RU2676384C1 - Источник ионизации на основе диэлектрического барьерного разряда для спектрометрии - Google Patents

Источник ионизации на основе диэлектрического барьерного разряда для спектрометрии Download PDF

Info

Publication number
RU2676384C1
RU2676384C1 RU2016123078A RU2016123078A RU2676384C1 RU 2676384 C1 RU2676384 C1 RU 2676384C1 RU 2016123078 A RU2016123078 A RU 2016123078A RU 2016123078 A RU2016123078 A RU 2016123078A RU 2676384 C1 RU2676384 C1 RU 2676384C1
Authority
RU
Russia
Prior art keywords
electrode
electrically conductive
core
ionizing device
turns
Prior art date
Application number
RU2016123078A
Other languages
English (en)
Other versions
RU2016123078A (ru
Inventor
Саймон ФЕЛДБЕРГ
Игорь КУБЕЛИК
Богдан АТАМАНЧУК
Марк ПИНИАРСКИ
Марк ЛЕХТЕР
Дэниел Левин
Влад СЕРГЕЕВ
Хенрик ЗАЛЕСКИ
Original Assignee
Смитс Детекшен Монреаль Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Смитс Детекшен Монреаль Инк. filed Critical Смитс Детекшен Монреаль Инк.
Publication of RU2016123078A publication Critical patent/RU2016123078A/ru
Application granted granted Critical
Publication of RU2676384C1 publication Critical patent/RU2676384C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/68Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/2465Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Использование: для определения состава проб газов. Сущность изобретения заключается в том, что ионизирующее устройство включает первый электрод, содержащий электропроводный элемент, покрытый слоем диэлектрика, сердечник, проходящий вблизи первого электрода и по меньшей мере частично вдоль него, второй электрод, содержащий электропроводные сегменты, расположенные вблизи первого электрода, каждый из электропроводных сегментов контактирует с сердечником в соответствующих местоположениях контакта, слой диэлектрика первого электрода отделяет электропроводный элемент первого электрода от сердечника и от второго электрода. Технический результат: обеспечение возможности создания генерирующих плазму точек, соответствующих пересечениям первого электрода и второго электрода. 3 н. и 19 з.п. ф-лы, 9 ил.

