RU2677904C2 - Восстановление драгоценных металлов - Google Patents
Восстановление драгоценных металлов Download PDFInfo
- Publication number
- RU2677904C2 RU2677904C2 RU2015149033A RU2015149033A RU2677904C2 RU 2677904 C2 RU2677904 C2 RU 2677904C2 RU 2015149033 A RU2015149033 A RU 2015149033A RU 2015149033 A RU2015149033 A RU 2015149033A RU 2677904 C2 RU2677904 C2 RU 2677904C2
- Authority
- RU
- Russia
- Prior art keywords
- precious metals
- exhaust gases
- paragraphs
- waste
- cooling
- Prior art date
Links
- 239000010970 precious metal Substances 0.000 title claims abstract description 41
- 238000011084 recovery Methods 0.000 title claims abstract description 22
- 239000007789 gas Substances 0.000 claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 58
- 239000002245 particle Substances 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 38
- 239000002594 sorbent Substances 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 239000007787 solid Substances 0.000 claims abstract description 20
- 238000001816 cooling Methods 0.000 claims abstract description 19
- 238000000746 purification Methods 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 9
- 239000002912 waste gas Substances 0.000 claims abstract description 4
- 239000002699 waste material Substances 0.000 claims description 15
- 239000007800 oxidant agent Substances 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 13
- 150000002739 metals Chemical class 0.000 claims description 13
- 239000000919 ceramic Substances 0.000 claims description 9
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 9
- 229910052702 rhenium Inorganic materials 0.000 claims description 8
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000009832 plasma treatment Methods 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 235000012204 lemonade/lime carbonate Nutrition 0.000 claims description 3
- 239000004571 lime Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000002906 medical waste Substances 0.000 claims description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- -1 platinum group metals Chemical class 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000005272 metallurgy Methods 0.000 abstract 1
- 238000001914 filtration Methods 0.000 description 23
- 239000000428 dust Substances 0.000 description 19
- 230000008569 process Effects 0.000 description 15
- 239000002893 slag Substances 0.000 description 13
- 239000010881 fly ash Substances 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000003546 flue gas Substances 0.000 description 6
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 238000002679 ablation Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000013618 particulate matter Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000003841 chloride salts Chemical class 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005108 dry cleaning Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005865 alkene metathesis reaction Methods 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009852 extractive metallurgy Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000012720 thermal barrier coating Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0027—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
- B01D46/0036—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by adsorption or absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/64—Heavy metals or compounds thereof, e.g. mercury
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
- C22B11/021—Recovery of noble metals from waste materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
- C22B11/021—Recovery of noble metals from waste materials
- C22B11/023—Recovery of noble metals from waste materials from pyrometallurgical residues, e.g. from ashes, dross, flue dust, mud, skim, slag, sludge
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
- C22B11/021—Recovery of noble metals from waste materials
- C22B11/025—Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper, or baths
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
- C22B11/021—Recovery of noble metals from waste materials
- C22B11/026—Recovery of noble metals from waste materials from spent catalysts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B61/00—Obtaining metals not elsewhere provided for in this subclass
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/02—Working-up flue dust
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Treating Waste Gases (AREA)
Abstract
Изобретение относится к очистке отходящих газов термической обработки содержащего драгоценные металлы сырья. Способ включает охлаждение указанных отходящих газов до температуры от 300°С до 500°С, подачу охлажденных отходящих газов через первый фильтр твердых частиц с обеспечением извлечения твердых частиц, содержащих драгоценные металлы, и дозированное введение сорбента в отходящие газы, прошедшие через первый фильтр твердых частиц, и подачу отходящих газов через второй фильтр твердых частиц. Обеспечивается повышение технической эффективности восстановления металлов платиновой группы. 17 з.п. ф-лы, 3 ил., 4 табл., 1 пр.
Description
Настоящее изобретение относится в целом к экстрактивной металлургии, более точно, к способу, продукту и устройству для восстановления металлов платиновой группы (МПГ) и других дорогостоящих металлов, далее называемых драгоценными металлами. Таким образом, изобретение относится к способу повышения выхода в процессе восстановления драгоценных металлов. В частности, усовершенствована система очистки отходящих газов с целью обеспечения экономически выгодного способа повышения технического выхода в процессе восстановления металлов.
При восстановлении драгоценных металлов (таких как МПГ) повышение технической эффективности восстановления на каждую долю процента (увеличение количества восстановленных МПГ в процентах переработанных МПГ) имеет огромное значение для промышленной эффективности и конкурентоспособности процесса. Это объясняется в первую очередь значительными затратами на "отходы", небольшими прибылями и высокими требованиями к оборотному капиталу и рисками.
В патенте GB 2465603 описан способ плазменного восстановления МПГ. Техническая эффективность восстановления металлов в системе, описанной в GB 2465603, является высокой по сравнению с другими конкурирующими технологиями. Достигнутая эффективность восстановления за один проход составляет около 98% по весу. Кроме того, преимуществом описанной в этом патенте технологии является то, что за счет конфигурации системы на основе плазменного нагрева уменьшен физический и химический выброс пыли в систему удаления отходящих газов и, соответственно, снижены потери МПГ.
С целью выполнения установленных требований экологической безопасности поток отходящих газов термического процесса должен удерживаться и очищаться до его выброса. Это предусматривает дозированное добавление сорбентов в скруббер сухой очистки (высокотемпературный керамический фильтр). За счет комбинированного действия сорбента и фильтра улавливаются переносимые по воздуху загрязняющие вещества, такие как летучая зола и побочные продукты солей, образующиеся во время сухой очистки (сульфаты, окиси, хлориды). Система, описанная в GB 2465603, обеспечивает одновременную очистку газа и удаление частиц в одной фильтровальной установке.
