпуск 109. - №15. - С. 52.1. Patent No. 63-49193 (Japan),
2. Радиоэлектронные системы: основы построения и теория. Справочник / Я.Д. Ширман, С.Т. Багдасарян, А.С. Маляренко, Д.И. Леховицкий [и др.]; под ред Я.Д. Ширмана. - 2-е изд., перераб. и доп. - М.: Радиотехника, 2007; с. 439, рис. 25.22.2. Radio-electronic systems: fundamentals of construction and theory. Reference book / Ya.D. Shirman, S.T. Baghdasaryan, A.S. Malyarenko, D.I. Lekhovitsky [et al.]; edited by Y.D. Shirman. - 2nd ed., Revised. and add. - M .: Radio engineering, 2007; from. 439, fig. 25.22.
3. А.с. 743208 СССР, МПК G01S 7/36. Цифровое устройство для подавления пассивных помех / Д.И. Попов. - №2540079 / 09; заявл. 03.11.1977; опубл. 25.06.1980, Бюл. №23. - 4 с.3. A.S. 743208 USSR,
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017136627A RU2680203C1 (en) | 2017-10-17 | 2017-10-17 | Calculator for interference rejection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017136627A RU2680203C1 (en) | 2017-10-17 | 2017-10-17 | Calculator for interference rejection |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2680203C1 true RU2680203C1 (en) | 2019-02-18 |
Family
ID=65442760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017136627A RU2680203C1 (en) | 2017-10-17 | 2017-10-17 | Calculator for interference rejection |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2680203C1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2759150C1 (en) * | 2021-03-24 | 2021-11-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Rotary filter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU743208A1 (en) * | 1977-11-03 | 1980-06-25 | Рязанский Радиотехнический Институт | Digital device for suppressing passive noise |
US5337056A (en) * | 1993-06-11 | 1994-08-09 | Rockwell International Corporation | Dynamically tunable notch filter |
US20090109083A1 (en) * | 2007-10-25 | 2009-04-30 | Tietjen Byron W | Adaptive moving target indicator (MTI) clutter rejection filter for radar systems |
RU2582871C1 (en) * | 2015-06-05 | 2016-04-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | Computer for adaptive interference rejection |
RU2582874C1 (en) * | 2015-06-18 | 2016-04-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | Adaptive computer for interference rejection |
RU2628904C1 (en) * | 2016-10-11 | 2017-08-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" | Computer for improvement of interference |
-
2017
- 2017-10-17 RU RU2017136627A patent/RU2680203C1/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU743208A1 (en) * | 1977-11-03 | 1980-06-25 | Рязанский Радиотехнический Институт | Digital device for suppressing passive noise |
US5337056A (en) * | 1993-06-11 | 1994-08-09 | Rockwell International Corporation | Dynamically tunable notch filter |
US20090109083A1 (en) * | 2007-10-25 | 2009-04-30 | Tietjen Byron W | Adaptive moving target indicator (MTI) clutter rejection filter for radar systems |
RU2582871C1 (en) * | 2015-06-05 | 2016-04-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | Computer for adaptive interference rejection |
RU2582874C1 (en) * | 2015-06-18 | 2016-04-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | Adaptive computer for interference rejection |
RU2628904C1 (en) * | 2016-10-11 | 2017-08-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" | Computer for improvement of interference |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2759150C1 (en) * | 2021-03-24 | 2021-11-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Rotary filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2628904C1 (en) | Computer for improvement of interference | |
RU2674468C1 (en) | Interference rejection filter | |
RU2642418C1 (en) | Interference reject filter | |
RU2634190C1 (en) | Interference rejecting counter | |
RU173289U1 (en) | INTERFERENCE COMPRESSION DEVICE | |
RU2680202C1 (en) | Calculator for interference rejecting | |
RU2660803C1 (en) | Filter of noise notching | |
RU2680203C1 (en) | Calculator for interference rejection | |
RU2634191C1 (en) | Interference rejection counter | |
RU182703U1 (en) | INTERFERENCE REDUCTION COMPUTER | |
RU2642808C1 (en) | Interference suppressor | |
RU2679972C1 (en) | Interference suppression computer | |
RU184016U1 (en) | INTERFERENCE COMPENSATION COMPUTER | |
RU183845U1 (en) | COMPUTING DEVICE OF INTERFERENCE OF INTERFERENCE | |
RU182621U1 (en) | ADAPTIVE INTERFERENCE FILTER FILTER | |
RU2674467C1 (en) | Filter compensation of passive interference | |
RU182620U1 (en) | ADAPTIVE COMPENSATOR OF PASSIVE INTERFERENCE | |
RU2660645C1 (en) | Adaptive band-stop filter | |
RU2628907C1 (en) | Computer for interference compensation | |
RU2686643C1 (en) | Interference suppression computer | |
RU172404U1 (en) | PASSIVE INTERFERENCE MANAGER | |
RU2641647C1 (en) | Rejection filter | |
RU172504U1 (en) | COMPUTING DEVICE OF INTERFERENCE OF INTERFERENCE | |
RU172503U1 (en) | LIABILITY COMPUTER-REDUCER | |
RU172405U1 (en) | PASSIVE INTERFERENCE REDUCTION DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191018 |