RU2678116C1 - Способ лазерного выращивания изделий из металлической проволоки - Google Patents
Способ лазерного выращивания изделий из металлической проволоки Download PDFInfo
- Publication number
- RU2678116C1 RU2678116C1 RU2018102674A RU2018102674A RU2678116C1 RU 2678116 C1 RU2678116 C1 RU 2678116C1 RU 2018102674 A RU2018102674 A RU 2018102674A RU 2018102674 A RU2018102674 A RU 2018102674A RU 2678116 C1 RU2678116 C1 RU 2678116C1
- Authority
- RU
- Russia
- Prior art keywords
- laser
- welding
- metal wire
- wire
- laser beam
- Prior art date
Links
- 239000002184 metal Substances 0.000 title claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000003466 welding Methods 0.000 claims description 41
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 5
- 230000004927 fusion Effects 0.000 claims description 2
- 238000004804 winding Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
- B23K26/30—Seam welding of three-dimensional seams
- B23K26/302—Seam welding of three-dimensional seams of helicoidal seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Изобретение относится к области машиностроения, в частности к способу лазерного выращивания изделий из металлической проволоки, имеющих форму тел вращения. Предварительно на формообразующее устройство навивают металлическую проволоку. Сваривают лазерным лучом образовавшиеся соседние витки проволоки. Лазерный луч направляют в точку соприкосновения двух соседних витков, равноудаленную от центров поперечных сечений проволок. Процесс ведут до получения необходимого количества сваренных лазерной сваркой витков металлической проволоки. Технический результат состоит в упрощении технологии выращивания изделий при максимальном использовании исходного материала в виде проволоки, повышении коэффициента используемого материала до 0.98-0.99 и соответственно это позволяет повысить производительность. 3 з.п. ф-лы, 5 ил.
Description
Изобретение относится к области машиностроения, в частности, к изготовлению объемных заготовок, имеющих форму тел вращения из металлической проволоки.
Известен способ лазерной сварки пружинно-витых каналов, включающий подачу свариваемой проволоки в устройство, образующее спираль таким образом, что последовательные витки спирали прилегают друг к другу и затем сваривают между собой посредством лазерной сварки, при этом луч лазера направляют в плоскости прилегания витков друг к другу. (Заявка: №2016104852, МПК B23K 9/00 (2006.01), опубликована 17.08.2017 Бюл. №23).
Известен способ изготовления трехмерного изделия посредством процесса аддитивного производства (Заявка на изобретение №2015 147 740, МПК B23K 26/34 (2014.01), опубликована 11.05.2017 Бюл. №14), наиболее близкий к заявляемому изобретению и принятый за прототип, включающий способ прямого лазерного выращивания изделий из металлических порошков посредством осаждения группы накладываемых друг на друга слоев, при этом осуществляют послойное программно-компьютерное моделирование изделия, генерируют лазерный луч от источника энергии в направлении подложки, подают под луч металлический порошок из источника порошкообразного металла и осуществляют взаимоперемещение подложки и луча с созданием зоны расплава на формируемой части в соответствии с компьютерными сечениями модели до образования запрограммированной формы изделия.
Однако в известном способе имеются недостатки: неполное использование исходного материала в виде порошка, необходимость использования камеры с защитным газом и среды с контролируемой высокой температурой, высокие требования к гранулометрическому составу используемого металлического порошка.
Задача, на решение которой направлено предлагаемое изобретение заключается в получении трехмерного изделия имеющего форму тела вращения из исходного материала в виде металлической проволоки с диаметром поперечного сечения (D=0.3-1.7 мм), возможности создания трехмерного изделия имеющего форму тела вращения с изменяющимся диаметром поперечного сечения.
Технический результат, на достижение которого направлено предлагаемое изобретение заключается в повышении производительности, упрощении технологии и максимальном использовании исходного материала, то есть повышении коэффициента используемого материала до 0.98-0.99.
Технический результат достигается тем, что в способе, лазерного выращивания изделий из металлической проволоки, имеющих форму тел вращения, при котором предварительно, навивают металлическую проволоку на формообразующее устройство, сваривают лазерным лучом образовавшиеся соседние витки проволоки, при этом лазерный луч направляют в точку соприкосновения двух соседних витков, равноудаленную от центров поперечных сечений проволок, новым является то, что первоначально витки сваривают первым проходом, применяют прерывистый шов, затем сваривают вторым проходом в местах непроваров, с наложением друг на друга швов первого и второго проходов, сварку прерывистым швом осуществляют с шагом от 2 мм до 30 мм в зависимости от диаметра витка проволоки, сварку ведут с плавным нарастанием мощности лазерного луча в начале сварки прерывистого шва и плавным убыванием мощности лазерного луча в конце прерывистого шва, процесс ведут до получения необходимого количества сваренных витков металлической проволоки.