В патенте US 4295881 описан способ восстановления МПГ из хромистой руды, в котором применяются операции высокоинтенсивного плавления, описанные в патенте US 4685963. В US 4295881 указано, что отходящие газы могут пропускаться через рукавный пылеуловитель с целью извлечения переносимой по воздуху пыли. Затем эта пыль может очищаться традиционным способом в шахтной печи для плавления свинца.
Соответственно, желательно повышение технического выхода и/или преодоление по меньшей мере некоторых из недостатков, присущих известному уровню техники, или по меньшей мере создание промышленно применимой альтернативы.
Согласно первой особенности настоящего изобретения предложен способ очистки отходящих газов термической обработки содержащего драгоценные металлы сырья, включающий:
охлаждение отходящих газов до температуры от 300°С до 500°С,
подачу охлажденного отходящих газов через первый фильтр твердых частиц с целью извлечения твердых частиц, и
дозированное введение сорбента в отходящие газы, прошедшие через первый
фильтр твердых частиц, и подачу отходящих газов через второй фильтр твердых частиц;
при этом повторно используют твердые частицы, извлеченные из первого фильтра твердых частиц, для термической обработки содержащего драгоценные металлы сырья.
Настоящее изобретение дополнительно описано ниже. Далее более подробно описаны различные особенности изобретения. Каждая описанная особенность может сочетаться с любой другой особенностью или особенностями, если ясно не указано иное. В частности, любой признак, названный предпочтительным или выгодным, может сочетаться с любым другим признаком или признаками, названными предпочтительными или выгодными.
Авторы настоящего изобретения обнаружили, что значительное количество драгоценных металлов уносится системой удаления отходящих газов. В действительности, даже в описанном в GB 2465603 способе с малым уносом все же образуется небольшое количество захваченной отходящими газами пыли/летучей золы, содержащей до 1% по весу МПГ в пересчете на общее содержание в сырье. Например, недостатком способа согласно US 4295881 является как высокий уровень уноса частиц, так большие потери металла. В нем также замедлена внутренняя рециркуляция из-за накопления загрязняющих веществ.
Авторы настоящего изобретения обнаружили, что эти МПГ могут быть восстановлены путем захвата летучей золы и ее повторного использования в исходном термическом процессе в качестве по меньшей мере части сырья. Тем не менее, было установлено, что при перемешивании содержащей МПГ летучей золы с сорбентами происходит разбавление МПГ и замедляется внутренняя рециркуляция механизмами активного накопления загрязняющих веществ. Соответственно, был создан способ сепарирования и повторного использования захваченной отходящими газами пыли/летучей золы, уносимой отходящим газом, без дополнительного загрязнения или разбавления МПГ с соблюдением эксплуатационных требований.
Предложенное решение проиллюстрировано на фиг. 1. Первый фильтр позволяет удалять частицы без добавления реагентов на основе сорбента и, следовательно, обеспечивает внутреннюю рециркуляцию содержащего МПГ материала. Второй фильтр содержит сорбент, применимый для очистки не свободных от частиц отходящих газов, содержащих кислые газы, с целью соблюдения норм предельно допустимых выбросов. Соответственно, помимо повышения технической эффективности восстановления МПГ наличие двух систем фильтрации служит дополнительной мерой предосторожности для соблюдения экологической безопасности.
Основным преимуществом этого решения является повышение технической эффективности восстановления МПГ до 99% или более с сопутствующим увеличением дохода. Дополнительные преимущества включают удаление летучей золы до сухой очистки, за счет чего снижается содержание твердых частиц во втором фильтре. Это в свою очередь усиливает очищающее действие сорбента и, соответственно, дополнительно сокращает выбросы, а также уменьшает массу вторичных отходов. За счет снижения содержания твердых частиц в каждом фильтре путем такого разделения стадии фильтрации также продлевается эксплуатационный срок службы элементов керамического фильтра, и уменьшаются требования к техническому обслуживанию. За счет удаления летучей золы до добавления сорбента облегчается определение массы и обеспечивается более точная оптимизация процесса.
Термином "отходящие газы" обозначается газ и захваченные газом компоненты на выходе термического процесса при очистке содержащего драгоценные металлы сырья. Газообразные компоненты могут включать водород, окись углерода, двуокись углерода и/или кислые газы, такие как двуокись серы. Газом также могут захватываться молекулы органических веществ и мелкие частицы пыли, включая летучую золу.
Термином "термическая обработка" обозначается любой процесс, который предусматривает применение тепла для обработки содержащего драгоценные металлы материала с целью их восстановления из него. Она включает, например, очистку рудных хвостов и шахтных хвостов, а также очистку отходов. Применимые методы хорошо известны и включают способ, описанный в патенте GB 2465603 и упомянутые в этом патенте методы. Содержание GB 2465603 во всей полноте в порядке ссылки включено в настоящую заявку.
Драгоценные металлы, включают золото и серебро, а также МПГ, в которую в входят рутений, родий, палладий, осмий, иридий и платина. Иными словами, металлы платиновой группы представляют собой подгруппу драгоценных металлов. Тем не менее, следует отметить, что сокращение МПГ используется в описании в качестве синонима термина "драгоценные металлы". Способ согласно изобретению позволяет концентрировать металлы по отдельности или в виде сплавов двух или более металлов. Хотя в описании идет речь о драгоценных металлах и металлах платиновой группы, специалисты в данной области техники поймут, что способ может применяться для восстановления из сырья любого из перечисленных металлов.