Description

По данной патентная заявке испрашивается приоритет на основании предварительной патентной заявки США №61/908887, зарегистрированной 26 ноября 2013 года, содержание которой включено в текст данного описания во всей полноте посредством ссылки.
Предпосылки создания изобретения
Спектроскопию подвижности ионов (СПИ; Ion Mobility Spectroscopy (IMS)) применяют для определения состава проб газов по времени пролета составляющих их ионов. Для того чтобы это осуществить, нейтральные атомы из пробы газа подвергают процессу ионизации, который включает прямую бомбардировку быстрыми электронами, что вызывает выход вторичных электронов из нейтральных атомов или молекул и образование первичных положительных (+) ионов; присоединение медленных электронов к нейтральным атомам или молекулам, с образованием (-) ионов; химические реакции или обмен зарядами между ионами и нейтральными атомами или молекулами; присоединение ионов к нейтральным атомам или молекулам; и процессы рекомбинации между заряженными частицами. После того, как состав ионов стабилизирован, ионы запускают, через регулярные интервалы времени, в пролетное пространство дрейфовой трубки, с использованием однородного электрического поля. После запуска в пролетное пространство на основе заряда иона, массы и формы иона определяют различные подвижности ионов и в итоге проводят их химическую идентификацию.
Краткое описание изобретения
Ионизирующее устройство включает первый электрод, включающий электропроводный элемент, покрытый слоем диэлектрика. Ионизирующее устройство включает также сердечник, проходящий вблизи первого электрода и по меньшей мере частично вдоль него. Ионизирующее устройство включает дополнительно второй электрод, содержащий множество электропроводных сегментов, расположенных вблизи первого электрода. Каждый из электропроводных сегментов контактирует с сердечником в соответствующих точках контакта. Диэлектрический слой первого электрода отделяет электропроводный элемент первого электрода от сердечника и от второго электрода. Ионизирующее устройство выполнено для создания множества генерирующих плазму точек, соответствующих соответственным пересечениям первого электрода и второго электрода.
Данное краткое описание изобретения приведено для введения в упрощенной форме набора понятий, которые дополнительно описаны ниже в подробном описании. Это краткое описание не предполагает дать определение ключевым или существенным отличительным признакам заявленного объекта, а также не предполагает быть использованным в качестве вспомогательного средства при определении сущности и объема заявленного объекта.
Краткое описание чертежей
Подробное описание приведено со ссылкой на сопровождающие чертежи. Применение в данном описании и на чертежах одинаковых численных сносок в различных случаях может указывать на сходные или идентичные детали.
Фиг. 1 представляет вид сбоку в разрезе СПИ устройства (спектроскопии подвижности ионов), включающего ионизирующее устройство согласно одному из примеров воплощения данного изобретения.
Фиг. 2А представляет вид сбоку в частичном разрезе ионизирующего устройства для устройства спектроскопии подвижности ионов, например, для устройства СПИ, проиллюстрированного на Фиг. 1, согласно одному из примеров воплощения данного изобретения.
Фиг. 2В представляет вид с торца в частичном разрезе ионизирующего устройства, проиллюстрированного на Фиг. 2А.
Фиг. 2С представляет вид с торца в частичном разрезе ионизирующего устройства для устройства СПИ, например, для устройства СПИ, проиллюстрированного на Фиг. 1, где ионизирующее устройство включает электропроводную основу, состоящую из неэлектропроводного материала основы с нанесенным на него электропроводным материалом, согласно одному из примеров воплощения данного изобретения.
Фиг. 2D представляет вид с торца в частичном разрезе ионизирующего устройства для устройства СПИ, например, для устройства СПИ, проиллюстрированного на Фиг. 1, где ионизирующее устройство включает многочисленные покрытые диэлектриком электроды, частично окружающие электропроводную основу, согласно одному из примеров воплощения данного изобретения.
Фиг. 2Е представляет вид сбоку в частичном разрезе ионизирующего устройства для устройства СПИ, например, для устройства СПИ, проиллюстрированного на Фиг. 1, где ионизирующее устройство включает электропроводную основу, расположенную вне свернутого в спирать электрода, и где свернутый в спираль электрод имеет внешние параллельные контакты с электропроводной поверхностью электропроводной основы, в соответствии с одним из примеров воплощения данного изобретения.
Фиг. 3А представляет вид сверху, иллюстрирующий ионизирующее устройство для устройства СПИ, например, для устройства СПИ, проиллюстрированного на Фиг. 1, где ионизирующее устройство имеет плоскую конфигурацию, в соответствии с одним из примеров воплощения данного изобретения.
Фиг. 3В представляет вид сбоку в частичном разрезе ионизирующего устройства, проиллюстрированного на Фиг. 3А.
Фиг. 3С представляет вид сверху, иллюстрирующий ионизирующее устройство для устройства СПИ, например, устройства СПИ, проиллюстрированного на Фиг. 1, где ионизирующее устройство имеет плоскую конфигурацию с множеством отверстий, положение которых определено разветвленным плоским электродом, в соответствии с одним из примеров воплощения данного изобретения.
Подробное описание изобретения
Первичные электроны, необходимые для начала процесса ионизации, обычно обеспечивают за счет источников радиоактивных β-частиц, например, изотопа никеля 63Ni; термоионной эмиссии электронов с нагретых электродов, которые имеют ограниченный срок службы из-за испарения; и эмиссии под действием электрического поля с заостренных точек, кромок или тонких проволок, с использованием явления коронного разряда, возбуждаемого постоянным током (DC) или переменным током (АС). Однако аппаратура, связанная с коронным разрядом, обычно отличается плохой стабильностью зажигания и ограниченным сроком службы из-за эрозии за счет ионной бомбардировки. Соответственно, описаны устройства, системы и технологии, которые могут устранить источники радиоактивности, уменьшить или свести к минимуму эффекты старения и увеличить стабильность СПИ-устройств. Предложено ионизирующее устройство, которое включает два или более электрода, которые изолированы друг от друга диэлектриком, и на которые подают изменяющееся во времени напряжение. Пробу газа и газообразный реагент ионизируют, впрыскивая их вблизи ионизирующего устройства. Для генерирования ионизирующей плазмы с помощью диэлектрического барьерного разряда используют возбуждение переменным высоковольтным напряжением, что, в свою очередь, создает ионы как из газообразного реагента, так и из определяемого газа, для анализа образца посредством проведения измерения их движения при дрейфе. Данное ионизирующее устройство обеспечивает многочисленные взаимные пересечения электродов, соответствующие многочисленным точкам, генерирующим одновременно зажигаемую плазму, энергию к которым подводят через параллельное электрическое соединение. В некоторых воплощениях первый электрод, изолированный диэлектриком в форме покрытия из стекла (то есть провод, покрытый стеклом), оборачивают, совместно с металлическим поддерживающим стержнем, вокруг второго в форме спирали электрода из тонкой проволоки. На пересечениях с первым, покрытым стеклом, электродом, каждый отдельный виток второго электрода создает два пятна сконцентрированного электрического поля, пригодного для зажигания плазмы. Энергию к этим электродам можно подводить посредством серии импульсов переменного напряжения, и создавать разность потенциалов относительно вентильного электрода, позволяющую смещать представляющие интерес ионы по направлению к затвору.