Формообразующее устройство имеет переменный диаметр.
Сварку лазерным лучом ведут либо в режиме конвективной сварки, либо в режиме с образованием парогазового канала, в зависимости от требуемых свойств сварного шва.
Между соседними витками перед лазерной сваркой создают физический контакт.
На фигуре 1 представлена принципиальная схема изготовления объемных заготовок, имеющих форму тел вращения.
На фигуре 2 представлена схема направления лазерного луча в точку физического контакта двух соседних витков, равноудаленную от центров поперечных сечений проволок.
На фигуре 3 представлено схематичное изображение выращивания изделия с изменяемым диаметром поперечного сечения.
На фигуре 4 представлено схематичное изображение выращивания негерметичного изделия прерывистым сварным швом (первым проходом).
На фигуре 5 представлено схематичное изображение сварки вторым проходом в местах непроваров, с наложением друг на друга швов первого и второго проходов.
Позиции на фигурах: 1 - проволока, 2 - сфокусированный лазерный луч, 3 - кратчайшее расстояние между центрами поперечных сечений проволок двух соприкасающихся витков, 4 - изменяющийся радиус выращиваемого изделия, 5 - прерывистый шов первого сварочного прохода, 6 - прерывистый шов второго сварочного прохода, 7 - выращиваемое изделие.
Устройство для осуществления способа состоит из роботизированного комплекса лазерной сварки, сварочной головы, системы подачи защитного газа, вращателя или манипулятора, формообразующего устройства - подложки, металлической проволоки 1 постоянного сечения.
Сущность способа заключается в следующем: Механической и химической обработкой подготавливают необходимое количество металлической проволоки 1 постоянного сечения, но ограниченного диаметра (D=0.3-1.7 мм). Навивают металлическую проволоку на формообразующее устройство, сваривают лазерным лучом образовавшиеся соприкасающиеся витки проволоки, при этом лазерный луч направляется в точку физического контакта двух соседних витков, равноудаленную от центров поперечных сечений проволок, процесс ведут до получения необходимого количества сваренных лазерной сваркой витков металлической проволоки. Диаметр изготавливаемого тела вращения определяется диаметром формообразующего устройства, являющегося подложкой, на которую навивается проволока. При необходимости изготовления негерметичного изделия лазерную сварку можно осуществлять не постоянным сварным швом, а прерывистым, с шагом от 2 мм до 30 мм в зависимости от диаметра витка, при этом во избежание дефектов сварку ведут с плавным нарастанием мощности лазерного луча в начале сварки каждого прерывистого шва и плавным убыванием мощности лазерного луча в конце каждого прерывистого шва. В виде источника лазерного луча используют волоконный лазер или диодный лазер.
Сварку лазерным лучом ведут либо в режиме конвективной сварки, либо в режиме с образованием парогазового канала, что влияет на свойства шва, такие как глубина проплава, микроструктура, прочность. При конвективной лазерной сварке нагрев металла заготовок и плавление осуществляется в режиме конвективного теплопереноса, результатом является маленькая глубина проплава, а соответственно высокая скорость охлаждения, которая приводит к образованию более мелкодисперсной микроструктуры металла шва, результатом чего является повышение твердости и прочности сварного шва некоторых сплавов (сплавов на основе углеродистых сталей и титановых сплавов). При повышении мощности лазерного излучения на 20-30%, без изменения других режимов сварки, достигается пик погонной энергии, что приводит к образованию парогазового канала. Лазерная сварка в режиме с образованием парогазового канала сопровождается активным плавлением и испарением металла шва, результатом чего является, значительно большая глубина проплава, более длительное пребывание металла шва в расплавленном состоянии, а соответственно снижается скорость охлаждения металла шва, что приводит к росту более крупных зерен металла шва и повышению пластичности сварного шва некоторых сплавов (сплавов на основе углеродистых сталей и титановых сплавов).
Таким образом, применение режима конвективной лазерной сварки приведет к образованию более прочного и твердого металла сварного шва, а применение режима лазерной сварки с образованием парогазового канала приведет к образованию более пластичного и менее твердого металла шва.
Во избежание сварочных деформаций и остаточных напряжений можно первоначально сваривать соприкасающиеся витки прерывистым швом - первым проходом по п. 1, Фигура 4, затем сварить вторым проходом в местах непроваров, с наложением друг на друга швов первого и второго проходов Фигура 5. Сварка постоянным швом может привести к сварочным деформациям и появлению остаточных напряжений, поэтому можно использовать сварку не постоянным сварным швом, а прерывистым с шагом от 2 мм до 30 мм в зависимости от диаметра витка, это поможет снизить уровень деформаций и напряжений, однако в таком случае выращиваемое изделие будет не герметичным. С целью получения герметичного изделия можно применить второй сварочный проход, для сварки не сваренных участков.