Содержащее драгоценные металлы сырье предпочтительно представляет собой одно или несколько из следующего: автокатализатор, химический катализатор, нефтехимический катализатор, фармацевтический катализатор, отходы электрического и электронного оборудования, отходы создающих термический барьер покрытий, отходы литейного производства, отходы гальванизации и/или чистовой обработки металлических поверхностей, отходы ювелирных изделий и/или ювелирного дела и стоматологические и/или медицинские отходы.
С целью доведения до максимума эффективности способа осуществляется тщательный отбор дополняющих примесей сырья, например, предпочтительно могут выбираться катализаторы дополняющих типов. Выбор и составление смесей может осуществляться по нескольким причинам, включая, например, получение более однородного сырья. Отходы с более высоким содержанием МПГ, в частности, автокатализаторов являются предпочтительными для достижения более высокого технического выхода металлов и снижения эксплуатационных затрат на тройскую унцию восстановленного металла.
В силу характера термической обработки отходящие газы нагревают до температуры по меньшей мере 800°С. Способ согласно изобретению включает первую стадию охлаждения отходящего газа до температуры 300-500°С, более предпочтительно 350-450°С, наиболее предпочтительно около 400°С. Охлаждение требуется, чтобы способствовать выпадению частиц из отходящих газов и предотвратить постепенное ухудшение свойств керамических фильтров.
Стадия охлаждения может являться активной или пассивной. Иными словами, отходящие газы могут охлаждаться в теплообменнике с целью их активного охлаждения. В качестве альтернативы, отходящие газы могут пропускаться через достаточную систему труб или подвергаться расширению с целью пассивного снижения температуры. В одном из предпочтительных вариантов осуществления стадия охлаждения включает по меньшей мере частичное охлаждение отходящих газов путем добавления воздуха. Добавляемый воздух преимущественно изменяет скорость отходящих газов, способствует выпадению и в то же время оказывает охлаждающее действие и обеспечивает профиль потока газа, применимый для фильтровальных установок. Стадия охлаждения отходящих газов предпочтительно включает изменение скорости отходящих газов с целью вызвать осаждение твердых частиц из газообразных компонентов потока отходящих газов.
Способ дополнительно включает подачу охлажденных отходящих газов через первый фильтр твердых частиц с целью извлечения твердых частиц. Первая стадия фильтрации осуществляется до добавления сорбента. Первым фильтром предпочтительно является высокотемпературный керамический фильтр для максимального захвата частиц. Отфильтрованная пыль, собранная на первом фильтре, в целом может содержать до 3% по весу, но обычно 1% по общему весу МПГ, загружаемых в печь (в зависимости от факторов, влияющих на унос частиц, таких как величина отрицательного давления в печи, потоки газа, химический состав катализатора и т.д.). Тем не менее, эти частицы составляют лишь часть уносимой массы пыли.
Авторы изобретения обнаружили, что можно рассчитать длину труб или время пребывания между термическим окислителем и первой фильтровальной установкой с целью достижения равновесия между недостаточным временем для агломерации наночастиц и чрезмерным охлаждением. Если длина труб или время пребывания слишком велико, газ чрезмерно охлаждается и, соответственно, не обеспечивается оптимальная температура для очистки отходящих газов сухим сорбентом во втором фильтре.
В результате агломерации увеличивается действительный размер частиц пыли. Без помощи этого процесса наночастицы, обладающие очень высокой поверхностной энергией, адсорбируются поверхностью фильтра и за короткое время блокируют/забивают поры фильтра. Это может приводить к очень большим перепадам давления в фильтрующих элементах, результатом чего в свою очередь может являться нарушение устойчивости всего процесса.
Стадию охлаждения отходящих газов предпочтительно регулируют с целью формирования агломератов по меньшей мере из части любых жидких и твердых компонентов отходящих газов.
Твердые частицы, извлеченные из первого фильтра твердых частиц, предпочтительно имеют средний наибольший диаметр от 1 до 10 микрон, более предпочтительно от 2 до 8 микрон. Размер частиц может измеряться методом сканирующей электронной микроскопии (SEM) и другими методами, хорошо известными из техники.
Затем дозами добавляют сорбент в отходящие газы из первого фильтра твердых частиц. Применимые сорбенты хорошо известны из техники и включают известь и бикарбонат натрия или другие альтернативные сорбенты в зависимости от состава отходящих газов и температуры очистки. Сорбентом предпочтительно является известь и/или бикарбонат натрия, поскольку они являются легкодоступными, экономичными базовыми сорбентами.
Затем пропускают отходящие газы через второй фильтр твердых частиц, рассчитанный на сухую очистку отходящих газов и обеспечение экологически безопасной работы. Поскольку пыль, собранная на второй стадии фильтрации, содержит в основном отработанный и неизрасходованный сорбент, она имеет низкую реальную стоимость и применима для удаления. Смесь отработанного/неизрасходованного сорбента может повторно использоваться на второй стадии фильтрации с целью доведения до максимума использования первичного материала. Дополнительным преимуществом является отсутствие частиц летучей золы частиц и т.п., что делает более эффективным повторное использование сорбента. Поскольку различные сорбенты одинакового состава могут иметь меняющиеся площади поверхности, за счет использования сорбента с большей удельной поверхностной активностью облегчается дальнейшее усовершенствование второй стадии фильтрации.
