WO2017201993A1 - 空腔零件激光3d成形工艺 - Google Patents

空腔零件激光3d成形工艺 Download PDF

Info

Publication number
WO2017201993A1
WO2017201993A1 PCT/CN2016/107262 CN2016107262W WO2017201993A1 WO 2017201993 A1 WO2017201993 A1 WO 2017201993A1 CN 2016107262 W CN2016107262 W CN 2016107262W WO 2017201993 A1 WO2017201993 A1 WO 2017201993A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser head
forming
cavity part
axis
Prior art date
Application number
PCT/CN2016/107262
Other languages
English (en)
French (fr)
Inventor
石拓
傅戈雁
方琴琴
王聪
石世宏
邓志强
周斌
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2017201993A1 publication Critical patent/WO2017201993A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a laser 3D forming process, in particular to a laser part 3D forming process of a cavity part.
  • Laser stereo forming technology is an advanced manufacturing technology formed by the combination of rapid prototyping technology and laser cladding technology. According to different powder feeding methods, it is divided into two types, one is laser melting deposition technology, referred to as LMD technology; the other It is a selective laser melting technology, referred to as SLM technology.
  • LMD technology laser melting deposition technology
  • SLM technology selective laser melting technology
  • LMD uses automatic powder feeding. During the forming process, metal powder is sprayed synchronously from the hopper into the molten pool through the nozzle. Since the metal powder is dynamically ejected from the nozzle, the laser spot in the LMD technique cannot be too small, otherwise most of the powder cannot be captured by the laser spot. Due to the large diameter of the laser spot in the LMD technology, the shape of the manufactured part is relatively simple, the forming line width is relatively wide, the forming part has poor precision, and more subsequent processing is required. LMD technology is often combined with machine tools to make large parts.
  • the SLM uses a pre-laying method in which a layer of metal powder is pre-laid and then the metal powder is selectively melted by a laser. Since the metal powder is at rest, the metal powder can be captured with a small laser spot.
  • SLM technology uses a scanning galvanometer to achieve relative motion between the laser and the workpiece. The processed parts have high forming precision and are generally used to manufacture small and medium parts.
  • the present invention provides a laser 3D forming process for a cavity part capable of eliminating laser interference during processing and having a good sealing effect.
  • the laser 3D forming process of the cavity part of the invention comprises the following steps:
  • the laser head emits a laser beam and scans along a predetermined path; the laser spot combines with the fed metal powder to complete the formation of a layer of material; wherein, in the oriented forming region, the axis and the vertical direction of the laser head Scanning at a fixed angle, the selected angle can be such that the lower end of the laser head or the laser beam does not interfere with the formed portion of the cavity part; if in the normal forming area, the axis of the laser head and the forming surface Parallel lines;
  • step 1) is repeated to form the next layer of material until the part sealing section is completely processed.
  • the laser optical head adopts a method of intra-light powder feeding.
  • the angle between the axis of the laser head and the vertical direction is 0°-60°, and the angle between the axis of the laser head and the tangent of the forming surface does not exceed 30°.
  • the visual control system is used to measure and control the layer height of the part.
  • the laser head is a ring-shaped hollow laser head.
  • the invention divides the part into a directional forming area and a normal forming area, and the processing method of the normal forming area can eliminate the problem of the step effect on the surface of the conventional part and improve the precision of the surface of the part; however, the processing to the caliber is relatively small.
  • the processing method is prone to interference, so the lower end of the laser head or the portion where the laser beam interferes with the formed portion of the cavity part is set as the orientation forming area, eliminating the interference phenomenon.
  • the parts manufactured by the laser 3D forming process of the cavity part of the present invention achieve higher surface precision than the parts manufactured by the laser forming process of the existing cavity parts.
  • the invention adopts the method of intermittent processing in the sealing section of the cavity part, solves the problem of heat accumulation in the processing process of the existing sealing section, and can realize the normal forming of the sealing section. It also gives the seal section better surface accuracy.
  • the angle between the axis of the laser head and the vertical direction is 0°-60°. In the above range, the lower end of the laser head or the laser beam interferes with the already formed surface. The phenomenon. The angle between the axis of the laser head and the tangent of the forming surface does not exceed 30°, and the forming effect of the part is good.