Управление осуществляют программой роботизированного комплекса, либо с использованием вращателя, либо манипулятора, либо токарного станка оснащенного лазером.
Режимы лазерной сварки металлической проволоки зависят от природы металла, марки, диаметра металлической проволоки 1, находятся в диапазоне: скорость сварки 40-300 мм/сек, мощность лазерного излучения 1-3 кВт.
Навивание металлической проволоки, и лазерная сварка образовывающихся витков продолжается до достижения необходимых геометрических размеров выращиваемого изделия.
В виде источника лазерного луча 2 может использоваться волоконный лазер или диодный лазер.
При осуществлении лазерной сварки прерывистым швом (Фигура 4), режимы нарастания мощности лазерного излучения в начале каждого сварного шва находятся в диапазоне до 1-3 кВт за 100-400 миллисекунд, соответственно, убывания мощности лазерного излучения в диапазоне от 1-3 кВт за 200-600 миллисекунд, соответственно, что в основном зависит от скорости сварки, находящейся в диапазоне 40-300 мм/сек, то есть, чем меньше скорость сварки, тем меньше мощность, а чем меньше мощность лазерного излучения, тем меньше скорость нарастания мощности лазерного излучения.
Таким образом, за счет высокой скорости выращивания изделия 7 (40-300 мм/сек), отсутствии дефектов за счет применения режимов нарастания и убывания мощности лазерного луча 2, за счет использования в качестве исходного материала проволоки, которая в полном объеме используется при изготовлении выращиваемого изделия в отличи от металлического порошка, часть которого не попадает в зону действия лазерного излучения, то есть не плавится и осыпается вокруг выращиваемого изделия, являясь причиной появления дефектов, за счет минимального удельного тепловложения достигается повышение производительности, упрощение технологии и снижение энергетических затрат.
Изготовленное изделие может применяться как каналы или трубки для теплообменных аппаратов, с повышенным коэффициентом теплосъема за счет завихрений потока жидкого или газообразного теплоносителя, появляющихся в результате взаимодействия потока теплоносителя с неровной внутренней полостью канала, образованной криволинейными поверхностями соседних витков металлической проволоки. Изготовленные тела вращения с изменяемым радиусом поперечного сечения могут применяться для теплообменных систем, изменение радиуса поперечного сечения приводит к изменению числа Рейнольдса и еще более существенному завихрению потока теплоносителя.
Изготовленное изделие с непроварами может использоваться для производства фильтров, например, отделяющих воду от нефтепродуктов.
Claims (4)
1. Способ лазерного выращивания изделий из металлической проволоки, имеющих форму тел вращения, включающий предварительную навивку металлической проволоки на формообразующее устройство и сварку лазерным лучом образовавшихся соседних витков проволоки, при этом лазерный луч направляют в точку соприкосновения двух соседних витков, равноудаленную от центров поперечных сечений проволок, отличающийся тем, что первоначально витки сваривают первым проходом прерывистым швом, затем сваривают вторым проходом в местах непроваров с наложением друг на друга швов первого и второго проходов, при этом сварку прерывистым швом осуществляют с шагом от 2 мм до 30 мм в зависимости от диаметра витка проволоки и с плавным нарастанием мощности лазерного луча в начале сварки прерывистого шва и плавным убыванием мощности лазерного луча в конце прерывистого шва, причем процесс ведут до получения необходимого количества сваренных витков металлической проволоки.
2. Способ по п. 1, отличающийся тем, что используют формообразующее устройство с переменным диаметром.
3. Способ по п. 1, отличающийся тем, что сварку лазерным лучом осуществляют в зависимости от требуемых свойств сварного шва в режиме конвективной сварки или в режиме с образованием парогазового канала.