Предпочтительно первым и/или вторым фильтрами твердых частиц являются керамические фильтры. Известно применение керамических фильтров в качестве фильтров твердых частиц. Они особо применимы в способе согласно изобретению за счет своей способности действовать при высоких температурах (необходимых для очистки газа) и давлениях (необходимых для повышения газопроизводительности). В качестве альтернативы, что менее предпочтительно, могут применяться металлические фильтры.
Твердые частицы, извлеченные из первого фильтра твердых частиц, повторно используют при термической обработке содержащего драгоценные металлы сырья. Авторы изобретения обнаружили, что в случае повторного использования без последовательной фильтрации происходит загрязнение исходного потока отработанным сорбентом (содержащим сульфиды и летучие соли). Это в свою очередь приводит к накоплению этих загрязнителей и превышению допустимых порогов с приближением к предельной работоспособности газоочистителей.
В одном из вариантов осуществления собирают материал с первой стадии фильтрации, содержащий восстановленные МПГ, в барабане непосредственно под фильтром предпочтительно с использованием работающего в потоке механизма очистки, например, путем обратной струйной пульсации. После заполнения барабана его заменяют пустым барабаном, а собранный материал может смешиваться непосредственно с исходным сырьем без прерывания работы установки.
Термической обработкой предпочтительно является плазменная обработка предпочтительно при температуре от 1200°С до 1600°С. Плазменную обработку предпочтительно осуществляют в печи с плазменной горелкой.
Термическая обработка содержащего драгоценные металлы сырья предпочтительно включает стадии:
нагрева содержащего драгоценные металлы материала в плазменной печи при температуре от 1200°C до 1600°C с целью формирования металлического слоя с высоким содержанием драгоценных металлов и
восстановления и очистки металлического слоя с высоким содержанием драгоценных металлов с целью получения одного или нескольких драгоценных металлов.
Способ предпочтительно включает подачу отходящих газов со стадии термической обработки содержащего драгоценные металлы сырья через термический окислитель с целью сжигания любых горючих компонентов отходящих газов до стадии охлаждения отходящих газов до температуры от 300°C до 500°C. Отходящие газы предпочтительно охлаждают до температуры около 400°C. Применение термического окислителя помогает удалять реакционноспособные и/или органические компоненты из отходящих газов.
Способ предпочтительно дополнительно включает извлечение твердых частиц из термического окислителя и/или на стадии охлаждения отходящих газов и их повторное использование на стадии термической обработки содержащего драгоценные металлы сырья.
Способ предпочтительно дополнительно включает очистку по меньшей мере части твердых частиц, восстановленных из первых твердых частиц, с целью извлечения одного или нескольких летучих металлов. Один или несколько летучих металлов предпочтительно включают рений. После извлечения одного или нескольких летучих металлов остаток предпочтительно повторно используют в процессе термической обработки с целью концентрирования остающихся драгоценных металлов.
Таким образом, авторы изобретения обнаружили, что фильтровальная установка с такой же конфигурацией может использоваться для восстановления летучих, но ценных видов металлов. Их примерами могут служить цинк и свинец, которые часто содержатся в отходах в качестве загрязняющих веществ, а также такие ценные металлы, как рений. Рений может извлекаться при обработке платиновых и рениевых катализаторов, таких как применяются в сплаве из катализаторов для реформинга, катализаторов метатезиса олефинов и катализаторов гидрогенизации. Во время термической обработки в окислительных условиях рений окисляется, и происходит сублимация образующейся окиси и ее деление на фазу отходящих газов. В случае такого сырьевого материала сначала плавят (подвергают термической обработке) Pt/Re катализатор традиционным способом (в восстановительных условиях), чтобы извлечь платину в виде ферросплава и удержать Re в шлаковой/металлической фазе. Затем подвергают повторной обработке полученный шлак на том же оборудовании способом согласно изобретению предпочтительно в окислительных условиях плазменного окисления, чтобы способствовать разделению Re на газообразную фазу в форме окиси для восстановления в форме пылевидной/твердой фазы с высоким содержанием Re2O7 для концентрирования и улавливания на первом фильтре. Поскольку известно, что окись рения (VII) и рениевая кислота (Re2O7(OH2)2) легко растворяются в воде, их выщелачивают из пылевидных материалов и экстрагируют в форме солей рениевой кислоты путем осаждения с помощью хлорида калия или аммония и очищают путем рекристаллизации.
Авторы изобретения обнаружили, что степень восстановления драгоценных металлов из содержащего драгоценные металлы сырья описанным в изобретении способом составляет по меньшей мере 99% по весу.
Изобретение описано далее со ссылкой на следующие неограничивающие чертежи, на которых:
на фиг. 1 схематически проиллюстрирован один из упрощенных вариантов осуществления способа в целом,
на фиг. 2 показано полученное методом SEM изображение пыли, собранной из трубы между термическим окислителем и первым фильтром,
на фиг. 3 показана блок-схема системы плазменного восстановления драгоценных металлов со стадиями последовательной фильтрации и рециркуляции.