  • the laser optical head adopts a method of intra-light powder feeding, and the laser optical head is a ring-shaped hollow hollow laser optical head.
  • the single powder tube is placed in the center.
  • the outer ring-shaped collimated gas has obvious convergence effect on the single powder bundle, which makes it have good directivity during the spatially changing attitude laser cladding forming process. Interference, the advantages of light, powder and gas are coaxial.
  • the powder feeding nozzle can maintain the stiffness of the powder beam at a large inclination angle, and the welding head can still be formed by the angle of the optical axis at an angle of 120° with the vertical direction. It is beneficial to realize the accumulation of the large-angle inclined structure in the normal direction without error layer, and the processed parts have accurate dimensions and small surface roughness.
  • Figure 1 is a schematic view showing the processing of the normal forming region of the present invention
  • Figure 2 is a schematic illustration of the processing of the oriented forming region of the present invention.
  • is the angle between the axis of the optical head and the vertical direction
  • is the angle between the axis of the optical head and the tangent of the forming surface
  • Embodiment 1 When the cavity part is not a closed cavity part, that is, the cavity part is not required To seal, the laser part 3D forming process of the cavity part includes the following steps:
  • the laser head adopts a method of feeding powder in the light, and the laser head is a ring-shaped hollow laser head.
  • the laser head emits a laser beam and scans along a predetermined path; the laser spot combines with the fed metal powder to complete the formation of a layer of material; wherein, in the oriented forming region, as shown in FIG. 2, the axis of the laser head At each processing position of a layer of material, scanning is performed at the same angle ⁇ with the vertical direction, and the selected angle ⁇ can be such that the lower end of the laser head or the laser beam does not interfere with the formed portion of the cavity part;
  • the normal forming region, as shown in FIG. 1, the axis of the laser head is parallel to the normal of the forming surface at each processing position;
  • step 3 Pull the distance between the laser head and the newly formed surface by a layer of material and repeat step 2) until the part is processed.
  • the visual control system is used to measure and control the layer height of the part.
  • the laser spot power density was 80 w/mm 2 and the scanning speed was 5 mm/s.
  • the angle ⁇ between the axis of the laser head and the vertical direction is 0°-60°, and the angle ⁇ between the axis of the laser head and the tangent to the forming surface does not exceed 30°.
  • Embodiment 2 When the cavity part is a closed cavity part, the laser part 3D forming process of the cavity part comprises the following steps:
  • the laser head adopts a method of feeding powder in the light, and the laser head is a ring-shaped hollow laser head.
  • the laser head emits a laser beam and scans along a predetermined path; the laser spot combines with the fed metal powder to complete the formation of a layer of material; wherein, in the oriented forming region, as shown in FIG. 2, the axis of the laser head At each processing position of a layer of material, scanning is performed at the same angle ⁇ with the vertical direction, and the selected angle ⁇ can be made to make the lower end of the laser head or laser light
  • the beam does not interfere with the formed portion of the cavity part; if in the normal forming region, as shown in Figure 1, the axis of the laser head is parallel to the normal to the forming surface at each processing position;
  • step 3 Pull the distance between the laser head and the newly formed surface by a layer of material and repeat step 2) until the part is processed.
  • the visual control system is used to measure and control the layer height of the part.
  • the sealing section is set as the orientation forming area, and the steps are as follows:
  • the selected angle can be such that the lower end of the laser head or the laser beam does not interfere with the formed portion of the cavity part; It is divided into multiple sections along its trajectory. After each section of the laser beam is melted, it is closed for a period of time, and then the next section is continuously welded until a layer of material is formed;
  • step b) Then, the distance between the laser head and the newly formed surface is pulled apart, and step a) is repeated to form the next layer of material until the part sealing section is completely processed.
  • the laser spot power density was 80 w/mm 2 and the scanning speed was 5 mm/s.
  • the angle ⁇ between the axis of the laser head and the vertical direction is 0°-60°, and the angle ⁇ between the axis of the laser head and the tangent to the forming surface does not exceed 30°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)