Устройство 100 спектрометра подвижности ионов (СПИ) описано со ссылкой в основном на Фиг. 1-3С. В воплощениях данного изобретения СПИ устройство 100 применяют для ионизации газов и/или паров анализируемых проб. Например, генерируют плазму посредством диэлектрического барьерного разряда между электродом 102 и электродом 104, и используют ее для ионизации пробы. Как описано в данной заявке, приведенное в качестве примера СПИ-устройство 100 включает ионизационную камеру 106 с ионизирующим устройством 108. Ионизационная камера 106 сформирована между электродом 110 и вентильным электродом 112А ионного затвора 112. Таким образом, электрод 110 и вентильный электрод 112А определяют внутреннее электрическое поле Е1. СПИ устройство 100 также включает дрейфовый канал 114, содержащий ряд электродов 1161-116N, где каждый электрод имеет сформированное в нем отверстие. Дрейфовый канал 114 включает также сетчатый электрод 118, электрод 120 заземления, вентильный электрод 112А и другой вентильный электрод 112В. Электроды отделены друг от друга диэлектрическими разделителями 122. Таким образом, дрейфовый канал 114 выполнен для обеспечения в целом однородного внутреннего электрического поля Е2, для проведения анализа по времени пролета ионов, собираемых на коллекторном электроде 124.
В некоторых воплощениях дрейфовый канал 114 имеет примерно от двух миллиметров (2 мм) до пятидесяти миллиметров (50 мм) в диаметре, и примерно от двадцати миллиметров (20 мм) до двухсот миллиметров (200 мм) в длину. Однако эти диапазоны приведены лишь в качестве примера и не предполагают ограничивать данное изобретение. В других воплощениях дрейфовый канал 114 может иметь другой диаметр (например, меньше чем два миллиметра (2 мм) или больше чем пятьдесят миллиметров (50 мм)), и/или другую длину (например, меньше чем двадцать миллиметров (20 мм) или больше чем двести миллиметров (200 мм)).
Напряжение, обеспечиваемое источником питания (например, источником 128 питания постоянного тока (DC) высокого напряжения (HV)), подают на делитель напряжения, включающий набор последовательно соединенных резисторов 126. В воплощениях данного изобретения делитель напряжения подает на вентильный электрод 112В, ряд электродов 1161-116N, сетчатый электрод 118 и коллекторный электрод 124 линейно возрастающие потенциалы, для обеспечения однородности внутреннего электрического поля Е2 в дрейфовом канале 114, которое может составлять порядка нескольких сотен вольт на сантиметр (В/см). В некоторых воплощениях полярность источника 128 питания можно переключать (например, для облегчения анализа противоположно заряженных ионов).
В сравнении с внутренним электрическим полем Е2 дрейфового канала 114, внутреннее электрическое поле Е1 ионизационной камеры 106 определяется разностью напряжений и расстоянием между электродом 110 и вентильным электродом 112А. Например, электрод 110 и вентильный электрод 112А соединяют с источником питания, таким как источник 130 питания постоянного тока (DC) и высокого напряжения (HV). В некоторых воплощениях внутреннее электрическое поле Е1 ионизационной камеры 106 составляет порядка примерно от двадцати вольт на сантиметр (20 В/см) до пятисот вольт на сантиметр (500 В/см). Например, внутреннее электрическое поле Е1 составляет порядка примерно от пятидесяти вольт на сантиметр (50 В/см) до трехсот вольт на сантиметр (300 В/см). Кроме того, внутреннее электрическое поле Е1 имеет такую же ориентацию, как внутреннее электрическое поле Е2, и может быть меньше или больше, чем внутреннее электрическое поле Е2, чтобы обеспечить извлечение ионов. Также следует отметить, что, в то время как источники 128 и 130 питания изображены и описаны по отдельности, в некоторых воплощениях обеспечен единственный источник питания вместо источников 128 и 130 питания.
Теперь обратимся к Фиг 2А и 2В, где ионизирующее устройство 108 включает электроды 102 и 104, которые отделены друг от друга диэлектрическим слоем 102А. В некоторых воплощениях ионизирующее устройство 108 проходит в ионизационную камеру 106 по каналу 146. Ионизирующее устройство 108 включает также электропроводный, полупроводниковый или неэлектропроводный сердечник 132 (например, поддерживающий металлический стержень или трубку), который обеспечивает механическую поддержку первого электрода 102. В некоторых воплощениях первый электрод 102 сделан из электропроводного элемента (например, тонкой вольфрамовой проволоки, примерно одна десятая миллиметра (0,1 мм) в диаметре), покрытого слоем 102А диэлектрика (например, тонким слоем стекла, толщиной несколько десятков микрон). Сердечник 132 проходит вблизи первого электрода 102 и по меньшей мере частично вдоль него. В некоторых воплощениях первый электрод 102, изолированный диэлектрическим слоем 102А, находится в прямом физическом контакте с сердечником 132. Например, первый электрод 102 механически соединен с сердечником 132 посредством второго электрода 104. В воплощении, изображенном на Фиг. 2Е, сердечник 132 помещен вне свернутого в спираль электрода 104, а свернутый в спираль электрод 104 имеет внешние параллельные контакты с сердечником 132.
Сердечник 132 имеет электрический контакт с многочисленными электропроводными сегментами (например, витками) второго электрода 104, в соответствующих точках контакта. В некоторых воплощениях второй электрод 104 сформирован из тонкой проволоки, имеющей несколько десятков микрон в диаметре, окружающей первый электрод 102 (и, возможно, сердечник 132), например, обернутой вокруг них. Например, второй электрод 104 включает многочисленные витки, с шагом между последовательными оборотами по меньшей мере примерно от двадцати пяти тысячных миллиметра (0,025 мм) до пятидесяти миллиметров (50 мм). В воплощениях данного изобретения второй электрод 104 включает один или более металлов и/или сплавов с низкой химической реакционной способностью, низкой интенсивностью распыления и/или низкой работой выхода (таких как вольфрам (W), титан (Ti), тантал (Та), родий (Rh), карбид никеля (Ni3C) и т.п.).