На фиг. 1 проиллюстрировано следующее:
А - составление композиции и смешивание
В - плазменная печь
С - термический окислитель
D - фильтрация
Е - подпроцесс весовой балансировки
1 - автокатализатор
2 - флюс
3 - металл-коллектор
4 - восстановитель
5 - смешанное сырье
6 - плазменный газ
7 - шлак
8 - металл
9 - отходящие газы + летучая зола
10 - воздух для горения
11 - воздух для разбавления
12 - сгоревшие отходящие газы + летучая зола
13 - сорбент
14 - выпадение частиц
15 - чистые отходящие газы для выброса в дымовую трубу
На фиг. 3 проиллюстрировано следующее:
20 - смеситель
21 - автокатализатор 246,7 кг/час
22 - флюс (СаО) 27,1 кг/час
23 - Fe3O4 16,4 кг/час
24 - углерод 8,5 кг/час
25 - IBC со скоростью подачи 298,6 кг/час
26 - воронка с весовым дозатором 298,6 кг/час
30 - источник питания 439,0 кВт
31 - потери в горелке 55,0 кВт
32 - потери в печи 150,0 кВт
33 - потери на конвейере 172,7 кВт
34 - потери при разливе 15,6 кВт
35 - потери на отходящие газы 1,8 кВт
36 - теплота горения 39,5 кВт
37 - потери в бункере для шлака 4,8 кВт
40 - аргон 26,3 кг/час
41 - плазменная печь 1600°C
42 - металл 16,7 кг/час
43 - выпускной желоб 1450°C
44 - конвейер для шлака
45 - шлак 264,0 кг/час
46 - отходящие газы из печи
50 - термический окислитель 1100°C
51 - сжатый воздух
52 - газ на выходе термического окислителя 161,1 кг/час, 850°C
53 - воздух для разбавления 207,8 кг/час, 20°C
54 - охлажденный газ 368,9 кг/час, 380°C
55 - газ 365,9 кг/час, 280°C
56 - дозированное введение сорбента 1,54 кг/час
57 - первый фильтр частиц 2,997 кг/час
58 - в плазменную печь
59 - второй фильтр частиц 2,106 кг/час
60 - холодный газ 365,9 кг/час, 180°C
61 - вентилятор
62 - выхлоп
70 - система последовательной фильтрации
Отходящие газы выходят из печи через выпускную трубу печи и поступают в термический окислитель (ТО), в котором они полностью сгорают. Затем сгоревшие отходящие газы выходят из термического окислителя и достигают системы фильтрации (FLT).
Определенная доля частиц, которые выходят из печи, выпадают в ТО, а остальные осаждаются в FLT. При поступлении в ТО отходящих газов из печи их скорость снижается, в результате чего более крупные частицы выпадают в находящийся внизу сепаратор. На выходе ТО установлена Т-образная труба, и за счет такого изменения направления потока газа обеспечивается дополнительное выпадение частиц. Это подтверждается накоплением твердых частиц на этом участке трубы, который прочищают гибкими стержнями 1-2 раза в сутки без остановки процесса в качестве текущей операции. На выходе ТО вводят вторичный воздух, чтобы охладить газ от 850°C до 400°C. Это снижение температуры происходит в трубе между ТО и FLT (трубе TO-FLT) и приводит к конденсации летучих веществ, таких как окиси металлов и хлориды.
Было обнаружено, что частицы, выходящие из печи, достигают FLT вследствие:
1. физического уноса более мелкой фракции частиц, который выходят из печи,
2. конденсации летучих окисей металлов вследствие снижения температуры после термического окислителя.
Чтобы подтвердить эти теоретические предположения, подвергли анализу пыль, собранную в трубе, соединяющей ТО и FLT. Определили состав образцов (путем рентгенофлуоресцентного анализа (XRF)), размер и микроструктуру частиц (методом SEM) и получили результаты, представленные далее.
Содержание неочищенных МПГ в пыли, определенное путем XRF анализа, составляло 0,3% по весу, то есть такого же порядка, как и содержание МПГ в исходном материале. Это может говорить о физическом уносе исходного материала. Тем не менее, содержание летучих окисей металлов, таких как ZnO и PbO, повысилось по сравнению с их содержанием в исходном материале, что говорит также о химическом уносе. Соответственно, вне связи с какой-либо теорией, вероятно, имеет место физический унос в сочетании с химическим уносом.
Полученные методом SEM изображения обеспечивают дополнительное представление о механизмах уноса. Значительная фракция частиц имеет сферическую форму с диаметром от 10 микрон до менее 1 микрона. Также имеются признаки агломерации этих частиц и формирование более крупных скоплений частиц. Образование сферических частиц говорит о том, что часть исходного материала сначала превращается в жидкость под действием сильного тепла, выделяемого плазмой. Затем жидкая фаза приобретает наиболее устойчивую форму с наименьшей поверхностной энергией, т.е. сферическую форму. Агломерированные сферы, вероятно, покрыты частицами пыли более мелкой фракции. Эти частицы пыли вероятнее всего образуются в результате конденсации летучих веществ. Поверхность сферических частиц может действовать как центры парообразования для того, чтобы происходила конденсация. По существу, вероятно, частицы имеют бимодальное распределение по размерам вследствие присутствия частиц двух основных типов, а именно, агломерированных сферических частиц и более мелких частиц, образующихся при конденсации паровой фазы.
Далее изобретение описано на следующих неограничивающих примерах.
Примеры
В одном из наиболее предпочтительных вариантов осуществления настоящего изобретения используются две последовательные фильтровальные керамические установки для обеспечения увеличенного восстановления МПГ плазменным способом, описанным в патенте GB 2465603. Частицы, извлеченные в первом фильтре, повторно используются в качестве альтернативного сырья (или по меньшей мере части сырья) с целью восстановления МПГ, уносимых с потоком отходящих газов. Далее продемонстрировано усовершенствование восстановления МПГ за счет последовательной фильтрации с рециркуляцией.