Abstract

空腔零件激光3D成形工艺,包括如下步骤:1)建立零件几何模型;将模型分成定向成形区域和法向成形区域;会发生干涉的部分为定向成形区域,其余为法向成形区域;2)出射激光束,激光光斑与被送入的金属粉末结合,完成一层材料的成形;在定向成形区域,光头的轴线与竖直方向呈一固定的角度进行扫描,若在法向成形区域,光头的轴线与成形面的法线平行;3)使光头移动一层材料的距离,重复步骤2),至加工完成,这消除了干涉现象,获得了更高的表面精度。在加工零件封口段时,将待加工面沿其轨迹分为多段,加工一段,冷却一段时间,再继续加工下一段,直至一层材料的成形,这解决了热量的堆积问题,能够实现封口段正常成形。

Description

空腔零件激光3D成形工艺
本申请要求于2016年05月24日提交中国专利局、申请号为201610347935.6、发明名称为“空腔零件激光3D成形工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种激光3D成形的工艺,特别是一种空腔零件激光3D成形工艺。
背景技术
激光立体成形技术是由快速成形技术和激光熔覆技术结合形成的一种先进制造技术,根据送粉方式的不同,分为两种,一种是激光熔化沉积技术,简称LMD技术;另一种是选择性激光熔化技术,简称SLM技术。
LMD采用的是自动送粉,在加工成形过程中,金属粉末从储粉斗中通过喷嘴同步喷射到熔池中。由于金属粉末是从喷嘴中动态喷出的,所以LMD技术中的激光光斑不能太小,否则大部分粉末不能被激光光斑捕捉。由于LMD技术中的激光光斑直径较大,所制造的零件形状相对比较简单,成形线宽比较宽,成形件精度较差,需要较多的后续加工。LMD技术通常结合机床,制造大尺寸的零件。
SLM则采用预先铺粉的方式,即预先铺设一层金属粉末,然后通过激光对金属粉末实现选择性熔化。由于金属粉末处于静止状态,因此采用很小的激光光斑也能够捕捉金属粉末。SLM技术采用扫描振镜实现激光与工件的相对运动。加工的零件成形精度较高,一般用于制造中小零件。
现有技术中,在加工零件的整个过程中时,特别是口径较小的部位,容易发生激光光头的下端或者激光光束与已经成形的面发生干涉的现象,导致零件成形困难,零件成形表面精度低。此外对于制造中小尺寸的封闭空腔零件,在封口段,由于热量累计严重,容易造成塌陷的情况,导致零件封口段表面精度低,甚至不能完全封口。
发明内容
为了解决上述技术问题,本发明提供一种能在加工过程中消除激光干涉现象、并且封口段加工效果好的空腔零件激光3D成形工艺。
本发明的空腔零件激光3D成形工艺,包括如下步骤:
1)建立空腔零件的三维几何模型;根据计算激光光头的下端或者激光光束是否会与空腔零件的已成形部分发生干涉,将三维模型分成定向成形区域和法向成形区域;激光光头的下端或者激光光束会与空腔零件的已成形部分发生干涉的部分设置为定向成形区域,其余为法向成形区域;
2)激光光头出射激光束,沿预先设定的路径扫描;激光光斑与被送入的金属粉末结合,完成一层材料的成形;其中,若在定向成形区域,激光光头的轴线与竖直方向呈一固定的角度进行扫描,选择的上述角度能够使得激光光头的下端或者激光光束不会与空腔零件的已成形部分发生干涉;若在法向成形区域,激光光头的轴线与成形面的法线平行;
3)使激光光头与刚成形的表面之间拉开一层材料的距离,重复步骤2),直至零件加工完成。
进一步地,上述零件若为需要封口的零件,则在加工至零件封口段时,包括如下步骤:
1)将待加工面沿其轨迹分为多段,激光光束每熔覆一段后,关闭一段时间,再继续熔覆下一段,直至一层材料的成形;
2)然后使激光光头与刚成形的表面之间拉开一层材料的距离,重复步骤1)进行下一层材料的成形,直至零件封口段全部加工完成。
进一步地,所述激光光头采用光内送粉的方法。
进一步地,加工较大曲率半径的曲面时,激光光头的轴线与竖直方向夹角为0°—60°,激光光头的轴线与成形面切线的夹角不超过30°。
进一步地,加工过程中,利用视觉控制系统测量、控制零件的层高。
进一步地,所述激光光头为环锥形中空激光光头。
本发明的优点在于:
1.本发明将零件划分为定向成形区域和法向成形区域,法向成形区域的加工方式能够消除传统的零件表面存在阶梯效应的问题,提高零件表面的精度;但是,在加工到口径比较小的部位时,继续采用法向成形区域的 加工方式,容易发生干涉现象,所以将激光光头的下端或者激光光束会与空腔零件的已成形部分发生干涉的部分设置为定向成形区域,消除了干涉现象。本发明的空腔零件激光3D成形工艺制造的零件相对于现有空腔零件激光3D成形工艺制造的零件,获得了更高的表面精度。
2.本发明在空腔零件封口段采用间歇式加工的方法,解决了现有的封口段加工过程中热量的堆积问题,能够实现封口段正常成形。也使得封口段获得更好的表面精度。