Ионизацию анализируемых газов или паров для анализа проводят в несколько стадий. Ионизация начинается коротким импульсом переменного напряжения синусоидальной, треугольной, прямоугольной или другой произвольной формы, с регулярным или произвольным повторением во времени, который подают на электроды 102 и 104 ионизирующего устройства 108. В некоторых воплощениях эти короткие импульсы напряжения имеют амплитуды примерно от пятисот вольт (500 В) до десяти тысяч вольт (10000 В) (например, примерно от тысячи вольт (1000 В) до пяти тысяч вольт (5000 В)). Кроме того, приложенное напряжение может колебаться с частотой примерно ниже десяти мегагерц (10 МГц) (например, примерно от десяти килогерц (10 КГц) до пяти мегагерц (5 МГц)). Приложенное напряжение создает сильное переменное электрическое поле в областях вблизи пересечения электродов 102 и 104. Если это переменное электрическое поле превышает критическую величину, происходит зажигание диэлектрического барьерного разряда, создающего коронный разряд. Коронный разряд возникает, если случайным образом присутствующие электроны ускоряются между последовательными столкновениями до энергий, превышающих энергию ионизации атомов и молекул окружающих газов и/или паров. В ходе разряда диэлектрический барьер непрерывно заряжается, вызывая уменьшение электрического поля, что, в свою очередь, приводит к резкому завершению процесса ионизации. В присутствии коронного разряда возникают первичные положительные (+) ионы и первичные отрицательные (-) ионы, соответственно, при бомбардировке электронами или присоединении электронов.
Анализируемые газы и/или пары вводят внутрь ионизационной камеры 106 вблизи ионизирующего устройства 108 через входное отверстие 134, которое может быть расположено на конце СПИ устройства 100. Газ-носитель (например, сухой воздух) подают через другое входное отверстие 136, в конец дрейфового канала 114, где проводят определение ионов. В некоторых воплощениях для увеличения выхода ионизированных атомов и/или молекул анализируемого вещества, в ионизационную камеру 106 (например, через входное отверстие 134 и/или другое входное отверстие 138) впрыскивают газ-реагент с более высоким сродством к электрону или протону, чем у первичных ионов, в форме смеси с газом-носителем. В некоторых воплощениях в ионизационной камере 106 обеспечивают также выпускное отверстие 140.
Ионы из ионного облака, возникающего при бомбардировке электронами, химической ионизации, процессах присоединения и т.п., дрейфуют, в зависимости от их полярности, к электроду 110 или к вентильному электроду 112А. В воплощениях данного изобретения ионный затвор 112, отделяющий ионизационную камеру 106 от дрейфового канала 114, включает два близко расположенных вентильных электрода 112А и 112В в виде сетки, изолированных друг от друга тонким диэлектриком 122А (например, с толщиной порядка нескольких десятков микрон). В «закрытом» состоянии напряжение, приложенное к вентильным электродам 112А и 112В, создает между электродами электрическое поле с радиальной составляющей, ориентированной противоположно по отношению как к внутреннему электрическому полю Е2 дрейфового канала 114, так и к электрическому полю Е1 ионизационной камеры 106. В некоторых воплощениях разность напряжения между вентильными электродами 112А и 112В составляет порядка нескольких десятков вольт, в зависимости от их геометрии.
Ионный затвор 112 «открывают» на короткое время (например, примерно от пятидесяти микросекунд (50 мкс) до трехсот микросекунд (300 мкс)) посредством импульса, имеющего желаемую полярность. В некоторых воплощениях импульс задерживают по отношению к плазменному пусковому устройству, чтобы дать возможность желаемому количеству определяемых ионов достичь области ионизационной камеры 106, приближенной к ионному затвору 112. Плазменное пусковое устройство может быть запитано, например, от генератора 142 импульсов высокого напряжения. В некоторых воплощениях задержка импульса составляет примерно от нуля миллисекунд (0 мс) до десяти миллисекунд (10 мс) (например, примерно от половины миллисекунды (0,5 мс) до трех миллисекунд (3 мс)), в зависимости от размеров ионизационной камеры 106, скоростей реакций образованных ионов, электрического поля Е1 и подвижности ионов. Ионы идентифицируют, анализируя время их пролета с момента открытия ионного затвора 112 до времени их прибытия на коллекторный электрод 124. Например, для того, чтобы идентифицировать один или более видов ионов на основе их соответствующих времен пролета, используют детектор 144.
Обратимся теперь к Фиг. 2С, где в некоторых воплощениях сердечник 132 включает непроводящий материал основы (например, поддерживающий стержень или трубку) с нанесенным на него электропроводным материалом 132А. Например, между непроводящим материалом основы сердечника 132 и первым электродом 102 помещают полоску электропроводного материала 132А. В других воплощениях сердечник 132 включает непроводящий материал основы с металлизированной (или частично металлизированной) поверхностью.
Со ссылкой на Фиг. 2D, в некоторых воплощениях точки генерирования плазмы обеспечивают, используя многочисленные покрытые диэлектриком электроды 102. В некоторых воплощениях сердечник 132 может быть частично окружен электродами 102. В этой конфигурации второй электрод 104 окружает многочисленные первые электроды 102 (и, возможно, сердечник 132).
Обратимся теперь к Фиг. 3А-3С, где ионизирующее устройство 108 можно также сформировать, используя плоскую конфигурацию, с плоскими электродами. Например, как показано на Фиг. 3А и 3В, электропроводный элемент, включающий первый плоский электрод, расположен на основе 148 и загерметизирован диэлектрическим слоем 102А. В этом воплощении второй электрод 104 включает второй разветвленный плоский электрод с многочисленными пересечениями с первым электродом 102, где локально повышенные электрические поля одновременно запускают диэлектрические барьерные разряды. Со ссылкой на Фиг. 3С, второй плоский электрод 104 определяет единственное отверстие 150 или сеть отверстий 150, в которых плазма также образуется одновременно. Следует отметить, что в этих воплощениях плоские ионизирующие элементы могут быть получены путем ламинирования, применения технологий вакуумного нанесения и т.п.
Хотя объект данного изобретения описан в терминах, специфичных для конструкционных признаков и/или методологических действий, следует понимать, что объект данного изобретения, определенный в прилагаемой формуле изобретения, не обязательно ограничен конкретными описанными признаками или действиями. Хотя обсуждены различные конфигурации, устройства, системы, подсистемы, компоненты и т.д. можно сконструировать различными путями, не отходя от данного описания. Напротив, конкретные отличительные признаки и действия описаны в виде приведенных в качестве примера форм реализации формулы изобретения.