Техническая эффективность восстановления без последовательной фильтрации и рециркуляции
Без последовательной фильтрации частицы, извлеченные из единственной системы фильтрации, не могут повторно использоваться внутри системы. В случае одной стадии фильтрации без внутренней рециркуляции пыли, захваченной отходящими газами, техническая эффективность восстановления для эквивалентного процесса может быть рассчитана согласно Уравнениям 1 и 2.
Уравнение 1
Эффективность восстановления (расчет истощения шлака)
Уравнение 2
Эффективность восстановления (расчет обогащения металлами)
Подстрочные надписи "сырье", "металл", "избыточный шлак" и "захваченная отходящими газами пыль" относятся к компонентам, в которых определялись массы соответствующих МПГ.
Уравнение 1 названо "расчет истощения шлака", поскольку в его основу положено общее количество МПГ, которое не обнаружено в металле-коллекторе, т.е. общее количество МПГ, захваченных избыточным шлаком и уносом отходящих газов. Напротив, Уравнение 2 названо "расчет обогащения металлами", поскольку в его основу положено общее количество МПГ, которое обнаружено в металлической фазе в повышенной концентрации. Для этого подвергают металлический сплав дополнительной очистке, чтобы извлечь восстановленные МПГ. Поскольку этот процесс может длиться несколько недель или месяцев, для определения технической эффективности восстановления МПГ общепринято использовать расчет истощения шлака. Тем не менее, для ясности приведены оба уравнения.
Техническая эффективность восстановления с последовательной фильтрацией и рециркуляций
Поскольку фильтровальные керамические установки отличаются очень высокой эффективностью фильтрации частиц (обычно 99,9%), предполагается, что все частицы, уносимые отходящими газами, возвращаются в печь. По существу, Уравнения 1 и 2 изменены с целью расчета разделения МПГ относительно чистого количества МПГ, введенных в систему. Это показано в Уравнение 2 усовершенствованного расчета истощения шлака и Уравнение 3 усовершенствованного расчета обогащения металлами.
Уравнение 2
Усовершенствованный расчет эффективности восстановления (истощения шлака)
Уравнение 3
Усовершенствованный расчет эффективности восстановления (обогащения металлами)
В обоих этих случая подстрочная надпись "захваченная отходящими газами пыль" относится ко всей пыли, собранной до второй стадии фильтрации (т.е. не содержащей отработанного/неиспользованного сорбента).
Далее приведен рабочий пример, демонстрирующий улучшенное восстановление МПГ за счет реализации описанной в изобретении системы последовательной фильтрации.
В блок-схеме на фиг. 1 указан "подпроцесс" весовой балансировки как части данного рабочего примера. В этом подпроцессе используется только плазменная печь, термический окислитель и система фильтрации. Входящий и исходящий потоки этого подпроцесса обозначены пунктирными стрелками.
Блок-схему, показанную на фиг. 1, использовали для весовой балансировки, как показано в Таблице 2. Для весовой балансировки не требуется использовать потоки подпроцесса (например, потоки отходящих газов и летучей золы).
Путем использования этих данных в Уравнениях 1-4 можно рассчитать техническую эффективность восстановления с рециркуляцией и без рециркуляции частиц. Результаты представлены в Таблице 3. За счет рециркуляции частиц восстановления МПГ увеличивается приблизительно на 1%.
Хотя были подробно описаны предпочтительные варианты осуществления изобретения, специалисты в данной области техники поймут, что в них могут быть внесены изменения, не выходящие за пределы объема изобретения или прилагаемой формулы изобретения.
Claims (23)
1. Способ очистки отходящих газов термической обработки содержащего драгоценные металлы сырья, включающий:
охлаждение указанных отходящих газов до температуры от 300°С до 500°С,
подачу охлажденных отходящих газов через первый фильтр твердых частиц с обеспечением извлечения твердых частиц, содержащих драгоценные металлы, и
дозированное введение сорбента в отходящие газы, прошедшие через первый фильтр твердых частиц, и подачу отходящих газов через второй фильтр твердых частиц.
2. Способ по п. 1, в котором по меньшей мере часть твердых частиц, извлеченных из первого фильтра твердых частиц, используют в качестве сырья для термической обработки.
3. Способ по п. 1, в котором содержащим драгоценные металлы сырьем является по меньшей одно сырье, выбранное из группы, включающей автокатализатор, химический катализатор, нефтехимический катализатор, фармацевтический катализатор, отходы электрического и электронного оборудования, отходы создающих термический барьер покрытий, отходы литейного производства, отходы гальванизации и/или чистовой обработки металлических поверхностей, отходы ювелирных изделий и/или ювелирного дела и стоматологические и/или медицинские отходы.
4. Способ по п. 1, в котором термической обработкой является плазменная обработка при температуре от 1200°С до 1600°С.
5. Способ по п. 4, в котором плазменную обработку ведут в печи с плазменной горелкой.
6. Способ по любому из пп. 1, 3, 5, в котором первым и/или вторым фильтрами твердых частиц являются керамические фильтры.
7. Способ по любому из пп. 1, 3, 5, в котором сорбентом является известь и/или бикарбонат натрия.
8. Способ по любому из пп. 1, 3, 5, включающий до стадии охлаждения отходящих газов термической обработки содержащего драгоценные металлы сырья до температуры от 300°С до 500°С стадию подачи отходящих газов через термический окислитель для обеспечения сжигания горючих компонентов отходящих газов.