3.加工较大曲率半径的曲面时,激光光头的轴线与竖直方向夹角为0°—60°,上述角度范围内,可避免发生激光光头的下端或者激光光束与已经成形的面发生干涉的现象。激光光头的轴线与成形面切线的夹角不超过30°,此时零件成形效果较好。
4.所述激光光头采用光内送粉的方法,并且激光光头为环锥形中空激光光头。单根粉管置于中心,在空间多角度送粉过程中外层环状准直气对于单根粉束的汇聚效果明显,使其在空间变姿态激光熔覆成形过程中具有指向性好、无干涉,光、粉、气一体同轴等优点。送粉喷嘴在较大倾斜角度下仍能保持粉束的挺度,光头轴线与竖直方向夹角120°时仍能进行熔覆成形。有利于实现大角度倾斜结构法向无错层堆积成形,加工的零件尺寸准确,表面粗糙度小。
附图说明
图1是本发明法向成形区域的加工示意图;
图2是本发明定向成形区域的加工示意图。
其中,图中α为光头轴线与竖直方向之间的夹角,β为光头轴线与成形面切线之间的夹角。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1:当所述空腔零件不是封闭的空腔零件时,即空腔零件不需 要封口时,空腔零件激光3D成形工艺,包括如下步骤:
1)建立空腔零件的三维几何模型;根据计算激光光头的下端或者激光光束是否会与空腔零件的已成形部分发生干涉,将三维模型分成定向成形区域和法向成形区域;激光光头的下端或者激光光束会与空腔零件的已成形部分发生干涉的部分设置为定向成形区域,其余为法向成形区域;
2)激光光头采用光内送粉的方法,所述激光光头为环锥形中空激光光头。激光光头出射激光束,沿预先设定的路径扫描;激光光斑与被送入的金属粉末结合,完成一层材料的成形;其中,若在定向成形区域,如图2所示,激光光头的轴线在一层材料的每一个加工位置都与竖直方向呈同一角度α进行扫描,选择的上述角度α能够使得激光光头的下端或者激光光束不会与空腔零件的已成形部分发生干涉;若在法向成形区域,如图1所示,激光光头的轴线在每一个加工位置都与成形面的法线平行;
3)使激光光头与刚成形的表面之间拉开一层材料的距离,重复步骤2),直至零件加工完成。加工过程中,利用视觉控制系统测量、控制零件的层高。
上述加工过程中,激光光斑功率密度为80w/mm2,扫描速度为5mm/s。
其中,加工较大曲率半径的曲面时,激光光头的轴线与竖直方向夹角α为0°—60°,激光光头的轴线与成形面切线的夹角β不超过30°。
实施例2:当所述空腔零件是封闭的空腔零件时,空腔零件激光3D成形工艺,包括如下步骤:
1)建立空腔零件的三维几何模型;根据计算激光光头的下端或者激光光束是否会与空腔零件的已成形部分发生干涉,将三维模型分成定向成形区域和法向成形区域;激光光头的下端或者激光光束会与空腔零件的已成形部分发生干涉的部分设置为定向成形区域,其余为法向成形区域;
2)激光光头采用光内送粉的方法,所述激光光头为环锥形中空激光光头。
激光光头出射激光束,沿预先设定的路径扫描;激光光斑与被送入的金属粉末结合,完成一层材料的成形;其中,若在定向成形区域,如图2所示,激光光头的轴线在一层材料的每一个加工位置都与竖直方向呈同一角度α进行扫描,选择的上述角度α能够使得激光光头的下端或者激光光 束不会与空腔零件的已成形部分发生干涉;若在法向成形区域,如图1所示,激光光头的轴线在每一个加工位置都与成形面的法线平行;
3)使激光光头与刚成形的表面之间拉开一层材料的距离,重复步骤2),直至零件加工完成。加工过程中,利用视觉控制系统测量、控制零件的层高。
4)在加工至零件封口段时,由于封口段处,激光光头的下端或者激光光束会与空腔零件的已成形部分发生干涉,所以封口段处设置为定向成形区域,步骤如下:
a)首先使激光光头的轴线与竖直方向呈一固定的角度进行扫描,选择的上述角度能够使得激光光头的下端或者激光光束不会与空腔零件的已成形部分发生干涉;将待加工面沿其轨迹分为多段,激光光束每熔覆一段后,关闭一段时间,再继续熔覆下一段,直至一层材料的成形;
b)然后使激光光头与刚成形的表面之间拉开一层材料的距离,重复步骤a)进行下一层材料的成形,直至零件封口段全部加工完成。
上述加工过程中,激光光斑功率密度为80w/mm2,扫描速度为5mm/s。
其中,加工较大曲率半径的曲面时,激光光头的轴线与竖直方向夹角α为0°—60°,激光光头的轴线与成形面切线的夹角β不超过30°。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,上述的实施例仅仅是示范性的,是非限制性的。说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式,并且基于本发明公开的内容,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (6)