Claims (35)

1. Ионизирующее устройство, содержащее:
первый электрод, содержащий электропроводный элемент, покрытый слоем диэлектрика,
сердечник, проходящий вблизи первого электрода и по меньшей мере частично вдоль него, и
второй электрод, содержащий множество электропроводных сегментов, расположенных вблизи первого электрода, причем каждый из электропроводных сегментов контактирует с сердечником в соответствующих точках контакта, а диэлектрический слой первого электрода отделяет электропроводный элемент первого электрода от сердечника и от второго электрода,
при этом ионизирующее устройство выполнено для создания множества генерирующих плазму точек, соответствующих пересечениям первого электрода и второго электрода.
2. Ионизирующее устройство по п. 1, в котором второй электрод содержит множество витков, окружающих первый электрод.
3. Ионизирующее устройство по п. 1, в котором второй электрод окружает как первый электрод, так и сердечник.
4. Ионизирующее устройство по п. 2, в котором шаг между последовательными оборотами множества витков второго электрода составляет по меньшей мере примерно от двадцати пяти тысячных миллиметра (0,025 мм) до пятидесяти миллиметров (50 мм).
5. Ионизирующее устройство по п. 2, в котором второй электрод окружает как первый электрод, так и сердечник, при этом шаг между последовательными оборотами множества витков второго электрода составляет по меньшей мере примерно от двадцати пяти тысячных миллиметра (0,025 мм) до пятидесяти миллиметров (50 мм).
6. Ионизирующее устройство по п. 1, в котором сердечник содержит непроводящий материал основы с нанесенным на него электропроводным материалом.
7. Ионизирующее устройство по п. 1, в котором первый электрод содержит множество покрытых диэлектриком электродов.
8. Ионизирующее устройство по п. 7, в котором второй электрод содержит множество витков, окружающих первый электрод и сердечник.
9. Устройство спектрометра ионной подвижности (СИП), содержащее:
ионизационную камеру для ионизации по меньшей мере одного из анализируемых газа или пара,
ионизирующее устройство, расположенное в ионизационной камере, при этом ионизирующее устройство содержит первый электрод, содержащий электропроводный элемент, покрытый слоем диэлектрика, сердечник, проходящий вблизи первого электрода и по меньшей мере частично вдоль него, и второй электрод, содержащий множество электропроводных сегментов, расположенных вблизи первого электрода, причем каждый из электропроводных сегментов контактирует с сердечником в соответствующих точках контакта, а слой диэлектрика первого электрода отделяет электропроводный элемент первого электрода от сердечника и от второго электрода, при этом ионизирующее устройство выполнено для создания множества генерирующих плазму точек, соответствующих пересечениям первого электрода и второго электрода,
дрейфовый канал в соединении по текучей среде с ионизационной камерой,
затвор, расположенный между ионизационной камерой и дрейфовым каналом для селективного обеспечения доступа из ионизационной камеры в дрейфовый канал, и
коллекторный электрод, расположенный на конце дрейфового канала, противоположном затвору, и предназначенный для сбора ионов из указанного по меньшей мере одного из анализируемых газа или пара.
10. СИП устройство по п. 9, в котором второй электрод содержит множество витков, окружающих первый электрод.
11. СИП устройство по п. 9, в котором второй электрод окружает как первый электрод, так и сердечник.
12. СИП устройство по п. 10, в котором шаг между последовательными оборотами множества витков второго электрода составляет по меньшей мере примерно от двадцати пяти тысячных миллиметра (0,025 мм) до пятидесяти миллиметров (50 мм).
13. СИП устройство по п. 10, в котором второй электрод окружает как первый электрод, так и сердечник, при этом шаг между последовательными оборотами множества витков второго электрода составляет по меньшей мере примерно от двадцати пяти тысячных миллиметра (0,025 мм) до пятидесяти миллиметров (50 мм).
14. СИП устройство по п. 9, в котором сердечник содержит непроводящий материал основы с нанесенным на него электропроводным материалом.
15. СИП устройство по п. 9, в котором первый электрод содержит множество покрытых диэлектриком электродов.
16. СИП устройство по п. 15, в котором второй электрод содержит множество витков, окружающих первый электрод и сердечник.
17. Ионизирующее устройство, содержащее:
первый электрод, содержащий электропроводную проволоку, покрытую слоем диэлектрика,
электропроводную основу, проходящую вблизи первого электрода и по меньшей мере частично вдоль него, и
второй электрод, содержащий множество электропроводных витков, окружающих первый электрод, причем каждый из электропроводных витков контактирует с электропроводной основой в соответствующей точке контакта, а слой диэлектрика первого электрода отделяет электропроводную проволоку первого электрода от электропроводной основы и от второго электрода,
при этом ионизирующее устройство выполнено для создания множества генерирующих плазму точек, соответствующих пересечениям первого электрода и второго электрода.
18. Ионизирующее устройство по п. 17, в котором второй электрод окружает как первый электрод, так и электропроводную основу.
19. Ионизирующее устройство по п. 17, в котором шаг между последовательными оборотами множества витков второго электрода составляет по меньшей мере примерно от двадцати пяти тысячных миллиметра (0,025 мм) до пятидесяти миллиметров (50 мм).
20. Ионизирующее устройство по п. 17, в котором электропроводная основа содержит неэлектропроводный материал основы с нанесенным на него электропроводным материалом.
21. Ионизирующее устройство по п. 17, в котором первый электрод содержит множество покрытых диэлектриком электродов.
22. Ионизирующее устройство по любому из пп. 17-21, в котором второй электрод содержит множество витков, окружающих первый электрод и электропроводную основу.
RU2016123078A 2013-11-26 2014-11-26 Источник ионизации на основе диэлектрического барьерного разряда для спектрометрии RU2676384C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361908887P 2013-11-26 2013-11-26
US61/908,887 2013-11-26
PCT/CA2014/051126 WO2015077879A1 (en) 2013-11-26 2014-11-26 Dielectric barrier discharge ionization source for spectrometry