9. Способ по любому из пп. 1, 3, 5, в котором на стадии охлаждения охлаждают отходящие газы до температуры около 400°С.
10. Способ по любому из пп. 1, 3, 5, в котором осуществляют стадию охлаждения отходящих газов по меньшей мере частично путем добавления воздуха.
11. Способ по любому из пп. 1, 3, 5, в котором термическая обработка содержащего драгоценные металлы сырья включает стадии:
нагрева содержащего драгоценные металлы сырья в плазменной печи при температуре от 1200°С до 1600°С для формирования металлического слоя с повышенным содержанием драгоценных металлов, и
восстановления и очистки металлического слоя с повышенным содержанием драгоценных металлов с целью получения одного или нескольких драгоценных металлов.
12. Способ по п. 8, в котором извлекают твердые частицы, осажденные на термическом окислителе, и/или на стадии охлаждения отходящих газов, и используют в качестве сырья, содержащего драгоценные металлы, при термической обработке.
13. Способ по п. 11, в котором показатель извлечения драгоценных металлов из содержащего драгоценные металлы сырья составляет по меньшей мере 99% по весу.
14. Способ по любому из пп. 1, 3, 5, 13, в котором на стадии охлаждения отходящих газов обеспечивают осаждение твердых частиц, содержащих драгоценные металлы, путем изменения скорости отходящих газов.
15. Способ по любому из пп. 1, 3, 5, 13, в котором стадию охлаждения отходящих газов ведут с обеспечением формирования агломератов по меньшей мере из части жидких и твердых компонентов отходящих газов.
16. Способ по любому из пп. 1, 3, 5, 13, в котором твердые частицы, извлеченные из первого фильтра твердых частиц, имеют средний наибольший диаметр от 1 микрона до 10 микрон.
17. Способ по любому из пп. 1, 3, 5, 13, в котором очищают по меньшей мере часть твердых частиц, извлеченных из первого фильтра твердых частиц, для излечения одного или нескольких летучих металлов.
18. Способ по п. 17, в котором один или несколько летучих металлов содержат рений.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1306976.0 | 2013-04-17 | ||
GB1306976.0A GB2513154B (en) | 2013-04-17 | 2013-04-17 | Precious Metal Recovery |
PCT/GB2014/051197 WO2014170676A1 (en) | 2013-04-17 | 2014-04-16 | Precious metal recovery |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2015149033A RU2015149033A (ru) | 2017-05-22 |
RU2015149033A3 RU2015149033A3 (ru) | 2018-03-30 |
RU2677904C2 true RU2677904C2 (ru) | 2019-01-22 |
Family
ID=48537390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015149033A RU2677904C2 (ru) | 2013-04-17 | 2014-04-16 | Восстановление драгоценных металлов |
Country Status (7)
Country | Link |
---|---|
US (1) | US9441284B2 (ru) |
EP (1) | EP2986747B1 (ru) |
CN (1) | CN105264098A (ru) |
GB (1) | GB2513154B (ru) |
PL (1) | PL2986747T3 (ru) |
RU (1) | RU2677904C2 (ru) |
WO (1) | WO2014170676A1 (ru) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105169883B (zh) * | 2015-08-19 | 2018-01-09 | 南京大学 | 一种提高固定床吸附能力的方法及其在有机废气处理领域中的应用方法 |
US10584399B2 (en) * | 2017-07-19 | 2020-03-10 | Blueoak Arkansas | Process and system for recycling E-waste material |
US10662500B2 (en) * | 2018-01-24 | 2020-05-26 | Heraeus Deutschland GmbH & Co. KG | Process for the recovery of precious metal from petrochemical process residues |
WO2022037781A1 (en) * | 2020-08-20 | 2022-02-24 | Montanuniversität Leoben | A method for separating zinc from an industry product using a pyrometallurgical reaction |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0305131A2 (en) * | 1987-08-27 | 1989-03-01 | TETRONICS RESEARCH & DEVELOPMENT COMPANY LIMITED | A process for the recovery of gold |
EP0508542A2 (en) * | 1991-04-12 | 1992-10-14 | METALLGESELLSCHAFT Aktiengesellschaft | Process for treating ore having recoverable metal values including arsenic containing components |
RU2222626C1 (ru) * | 2002-05-07 | 2004-01-27 | Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" | Способ извлечения рения и других элементов |
RU2249054C1 (ru) * | 2003-10-08 | 2005-03-27 | Амурский научный центр Дальневосточного отделения Российской академии наук | Способ извлечения золота из золотосодержащего сырья |
GB2465603A (en) * | 2008-11-24 | 2010-05-26 | Tetronics Ltd | Method of recovering platinum group metals |
WO2012104806A1 (en) * | 2011-02-03 | 2012-08-09 | Western Platinum Ltd | Refining of platinum group metals concentrates |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO160931C (no) * | 1987-04-02 | 1989-06-14 | Elkem As | Stoevbehandling. |