  1. 一种空腔零件激光3D成形工艺,其特征在于:包括如下步骤:
    1)建立空腔零件的三维几何模型;根据计算激光光头的下端或者激光光束是否会与空腔零件的已成形部分发生干涉,将三维模型分成定向成形区域和法向成形区域;激光光头的下端或者激光光束会与空腔零件的已成形部分发生干涉的部分设置为定向成形区域,其余为法向成形区域;
    2)激光光头出射激光束,沿预先设定的路径扫描;激光光斑与被送入的金属粉末结合,完成一层材料的成形;其中,若在定向成形区域,激光光头的轴线与竖直方向呈一固定的角度进行扫描,选择的上述角度能够使得激光光头的下端或者激光光束不会与空腔零件的已成形部分发生干涉;若在法向成形区域,激光光头的轴线与成形面的法线平行;
    3)使激光光头与刚成形的表面之间拉开一层材料的距离,重复步骤2),直至零件加工完成。
  2. 根据权利要求1所述的空腔零件激光3D成形工艺,其特征在于:上述零件若为需要封口的零件,则在加工至零件封口段时,包括如下步骤:
    1)将待加工面沿其轨迹分为多段,激光光束每熔覆一段后,关闭一段时间,再继续熔覆下一段,直至一层材料的成形;
    2)然后使激光光头与刚成形的表面之间拉开一层材料的距离,重复步骤1)进行下一层材料的成形,直至零件封口段全部加工完成。
  3. 根据权利要求1所述的空腔零件激光3D成形工艺,其特征在于:所述激光光头采用光内送粉的方法。
  4. 根据权利要求1所述的空腔零件激光3D成形工艺,其特征在于:加工较大曲率半径的曲面时,激光光头的轴线与竖直方向夹角为0°—60°,激光光头的轴线与成形面切线的夹角不超过30°。
  5. 根据权利要求1所述的空腔零件激光3D成形工艺,其特征在于:加工过程中,利用视觉控制系统测量、控制零件的层高。
  6. 根据权利要求3所述的空腔零件激光3D成形工艺,其特征在于:所述激光光头为环锥形中空激光光头。
PCT/CN2016/107262 2016-05-24 2016-11-25 空腔零件激光3d成形工艺 WO2017201993A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610347935.6 2016-05-24
CN201610347935.6A CN105834426B (zh) 2016-05-24 2016-05-24 空腔零件激光3d成形工艺

Publications (1)

Publication Number Publication Date
WO2017201993A1 true WO2017201993A1 (zh) 2017-11-30

Family

ID=56593338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107262 WO2017201993A1 (zh) 2016-05-24 2016-11-25 空腔零件激光3d成形工艺

Country Status (2)