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2018143863A Division RU2775707C2 (ru) 2013-11-26 2014-11-26 Ионизирующее устройство и устройство спектрометра ионной подвижности

Publications (2)

Publication Number Publication Date
RU2016123078A RU2016123078A (ru) 2018-01-09
RU2676384C1 true RU2676384C1 (ru) 2018-12-28

Family

ID=53198145

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016123078A RU2676384C1 (ru) 2013-11-26 2014-11-26 Источник ионизации на основе диэлектрического барьерного разряда для спектрометрии

Country Status (10)

Country Link
US (1) US9778224B2 (ru)
EP (1) EP3074765B1 (ru)
JP (1) JP6379200B2 (ru)
KR (2) KR102259026B1 (ru)
CN (2) CN110133095A (ru)
CA (2) CA2931681C (ru)
MX (1) MX359728B (ru)
PL (1) PL3074765T3 (ru)
RU (1) RU2676384C1 (ru)
WO (1) WO2015077879A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201513472D0 (en) * 2015-07-30 2015-09-16 Smiths Detection Watford Ltd Apparatus and method
DE102015122155B4 (de) 2015-12-17 2018-03-08 Jan-Christoph Wolf Verwendung einer Ionisierungsvorrichtung
CN106290546B (zh) * 2016-08-03 2019-01-01 西安电子科技大学 离子迁移谱仪
US11201045B2 (en) 2017-06-16 2021-12-14 Plasmion Gmbh Apparatus and method for ionizing an analyte, and apparatus and method for analysing an ionized analyte
CA2972600A1 (en) 2017-07-07 2019-01-07 Teknoscan Systems Inc. Polarization dielectric discharge source for ims instrument
CN107946158B (zh) * 2017-11-10 2024-03-26 中国人民解放军陆军防化学院 介质阻挡放电离子源
CN107910237B (zh) * 2017-11-10 2024-03-26 中国人民解放军陆军防化学院 大气压辉光放电离子源
CN110828283B (zh) * 2019-11-15 2021-02-26 中国科学院大连化学物理研究所 一种热表面电离离子迁移管
CN113730623A (zh) * 2021-09-06 2021-12-03 西安电子科技大学 一种足部承压等离子体消杀装置
WO2023232082A1 (zh) * 2022-05-31 2023-12-07 广东美的制冷设备有限公司 一种等离子体发生装置、净化装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030894A1 (en) * 1994-05-05 1995-11-16 Enviva Ion mobility method and device for gas analysis
US20040222382A1 (en) * 2001-10-31 2004-11-11 Ionfinity Llc Devices incorporating soft ionization membrane
US6828552B2 (en) * 2001-06-25 2004-12-07 Ionfinity Llc Soft ionization device with characterization systems and methods of manufacture
WO2008067395A2 (en) * 2006-11-28 2008-06-05 Excellims Corporation Practical ion mobility spectrometer apparatus and methods for chemical and/or biological detection
US8173959B1 (en) * 2007-07-21 2012-05-08 Implant Sciences Corporation Real-time trace detection by high field and low field ion mobility and mass spectrometry
WO2012172436A2 (en) * 2011-06-16 2012-12-20 Smiths Detection Montreal Inc. Looped ionization source
WO2013173320A1 (en) * 2012-05-17 2013-11-21 Regents Of The University Of Minnesota Drift tube ion mobility spectrometer for aerosol measurement