DE4203475A1 (de) * | 1992-02-07 | 1993-08-12 | Herbert Holpe | Verfahren zur rueckgewinnung von edelmetallen, vorzugsweise aus elektronischen bauteilen |
DE4221239C1 (ru) * | 1992-06-27 | 1993-07-22 | Man Gutehoffnungshuette Ag, 4200 Oberhausen, De | |
TW475907B (en) * | 1996-12-13 | 2002-02-11 | Ebara Corp | Method for treating exhaust gas from molten furnace and its apparatus |
US6117207A (en) * | 1998-05-06 | 2000-09-12 | Miserlis; Constantine | Process for recovering metals and other chemical components from spent catalysts |
US20050247162A1 (en) * | 2004-05-05 | 2005-11-10 | Bratina James E | Precious metals recovery from waste materials using an induction furnace |
DE102007046260A1 (de) * | 2007-09-26 | 2009-04-09 | Uhde Gmbh | Verfahren zur Reinigung des Rohgases aus einer Feststoffvergasung |
FR2938457B1 (fr) * | 2008-11-14 | 2011-01-07 | Terra Nova | Procede de recuperation des metaux contenus dans les dechets electroniques |
EP2430202B1 (en) * | 2009-05-14 | 2014-11-19 | Umicore | Recovery of precious metals from spent homogeneous catalysts |
-
2013
- 2013-04-17 GB GB1306976.0A patent/GB2513154B/en not_active Expired - Fee Related
-
2014
- 2014-04-16 CN CN201480031715.1A patent/CN105264098A/zh active Pending
- 2014-04-16 PL PL14718703T patent/PL2986747T3/pl unknown
- 2014-04-16 WO PCT/GB2014/051197 patent/WO2014170676A1/en active Application Filing
- 2014-04-16 EP EP14718703.3A patent/EP2986747B1/en active Active
- 2014-04-16 US US14/784,534 patent/US9441284B2/en not_active Expired - Fee Related
- 2014-04-16 RU RU2015149033A patent/RU2677904C2/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0305131A2 (en) * | 1987-08-27 | 1989-03-01 | TETRONICS RESEARCH & DEVELOPMENT COMPANY LIMITED | A process for the recovery of gold |
EP0508542A2 (en) * | 1991-04-12 | 1992-10-14 | METALLGESELLSCHAFT Aktiengesellschaft | Process for treating ore having recoverable metal values including arsenic containing components |
RU2222626C1 (ru) * | 2002-05-07 | 2004-01-27 | Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" | Способ извлечения рения и других элементов |
RU2249054C1 (ru) * | 2003-10-08 | 2005-03-27 | Амурский научный центр Дальневосточного отделения Российской академии наук | Способ извлечения золота из золотосодержащего сырья |
GB2465603A (en) * | 2008-11-24 | 2010-05-26 | Tetronics Ltd | Method of recovering platinum group metals |
WO2012104806A1 (en) * | 2011-02-03 | 2012-08-09 | Western Platinum Ltd | Refining of platinum group metals concentrates |
Also Published As
Publication number | Publication date |
---|---|
US20160060727A1 (en) | 2016-03-03 |
EP2986747B1 (en) | 2018-01-31 |
GB2513154B (en) | 2015-10-28 |
CN105264098A (zh) | 2016-01-20 |
GB2513154A (en) | 2014-10-22 |
US9441284B2 (en) | 2016-09-13 |
GB201306976D0 (en) | 2013-05-29 |
WO2014170676A1 (en) | 2014-10-23 |
RU2015149033A (ru) | 2017-05-22 |
PL2986747T3 (pl) | 2018-07-31 |
EP2986747A1 (en) | 2016-02-24 |
RU2015149033A3 (ru) | 2018-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522740B2 (ja) | セメントキルン排ガスの処理装置及び処理方法 | |
ES2478626T3 (es) | Sistema y procedimiento para tratar polvo en gas extraído de gas de combustión de un horno de cemento | |
RU2677904C2 (ru) | Восстановление драгоценных металлов | |
JP5037635B2 (ja) | スラグ水砕時の排ガス処理方法及び処理設備 | |
JP2007518661A (ja) | 有害物質を含む回転炉の排ガス流の一部を取り出すセメントクリンカーの製造方法 | |
KR20140021552A (ko) | 백금족 금속 농축물의 정제 방법 | |
CA2760956C (en) | Recovery of precious metals from spent homogeneous catalysts | |
JP2009298677A (ja) | セメントキルン抽気ガスの処理システム及び処理方法 | |
JP2005331172A (ja) | エネルギーおよび有価金属回収システム | |
KR20210141943A (ko) | 애쉬 처리 방법 및 시스템 | |
JP4984123B2 (ja) | SiC系物質からの金または白金族元素の回収方法 | |
JP2008143728A (ja) | セメント製造工程からの鉛回収方法及び回収装置 | |
TW201228708A (en) | Chlorine bypass system and method of treating gas extracted by the system | |
JP2008001917A (ja) | 貴金属回収方法および回収貴金属 | |
JP2015218369A (ja) | 廃棄物中の有価金属回収方法 | |
JP2001311589A (ja) | 排ガス中有害物質の低減、除去方法 | |
FI125347B (en) | A method for treating a lead anode slurry | |
JP2002119945A (ja) | 廃棄物焼却排ガスとダストの処理方法 | |
JP2005246129A (ja) | 飛灰からの有価物回収方法 | |
JP2020196650A (ja) | セメント製造工程からの金属含有ダスト回収方法及び回収装置 | |
JP2011032510A (ja) | SiC系物質からの金および/または白金族元素の回収方法 | |
EP2959027A2 (en) | Process for extraction of sulphur and metals, in oxide form, usable in the waeltz process, from muds containing compounds of sulphur and said metals | |
JP5987769B2 (ja) | 銅製錬ダストの処理方法、並びに銅製錬の操業方法 | |
JP2004130177A (ja) | 排ガスの精製方法および装置 | |
KR20100108204A (ko) | 슬래그 수쇄 시의 배기 가스 처리 방법 및 처리 설비 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200417 |