Country Link
CN (1) CN105834426B (zh)
WO (1) WO2017201993A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188941A (zh) * 2018-05-25 2021-01-05 通用电气公司 利用激光入射角控制增材制造构件的方法
WO2023102918A1 (zh) * 2021-12-08 2023-06-15 苏州中科煜宸激光智能科技有限公司 立面斜壁墙的激光熔覆堆积实验方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107498052B (zh) * 2017-09-22 2019-03-05 华中科技大学 一种用于多激光slm成形装置的负载均衡扫描成形方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127192A (ja) * 2009-12-18 2011-06-30 Amada Co Ltd 3次元造形物製造装置
CN103521767A (zh) * 2013-09-04 2014-01-22 华中科技大学 一种复杂零件的高速精密加工方法和装置
CN104625059A (zh) * 2015-01-21 2015-05-20 大连理工大学 一种无支撑倾斜结构的激光近净成形方法
WO2016042794A1 (ja) * 2014-09-16 2016-03-24 株式会社東芝 積層造形装置および積層造形方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504127B1 (en) * 1999-09-30 2003-01-07 National Research Council Of Canada Laser consolidation methodology and apparatus for manufacturing precise structures
CN102328081B (zh) * 2011-09-26 2013-12-25 华中科技大学 一种高功率激光快速成形三维金属零件的方法
CN103726049B (zh) * 2014-01-09 2016-05-25 武汉新瑞达激光工程有限责任公司 一种金属零件的激光增材制造方法和装备
CN104190927B (zh) * 2014-08-11 2016-05-18 苏州大学 一种同步送粉空间激光加工与三维成形方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127192A (ja) * 2009-12-18 2011-06-30 Amada Co Ltd 3次元造形物製造装置
CN103521767A (zh) * 2013-09-04 2014-01-22 华中科技大学 一种复杂零件的高速精密加工方法和装置
WO2016042794A1 (ja) * 2014-09-16 2016-03-24 株式会社東芝 積層造形装置および積層造形方法
CN104625059A (zh) * 2015-01-21 2015-05-20 大连理工大学 一种无支撑倾斜结构的激光近净成形方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188941A (zh) * 2018-05-25 2021-01-05 通用电气公司 利用激光入射角控制增材制造构件的方法
CN112188941B (zh) * 2018-05-25 2023-05-26 通用电气公司 利用激光入射角控制增材制造构件的方法
WO2023102918A1 (zh) * 2021-12-08 2023-06-15 苏州中科煜宸激光智能科技有限公司 立面斜壁墙的激光熔覆堆积实验方法

Also Published As

Publication number Publication date
CN105834426B (zh) 2018-12-21
CN105834426A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN104190927B (zh) 一种同步送粉空间激光加工与三维成形方法及装置
Singh et al. A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition
CN107262713B (zh) 一种光内同轴送粉激光冲击锻打复合加工成形装置及方法
WO2017201993A1 (zh) 空腔零件激光3d成形工艺
US10780634B2 (en) Nozzle, processing apparatus, and additive manufacturing apparatus
CN101733550B (zh) 一种送丝送粉复合激光熔覆成形方法及装置
US11400535B2 (en) Method and device for manufacturing shaped objects
CN107217253B (zh) 一种光-粉-气同轴输送激光熔覆冲击锻打成形复合制造方法
WO2017124856A1 (zh) 曲率实体件激光熔覆成形工艺及装置
US20140034621A1 (en) Method and system of hot wire joint design for out-of-position welding
CN105349994B (zh) 用于零件内腔表面修复的激光熔覆工艺
CN104651832A (zh) 用于大型金属零件的表面修复工艺
CN103197420A (zh) 一种激光聚焦装置
CN110834094B (zh) 一种基于光外同轴送粉的变宽度薄壁件激光熔覆成形方法
CN110684974A (zh) 一种可变光斑的振镜扫描式激光熔覆加工头装置
CN111702293A (zh) 一种针对高铁枕梁工艺孔的焊枪自动轨迹避让方法
CN110340485A (zh) 一种悬臂结构的定向能量沉积五轴熔积方法
CN111575702A (zh) 一种激光熔覆方法及系统
CN105772724B (zh) 一种提高激光金属3d成形件质量的方法
EP3711889A1 (en) Method for producing molded article, production device, and molded article
CN111922481B (zh) 一种大型管道自动焊接方法
RU2660499C2 (ru) Способ четырехсопловой газопорошковой лазерной наплавки с регулированием расхода порошка
US20110057360A1 (en) Method of depositing material
WO2019098021A1 (ja) 造形物の製造方法、製造装置及び造形物
JP6706008B2 (ja) 粉体供給装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902977

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902977

Country of ref document: EP

Kind code of ref document: A1