4. Способ по п. 1, отличающийся тем, что перед лазерной сваркой между соседними витками создают физический контакт.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018102674A RU2678116C1 (ru) | 2018-01-23 | 2018-01-23 | Способ лазерного выращивания изделий из металлической проволоки |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018102674A RU2678116C1 (ru) | 2018-01-23 | 2018-01-23 | Способ лазерного выращивания изделий из металлической проволоки |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2678116C1 true RU2678116C1 (ru) | 2019-01-23 |
Family
ID=65085126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018102674A RU2678116C1 (ru) | 2018-01-23 | 2018-01-23 | Способ лазерного выращивания изделий из металлической проволоки |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2678116C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2715760C1 (ru) * | 2019-05-31 | 2020-03-03 | Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" | Способ лазерной сварки прецизионных деталей осесимметричной формы |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4323756A (en) * | 1979-10-29 | 1982-04-06 | United Technologies Corporation | Method for fabricating articles by sequential layer deposition |
RU2178355C2 (ru) * | 1995-05-31 | 2002-01-20 | Н.В. Рейкем С.А. | Трубчатое изделие, способы его получения и использования (варианты) |
CN1393316A (zh) * | 2001-06-27 | 2003-01-29 | 西北工业大学 | 激光立体成形三维金属零件的材料送进方法 |
RU2201833C1 (ru) * | 2001-10-31 | 2003-04-10 | Муравьев Владимир Михайлович | Способ изготовления решетчатых столбов |
RU150006U1 (ru) * | 2014-06-06 | 2015-01-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ | Установка для лазерной сварки витой трубы с пружинно-витым каналом |
RU2016104852A (ru) * | 2016-02-12 | 2017-08-17 | Общество с ограниченной ответственностью Вятское машиностроительное предприятие "Лазерная техника и технологии" | Способ сварки пружинно-витых каналов |
US20170252846A1 (en) * | 2016-03-03 | 2017-09-07 | Michael Thomas Stawovy | Fabrication of metallic parts by additive manufacturing |
-
2018
- 2018-01-23 RU RU2018102674A patent/RU2678116C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4323756A (en) * | 1979-10-29 | 1982-04-06 | United Technologies Corporation | Method for fabricating articles by sequential layer deposition |
RU2178355C2 (ru) * | 1995-05-31 | 2002-01-20 | Н.В. Рейкем С.А. | Трубчатое изделие, способы его получения и использования (варианты) |
CN1393316A (zh) * | 2001-06-27 | 2003-01-29 | 西北工业大学 | 激光立体成形三维金属零件的材料送进方法 |
RU2201833C1 (ru) * | 2001-10-31 | 2003-04-10 | Муравьев Владимир Михайлович | Способ изготовления решетчатых столбов |
RU150006U1 (ru) * | 2014-06-06 | 2015-01-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ | Установка для лазерной сварки витой трубы с пружинно-витым каналом |
RU2016104852A (ru) * | 2016-02-12 | 2017-08-17 | Общество с ограниченной ответственностью Вятское машиностроительное предприятие "Лазерная техника и технологии" | Способ сварки пружинно-витых каналов |
US20170252846A1 (en) * | 2016-03-03 | 2017-09-07 | Michael Thomas Stawovy | Fabrication of metallic parts by additive manufacturing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2715760C1 (ru) * | 2019-05-31 | 2020-03-03 | Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" | Способ лазерной сварки прецизионных деталей осесимметричной формы |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107262713A (zh) | 一种光内同轴送粉激光冲击锻打复合加工成形装置及方法 | |
Huang et al. | Laser wire-feed metal additive manufacturing of the Al alloy | |
Hu et al. | Understanding and overcoming of abnormity at start and end of the weld bead in additive manufacturing with GMAW | |
CN107217253B (zh) | 一种光-粉-气同轴输送激光熔覆冲击锻打成形复合制造方法 | |
US10201877B2 (en) | Puddle forming and shaping with primary and secondary lasers | |
CN107008996A (zh) | 一种金属冷焊增材制造的方法 | |
CN104227239B (zh) | 一种带钢激光拼焊接方法 | |
CN108971806A (zh) | 一种送料方向可调的电弧增材装置及方法 | |
CN107225244A (zh) | 一种调控/降低激光增材制造零件内应力的方法 | |
CN206343579U (zh) | 金属锻焊增材制造装置 | |
CN105108338A (zh) | 一种控制激光焊接的方法 | |
CN210098977U (zh) | 一种复合热源同步轧制増材制造设备 | |
CN108188581B (zh) | 一种送丝式激光增材制造方法 | |
CN107442941A (zh) | 一种铝合金双丝激光增材制造方法 | |
Shi et al. | Closed-loop control of variable width deposition in laser metal deposition | |
CN111673219B (zh) | 一种厚骨架t型结构激光振荡填丝单面焊双侧成形的焊接方法 | |
RU2678116C1 (ru) | Способ лазерного выращивания изделий из металлической проволоки | |
US11819958B2 (en) | Build-up welding method | |
Du et al. | Dimensional characteristics of Ti-6Al-4V thin-walled parts prepared by wire-based multi-laser additive manufacturing in vacuum | |
CN107457469A (zh) | 一种碳钢结构件自压缩电弧增材制造方法 | |
RU2664844C1 (ru) | Способ аддитивного изготовления трехмерной детали | |
Zhao et al. | Effect of laser cladding on forming qualities of YCF101 alloy powder in the different lap joint modes | |
CN114833352A (zh) | 用于梯度功能金属零件的同步送丝送粉激光增材制造方法 | |
WO2017201993A1 (zh) | 空腔零件激光3d成形工艺 | |
Brückner et al. | Innovations in laser cladding and direct metal deposition |