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2528980A1 (fr) * 1982-06-17 1983-12-23 Pgep Detecteur de niveau d'ionisation d'un milieu gazeux controle par arc electrique
US5234529A (en) * 1991-10-10 1993-08-10 Johnson Wayne L Plasma generating apparatus employing capacitive shielding and process for using such apparatus
US6455014B1 (en) * 1999-05-14 2002-09-24 Mesosystems Technology, Inc. Decontamination of fluids or objects contaminated with chemical or biological agents using a distributed plasma reactor
US6273958B2 (en) * 1999-06-09 2001-08-14 Applied Materials, Inc. Substrate support for plasma processing
US6815669B1 (en) * 1999-07-21 2004-11-09 The Charles Stark Draper Laboratory, Inc. Longitudinal field driven ion mobility filter and detection system
US20110121735A1 (en) * 2000-02-22 2011-05-26 Kreos Capital Iii (Uk) Limited Tissue resurfacing
US6414702B1 (en) * 2001-06-29 2002-07-02 Xerox Corporation Printhead with plasma suppressing electrodes
US7274015B2 (en) 2001-08-08 2007-09-25 Sionex Corporation Capacitive discharge plasma ion source
US7091481B2 (en) 2001-08-08 2006-08-15 Sionex Corporation Method and apparatus for plasma generation
US6703784B2 (en) * 2002-06-18 2004-03-09 Motorola, Inc. Electrode design for stable micro-scale plasma discharges
US7521026B2 (en) 2003-03-21 2009-04-21 Los Alamos National Security, Llc Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor
EP1651949A4 (en) * 2003-06-20 2010-01-20 Univ Brigham Young SINGLE DEVICE FOR ION MOBILITY AND ION TRAP MASS SPECTROMETRY
CN1654111A (zh) * 2003-10-24 2005-08-17 雅马哈株式会社 使用非平衡等离子体的气体处理方法和装置
US7157721B1 (en) * 2003-12-22 2007-01-02 Transducer Technology, Inc. Coupled ionization apparatus and methods
JP2005216763A (ja) * 2004-01-30 2005-08-11 Hiroshi Motokawa イオン化気流発生装置
ITMI20041523A1 (it) * 2004-07-27 2004-10-27 Getters Spa Spettrometro di mobilita' ionica comprendente un elemento ionizzante a scarica a corona
GB0501940D0 (en) * 2005-01-29 2005-03-09 Smiths Group Plc Analytical apparatus
US7993489B2 (en) * 2005-03-31 2011-08-09 Tokyo Electron Limited Capacitive coupling plasma processing apparatus and method for using the same
JP2007026981A (ja) * 2005-07-20 2007-02-01 Iwasaki Electric Co Ltd プラズマ処理装置
KR100751344B1 (ko) * 2005-10-07 2007-08-22 삼성에스디아이 주식회사 표시 장치
US7507972B2 (en) * 2005-10-10 2009-03-24 Owlstone Nanotech, Inc. Compact ionization source
CN101067616B (zh) * 2007-06-06 2011-07-20 中国科学院合肥物质科学研究院 纵向高场不对称波形离子迁移谱装置
DE102008005281B4 (de) * 2008-01-19 2014-09-18 Airsense Analytics Gmbh Verfahren und Vorrichtung zur Detektion und Identifizierung von Gasen
JP2010033914A (ja) * 2008-07-29 2010-02-12 Kyocera Corp 誘電性構造体、並びに誘電性構造体を用いた放電装置および流体改質装置
CN101750264A (zh) * 2008-12-17 2010-06-23 中国科学院大连化学物理研究所 一种测量大气纳米粒子粒谱的方法及专用装置
JP2010189690A (ja) * 2009-02-17 2010-09-02 Toshiba Corp 微小構造物の製造方法、微小構造物集合体、微小構造物、改質器、マイクロプラズマ発生装置、ガス検知用センシングデバイス、アクチュエータ及び圧力センシングデバイス
CN101571508B (zh) * 2009-06-16 2012-10-10 清华大学 多层平板结构高场非对称波形离子迁移谱仪
CN102107158B (zh) * 2009-12-24 2013-03-20 同方威视技术股份有限公司 过滤装置、过滤方法以及痕量检测仪器
CN102313774B (zh) * 2010-06-30 2013-05-08 清华大学 用于离子迁移谱仪的离子门结构和离子迁移谱仪的操作方法
CA2816349C (en) 2010-10-27 2020-01-21 Reno F. Debono Background peak monitoring for ion mobility spectrometry
CN201935894U (zh) * 2010-12-31 2011-08-17 同方威视技术股份有限公司 用于离子迁移谱仪的进样装置和离子迁移谱仪
CN102237416A (zh) * 2011-07-05 2011-11-09 江苏能华微电子科技发展有限公司 一种用于紫外探测的雪崩光电二极管及其制备方法和工作方法
CN103137417B (zh) * 2011-12-02 2016-01-06 同方威视技术股份有限公司 电晕放电装置以及具有该电晕放电装置的离子迁移谱仪
TW201426143A (zh) * 2012-11-11 2014-07-01 Lensvector Inc 電容性耦合電場控制裝置
CN103364480B (zh) * 2013-07-11 2015-07-15 中国船舶重工集团公司第七一八研究所 离子迁移谱爆炸物探测系统
US9385079B2 (en) * 2014-01-29 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming stacked capacitors with fuse protection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030894A1 (en) * 1994-05-05 1995-11-16 Enviva Ion mobility method and device for gas analysis
US6828552B2 (en) * 2001-06-25 2004-12-07 Ionfinity Llc Soft ionization device with characterization systems and methods of manufacture
US20040222382A1 (en) * 2001-10-31 2004-11-11 Ionfinity Llc Devices incorporating soft ionization membrane
WO2008067395A2 (en) * 2006-11-28 2008-06-05 Excellims Corporation Practical ion mobility spectrometer apparatus and methods for chemical and/or biological detection
US8173959B1 (en) * 2007-07-21 2012-05-08 Implant Sciences Corporation Real-time trace detection by high field and low field ion mobility and mass spectrometry
WO2012172436A2 (en) * 2011-06-16 2012-12-20 Smiths Detection Montreal Inc. Looped ionization source
WO2013173320A1 (en) * 2012-05-17 2013-11-21 Regents Of The University Of Minnesota Drift tube ion mobility spectrometer for aerosol measurement

Also Published As

Publication number Publication date
CA2931681C (en) 2023-11-07
JP2017500557A (ja) 2017-01-05
KR20210064419A (ko) 2021-06-02
US20170023525A1 (en) 2017-01-26
CN105814440B (zh) 2019-04-05
RU2018143863A3 (ru) 2021-12-13
CA2931681A1 (en) 2015-06-04
RU2016123078A (ru) 2018-01-09
CN105814440A (zh) 2016-07-27
MX359728B (es) 2018-10-08
CN110133095A (zh) 2019-08-16
US9778224B2 (en) 2017-10-03
RU2018143863A (ru) 2019-03-25
CA3213655A1 (en) 2015-06-04
EP3074765B1 (en) 2020-11-11
EP3074765A4 (en) 2017-07-05
JP6379200B2 (ja) 2018-08-22
WO2015077879A1 (en) 2015-06-04
KR20160105785A (ko) 2016-09-07
KR102384936B1 (ko) 2022-04-08
KR102259026B1 (ko) 2021-05-31
EP3074765A1 (en) 2016-10-05
MX2016006921A (es) 2016-10-26
PL3074765T3 (pl) 2021-05-31

Similar Documents

Publication Publication Date Title
RU2676384C1 (ru) Источник ионизации на основе диэлектрического барьерного разряда для спектрометрии
US7326926B2 (en) Corona discharge ionization sources for mass spectrometric and ion mobility spectrometric analysis of gas-phase chemical species
JP5302899B2 (ja) 同軸ハイブリッド高周波イオントラップ質量分析計
KR20170042300A (ko) 출구에서 감소된 가스 유동을 갖는 저 질량 대 전하비 이온들의 효율적인 전달을 위한 이온 깔때기
US20050258353A1 (en) Method and apparatus for ion fragmentation in mass spectrometry
US11397165B2 (en) Analyzer
US9443709B2 (en) Corona ionization device and method
US20120126112A1 (en) Molecular ion accelerator
RU2602429C2 (ru) Комбинированный ионный затвор и модификатор
US10883964B2 (en) Polarization dielectric discharge source for IMS instrument
RU2775707C2 (ru) Ионизирующее устройство и устройство спектрометра ионной подвижности
US20170243729A1 (en) Ion Source
US10026600B2 (en) Corona ionization apparatus and method
JP7245367B2 (ja) 分析装置
CN110476221B (zh) Maldi靶板
JP2012028157A (ja) イオン源および質量分析装置
RU2537961C2 (ru) Способ транспорта ионов из полярной жидкости в вакуум и устройство для его осуществления
Latif Flowing atmospheric pressure afterglow drift tube ion mobility spectrometry evidence discrimination
Lubinsky et al. 3-D Printed, Compact, Time-of-Flight Reflectron Mass Filters
JP2023150632A (ja) Ims分析装置及びims分析方法
Ximen et al. Design and calculation of an electron impact storage ion source for time-of-flight mass spectrometers
Gromov Ignition method of corona discharge with modulation of the field in ion source of ion mobility spectrometer
Zilch Image charge detection and image charge detection mass spectrometry